Nanoscale Ring-Shaped Conduction Channels with Memristive Behavior in BiFeO3 Nanodots
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials Preparation
2.2. Characterization
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Lévy, L.P.; Dolan, G.; Dunsmuir, J.; Bouchiat, H. Magnetization of mesoscopic copper rings: Evidence for persistent currents. Phys. Rev. Lett. 1990, 64, 2074–2077. [Google Scholar] [CrossRef] [PubMed]
- Lévy, L.P. Persistent currents in mesoscopic copper rings. Physica B 1991, 169, 245–256. [Google Scholar] [CrossRef]
- Han, X.; Wei, H.; Peng, Z.; Yang, H.; Feng, J.; Du, G.; Sun, Z.; Jiang, L.; Ma, M.; Wang, Y.; et al. A novel design and fabrication of magnetic random access memory based on nano-ring-type magnetic tunnel junctions. J. Mater. Sci. Technol. 2007, 23, 304–306. [Google Scholar]
- Han, X.; Wen, Z.; Wei, H. Nanoring magnetic tunnel junction and its application in magnetic random access memory demo devices with spin-polarized current switching (invited). J. Appl. Phys. 2008, 103, 07E933. [Google Scholar] [CrossRef]
- Hu, X.L.; Yu, J.C.; Gong, J.M.; Li, Q.; Li, G.S. α-Fe2O3 nanorings prepared by a microwave-assisted hydrothermal process and their sensing properties. Adv. Mater. 2007, 19, 2324–2329. [Google Scholar] [CrossRef]
- Gou, X.; Wang, G.; Yang, J.; Park, J.; Wexler, D. Chemical synthesis, characterisation and gas sensing performance of copper oxide nanoribbons. J. Mater. Chem. 2008, 18, 965–969. [Google Scholar] [CrossRef]
- Jo, S.H.; Chang, T.; Ebong, I.; Bhadviya, B.B.; Mazumder, P.; Lu, W. Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 2010, 10, 1297–1301. [Google Scholar] [CrossRef]
- Indiveri, G.; Linares-Barranco, B.; Legenstein, R.; Deligeorgis, G.; Prodromakis, T. Integration of nanoscale memristor synapses in neuromorphic computing architectures. Nanotechnology 2013, 24, 384010. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Joshi, S.; Savel’ev, S.E.; Jiang, H.; Midya, R.; Lin, P.; Hu, M.; Ge, N.; Strachan, J.P.; Li, Z.; et al. Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat. Mater. 2017, 16, 101–108. [Google Scholar] [CrossRef]
- Kim, D.J.; Lu, H.; Ryu, S.; Bark, C.-W.; Eom, C.-B.; Tsymbal, E.Y.; Gruverman, A. Ferroelectric tunnel memristor. Nano Lett. 2012, 12, 5697–5702. [Google Scholar] [CrossRef]
- Chanthbouala, A.; Garcia, V.; Cherifi, R.O.; Bouzehouane, K.; Fusil, S.; Moya, X.; Xavier, S.; Yamada, H.; Deranlot, C.; Mathur, N.D.; et al. A ferroelectric memristor. Nat. Mater. 2012, 11, 860–864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Celano, U. Metrology and Physical Mechanisms in New Generation Ionic Devices. Ph.D. Thesis, The KU Leuven and IMEC, Leuven, Belgium, 2015. [Google Scholar]
- Waser, R.; Dittmann, R.; Staikov, G.; Szot, K. Redox-based resistive switching memories—Nanoionic mechanisms, prospects, and challenges. Adv. Mater. 2009, 21, 2632–2663. [Google Scholar] [CrossRef]
- Fan, Z.; Fan, H.; Yang, L.; Li, P.; Lu, Z.; Tian, G.; Huang, Z.; Li, Z.; Yao, J.; Luo, Q.; et al. Resistive switching induced by charge trapping/detrapping: A unified mechanism for colossal electroresistance in certain Nb: SrTiO3-based heterojunctions. J. Mater. Chem. C 2017, 5, 7317–7327. [Google Scholar] [CrossRef]
- Wang, J.; Neaton, J.B.; Zheng, H.; Nagarajan, V.; Ogale, S.B.; Liu, B.; Viehland, D.; Vaithyanathan, V.; Schlom, D.G.; Waghmare, U.V.; et al. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 2003, 299, 1719–1722. [Google Scholar] [CrossRef] [PubMed]
- Neaton, J.B.; Ederer, C.; Waghmare, U.V.; Spaldin, N.A.; Rabe, K.M. First-principles study of spontaneous polarization in multiferroic BiFeO3. Phys. Rev. B 2005, 71, 014113. [Google Scholar] [CrossRef]
- Li, Y.W.; Sun, J.L.; Chen, J.; Meng, X.J.; Chu, J.H. Structural ferroelectric dielectric and magnetic properties of BiFeO3/Pb(Zr0.5,Ti0.5)O3 multilayer films derived by chemical solution deposition. Appl. Phys. Lett. 2005, 87, 182902. [Google Scholar] [CrossRef]
- Qi, X.; Dho, J.; Blamire, M.; Jia, Q.; Lee, J.-S.; Foltyn, S.; MacManus-Driscoll, J.L. Epitaxial growth of BiFeO3 thin films by LPE and sol-gel method. J. Magn. Magn. Mater. 2004, 283, 415–421. [Google Scholar] [CrossRef]
- Kubel, F.; Schmid, H. Structure of a ferroelectric and ferroelastic monodomain crystal of the perovskite BiFeO3. Acta Cryst. B 1990, 46, 698–702. [Google Scholar] [CrossRef]
- Zhang, J.X.; Xiang, B.; He, Q.; Seidel, J.; Zeches, R.J.; Yu, P.; Yang, S.Y.; Wang, C.H.; Chu, Y.H.; Martin, L.W.; et al. Large field-induced strains in a lead-free piezoelectric material. Nat. Nanotechnol. 2011, 6, 98–102. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.E.; Jang, B.K.; Heo, Y.; Lee, J.H.; Jeong, M.; Lee, J.Y.; Seidel, J.; Yang, C.H. Electric control of straight stripe conductive mixed-phase nanostructures in La-doped BiFeO3. NPG Asia. Mater. 2014, 6, e81. [Google Scholar] [CrossRef]
- Zavaliche, F.; Das, R.R.; Kim, D.M.; Eom, C.B.; Yang, S.Y.; Shafer, P.; Ramesh, R. Ferroelectric domain structure in epitaxial BiFeO3 films. Appl. Phys. Lett. 2005, 87, 182912. [Google Scholar] [CrossRef]
- Zavaliche, F.; Shafer, P.; Ramesh, R.; Cruz, M.P.; Das, R.R.; Kim, D.M.; Eom, C.B. Polarization switching in epitaxial BiFeO3 films. Appl. Phys. Lett. 2005, 87, 252902. [Google Scholar] [CrossRef]
- Chu, Y.H.; Zhan, Q.; Martin, L.W.; Cruz, M.P.; Yang, P.L.; Pabst, G.W.; Zavaliche, F.; Yang, S.Y.; Zhang, J.X.; Chen, L.Q.; et al. Nanoscale domain control in multiferroic BiFeO3 thin films. Adv. Mater. 2006, 18, 2307–2311. [Google Scholar] [CrossRef]
- Seidel, J.; Martin, L.W.; He, Q.; Zhan, Q.; Chu, Y.H.; Rother, A.; Hawkridge, M.E.; Maksymovych, P.; Yu, P.; Gajek, M.; et al. Conduction at domain walls in oxide multiferroics. Nat. Mater. 2009, 8, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Maksymovych, P.; Seidel, J.; Chu, Y.H.; Wu, P.; Baddorf, A.P.; Chen, L.-Q.; Kalinin, S.V.; Ramesh, R. Dynamic conductivity of ferroelectric domain walls in BiFeO3. Nano Lett. 2011, 11, 1906–1912. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wang, Y.; Tian, G.; Li, P.; Zhao, L.; Zhang, F.; Yao, J.; Fan, H.; Song, X.; Chen, D.; et al. High-density array of ferroelectric nanodots with robust and reversibly switchable topological domain states. Sci. Adv. 2017, 3, e1700919. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.L.; Xue, F.; Wu, R.; Cui, J.; Jiang, Z.M.; Yang, X.J. Conductive atomic force microscopy studies on the transformation of GeSi quantum dots to quantum rings. Nanotechnology 2009, 20, 135703. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Ke, S.Y.; Yang, J.; Hu, W.D.; Qiu, F.; Wang, R.F.; Yang, Y. Electronic properties of single Ge/Si quantum dot grown by ion beam sputtering deposition. Nanotechnology 2015, 26, 105201. [Google Scholar] [CrossRef] [PubMed]
- Ou, X.; Shuai, Y.; Luo, W.B.; Siles, P.F.; Koegler, R.; Fiedler, J.; Reuther, H.; Zhou, S.Q.; Huebner, R.; Facsko, S.; et al. Forming-free resistive switching in multiferroic BiFeO3 thin films with enhanced nanoscale shunts. ACS Appl. Mater. Interfaces 2013, 5, 12764–12771. [Google Scholar] [CrossRef] [PubMed]
- Kalinin, S.V.; Jesse, S.; Tselev, A.; Baddorf, A.P.; Balke, N. The role of electrochemical phenomena in scanning probe microscopy of ferroelectric thin films. ACS Nano 2011, 5, 5683–5691. [Google Scholar] [CrossRef] [PubMed]
- Farokhipoora, S.; Nohedab, B. Screening effects in ferroelectric resistive switching of BiFeO3 thin films. APL Mater. 2014, 2, 056102. [Google Scholar] [CrossRef]
- Tan, Z.W.; Tian, J.J.; Fan, Z.; Lu, Z.X.; Zhang, L.Y.; Zheng, D.F.; Wang, Y.D.; Chen, D.Y.; Qin, M.H.; Zeng, M.; et al. Polarization imprint effects on the photovoltaic effect in Pb(Zr,Ti)O3 thin films. Appl. Phys. Lett. 2018, 112, 152905. [Google Scholar] [CrossRef]
- Son, J.Y.; Bang, S.H.; Cho, J.H. Kelvin probe force microscopy study of and thin films for SrBi2Ta2O9 and PbZr0.53Ti0.47O3 high-density nonvolatile storage devices. Appl. Phys. Lett. 2003, 82, 3505–3507. [Google Scholar] [CrossRef]
- Kim, Y.; Bae, C.; Ryu, K.; Ko, H.; Kim, Y.K.; Hong, S.; Shin, H. Origin of surface potential change during ferroelectric switching in epitaxial thin films studied by scanning force microscopy. Appl. Phys. Lett. 2009, 94, 032907. [Google Scholar] [CrossRef]
- Muenstermann, R.; Menke, T.; Dittmann, R.; Mi, S.; Jia, C.-L.; Park, D.; Mayer, J. Correlation between growth kinetics and nanoscale resistive switching properties of SrTiO3 thin films. J. Appl. Phys. 2010, 108, 124504. [Google Scholar] [CrossRef]
- Celano, U.; Goux, L.; Degraeve, R.; Fantini, A.; Richard, O.; Bender, H.; Jurczak, M.; Vandervorst, W. Imaging the three-dimensional conductive channel in filamentary-based oxide resistive switching memory. Nano Lett. 2015, 15, 7970–7975. [Google Scholar] [CrossRef]
- Kalinin, S.V.; Bonnell, D.A. Imaging mechanism of piezoresponse force microscopy of ferroelectric surfaces. Phys. Rev. B 2001, 65, 125411. [Google Scholar] [CrossRef]
- Fan, Z.; Fan, H.; Lu, Z.; Li, P.; Huang, Z.; Tian, G.; Yang, L.; Yao, J.; Chen, C.; Chen, D.; et al. Ferroelectric diodes with charge injection and trapping. Phys. Rev. Appl. 2017, 7, 014020. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Fan, Z.; Zhou, G. Nanoscale Ring-Shaped Conduction Channels with Memristive Behavior in BiFeO3 Nanodots. Nanomaterials 2018, 8, 1031. https://doi.org/10.3390/nano8121031
Li Z, Fan Z, Zhou G. Nanoscale Ring-Shaped Conduction Channels with Memristive Behavior in BiFeO3 Nanodots. Nanomaterials. 2018; 8(12):1031. https://doi.org/10.3390/nano8121031
Chicago/Turabian StyleLi, Zhongwen, Zhen Fan, and Guofu Zhou. 2018. "Nanoscale Ring-Shaped Conduction Channels with Memristive Behavior in BiFeO3 Nanodots" Nanomaterials 8, no. 12: 1031. https://doi.org/10.3390/nano8121031
APA StyleLi, Z., Fan, Z., & Zhou, G. (2018). Nanoscale Ring-Shaped Conduction Channels with Memristive Behavior in BiFeO3 Nanodots. Nanomaterials, 8(12), 1031. https://doi.org/10.3390/nano8121031