Epoxidation of Carbon Nanocapsules: Decoration of Single-Walled Carbon Nanotubes Filled with Metal Halides
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Oxidation of MX@SWCNT with Isolated TFDO (1b)
3.2. Post-Functionalization of ox-MX@SWCNTs 3 with 1,6-Hexamethylenediamine
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Baughman, R.H.; Zakhidov, A.A.; de Heer, W.A. Carbon nanotubes—The route toward applications. Science 2002, 297, 787–792. [Google Scholar] [CrossRef] [PubMed]
- Ehli, C.; Oelsner, C.; Guldi, D.M.; Mateo-Alonso, A.; Prato, M.; Schmidt, C.; Backes, C.; Hauke, F.; Hirsch, A. Manipulating single-wall carbon nanotubes by chemical doping and charge transfer with perylene dyes. Nat. Chem. 2009, 1, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Tasis, D.; Tagmatarchis, N.; Bianco, A.; Prato, M. Chemistry of carbon nanotubes. Chem. Rev. 2006, 106, 1105–1136. [Google Scholar] [CrossRef] [PubMed]
- Prato, M.; Kostarelos, K.; Bianco, A. Functionalized Carbon Nanotubes in Drug Design and Discovery. Acc. Chem. Res. 2008, 41, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.J.; Coleman, K.S.; Azamian, B.R.; Bagshaw, C.B.; Green, M.L.H. Chemical and Biochemical Sensing with Modified Single Walled Carbon Nanotubes. Chem. Eur. J. 2003, 9, 3732–3739. [Google Scholar] [CrossRef] [PubMed]
- Dai, H.; Hafner, J.H.; Rinzler, A.G.; Colbert, D.T.; Smalley, R.E. Nanotubes as nanoprobes in scanning probe microscopy. Nature 1996, 384, 147–150. [Google Scholar] [CrossRef]
- Kostarelos, K.; Bianco, A.; Prato, M. Promises, facts and challenges for carbon nanotubes in imaging and therapeutics. Nat. Nanotechnol. 2009, 4, 627–633. [Google Scholar] [CrossRef] [PubMed]
- Bhirde, A.A.; Patel, V.; Gavard, J.; Zhang, G.; Sousa, A.A.; Masedunskas, A.; Leapman, R.D.; Weigert, R.; Gutkind, R.J.S.; Rusling, J.F. Targeted Killing of Cancer Cells in Vivo and in Vitro with EGF-Directed Carbon Nanotube-Based Drug Delivery. ACS Nano 2009, 3, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Chen, K.; Davis, C.; Sherlock, S.; Cao, Q.; Chen, X.; Dai, H. Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res. 2008, 68, 6652–6660. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.Y.; Tobias, G.; Al-Jamal, K.T.; Ballesteros, B.; Ali-Boucetta, H.; Lozano-Perez, S.; Nellist, P.D.; Sim, R.B.; Finucane, C.; Mather, S.J.; et al. Filled and glycosylated carbon nanotubes for in vivo radioemitter localization and imaging. Nat. Mater. 2010, 9, 485–490. [Google Scholar] [CrossRef] [PubMed]
- Martincic, M.; Tobias, G. Filled carbon nanotubes in biomedical imaging and drug delivery. Expert Opin. Drug Deliv. 2015, 12, 563–581. [Google Scholar] [CrossRef] [PubMed]
- Karousis, N.; Tagmatarchis, N.; Tasis, D. Current Progress on the Chemical Modification of Carbon Nanotubes. Chem. Rev. 2010, 110, 5366–5397. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Rinzler, A.G.; Dai, H.; Hafner, J.H.; Bradley, R.K.; Boul, P.J.; Lu, A.; Iverson, T.; Shelimov, K.; Huffman, C.B.; et al. Fullerene pipes. Science 1998, 280, 1253–1256. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zou, H.; Qing, Q.; Yang, Y.; Li, Q.; Liu, Z.; Guo, X.; Du, Z. Effect of Chemical Oxidation on the Structure of Single-Walled Carbon Nanotubes. J. Phys. Chem. B 2003, 107, 3712–3718. [Google Scholar] [CrossRef]
- Curci, R.; D’Accolti, L.; Fusco, C. A Novel Approach to the Efficient Oxygenation of Hydrocarbons under Mild Conditions. Superior Oxo Transfer Selectivity Using Dioxiranes. Acc. Chem. Res. 2006, 39, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Cassidei, L.; Fiorentino, M.; Mello, R.; Sciacovelli, O.; Curci, R. Oxygen-17 and carbon-13 identification of the dimethyldioxirane intermediate arising in the reaction of potassium caroate with acetone. J. Org. Chem. 1987, 52, 699–700. [Google Scholar] [CrossRef]
- Murray, R.W.; Singh, M. Synthesis of Epoxides Using Dimethyldioxirane: Trans-Stilbene Oxide. Org. Synth. 1997, 74, 91–97. [Google Scholar] [CrossRef]
- Mello, R.; Fiorentino, M.; Fusco, C.; Curci, R. Oxidations by Methyl(trifluoromethy1)dioxirane. 2. Oxyfunctionalization of Saturated Hydrocarbonst. J. Am. Chem. Soc. 1989, 111, 6749–6757. [Google Scholar] [CrossRef]
- Annese, C.; D’Accolti, L.; Filardi, R.; Tommasi, I.; Fusco, C. Oxidative cleavage of lactams in water using dioxiranes: An expedient and environmentally-safe route to ω-nitro acids. Tetrahedron. Lett. 2013, 54, 515–517. [Google Scholar] [CrossRef]
- Annese, C.; Abbrescia, D.I.; Catucci, L.; D’Accolti, L.; Denora, N.; Fanizza, I.; Fusco, C.; La Piana, G. Site-dependent biological activity of valinomycin analogs bearing derivatizable hydroxyl sites. J. Pept. Sci. 2013, 19, 751–757. [Google Scholar] [CrossRef] [PubMed]
- D’Accolti, L.; Fusco, C.; Rella, M.R.; Curci, R. Concerning synthesis of ring-A fluorinated anthracyclines. The dioxirane shunt. Synt. Commun. 2003, 33, 3009–3016. [Google Scholar] [CrossRef]
- D’Accolti, L.; Annese, C.; Fusco, C. Dioxirane-mediated metal-free oxidations of target molecules containing unsaturated carbons. Curr. Org. Chem. 2015, 19, 45–61. [Google Scholar] [CrossRef]
- D’Accolti, L.; Annese, C.; De Riccardis, A.; De Giglio, E.; Cafagna, D.; Fanelli, F.; Fusco, C. Dioxirane-Mediated Heterogeneous Epoxidations with Potassium Caroate: A Solid Catalyst Bearing Anchored Ketone Moieties. Eur. J. Org. Chem. 2012, 24, 4616–4621. [Google Scholar] [CrossRef]
- Annese, C.; D’Accolti, L.; Fusco, C.; Curci, R. Selective Hydroxylation of Methane by Dioxiranes under Mild Conditions. Org. Lett. 2011, 13, 2142–2144. [Google Scholar] [CrossRef] [PubMed]
- Annese, C.; D’Accolti, L.; Giambastiani, G.; Mangone, A.; Milella, A.; Tuci, G.; Fusco, C. Tunable epoxidation of single-walled carbon nanotubes by isolated methyl(trifluoromethyl)dioxirane. Eur. J. Org. Chem. 2014, 8, 1666–1671. [Google Scholar] [CrossRef]
- Annese, C.; D’Accolti, L.; Armuzza, V.; Da Ros, T.; Fusco, C. Epoxidation of multi-walled carbon nanotubes by organocatalytic oxidation. Eur. J. Org. Chem. 2015, 2015, 3063–3068. [Google Scholar] [CrossRef]
- Kierkowicz, M.; González-Domínguez, J.M.; Pach, E.; Sandoval, S.; Ballesteros, B.; Da Ros, T.; Tobias, G. Filling Single-Walled Carbon Nanotubes with Lutetium Chloride: A Sustainable Production of Nanocapsules Free of Nonencapsulated Material. ACS Sustain. Chem. Eng. 2017, 5, 2501–2508. [Google Scholar] [CrossRef]
- Ballesteros, B.; Tobias, G.; Shao, L.; Pellicer, E.; Nogués, J.; Mendoza, E.; Green, M.L.H. Steam Purification for the Removal of Graphitic Shells Coating Catalytic Particles and the Shortening of Single-Walled Carbon Nanotubes. Small 2008, 4, 1501–1506. [Google Scholar] [CrossRef] [PubMed]
- Shao, L.; Tobias, G.; Huh, Y.; Green, M.L.H. Purification and Opening of Carbon Nanotubes Using Steam. Carbon 2006, 44, 2855–2858. [Google Scholar] [CrossRef]
- Karmakar, A.; Bratton, S.M.; Dervishi, E.; Ghosh, A.; Mahmood, M.; Xu, Y.; Saeed, L.M.; Mustafa, T.; Casciano, D.; Radominska-Pandya, A.; et al. Ethylenediamine functionalized-single-walled nanotube (f-SWNT)-assisted in vitro delivery of the oncogene suppressor p53 gene to breast cancer MCF-7 cells. Int. J. Nanomed. 2011, 6, 1045–1055. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 2000, 61, 14095–14107. [Google Scholar] [CrossRef]
- Laudenbach, J.; Gebhardt, B.; Syrgiannis, Z.; Hauke, F.; Hirsch, A.; Maultzsch, J. Raman bands of nano-graphene flakes on carbon nanotubes after oxidation. Phys. Status Solidi B 2013, 250, 2687–2691. [Google Scholar] [CrossRef]
Products | Weight Loss 1 (%) | f 2 (µmol/g) | (AD/AG)/(AD0/AG0) 3 |
---|---|---|---|
f-NaI@SWCNTs (4a) | 9.7 | 730 | 1.8 |
f-LuCl3@SWCNTs (4b) | 11.9 | 900 | 2.1 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Accolti, L.; Gajewska, A.; Kierkowicz, M.; Martincic, M.; Nacci, A.; Sandoval, S.; Ballesteros, B.; Tobias, G.; Da Ros, T.; Fusco, C. Epoxidation of Carbon Nanocapsules: Decoration of Single-Walled Carbon Nanotubes Filled with Metal Halides. Nanomaterials 2018, 8, 137. https://doi.org/10.3390/nano8030137
D’Accolti L, Gajewska A, Kierkowicz M, Martincic M, Nacci A, Sandoval S, Ballesteros B, Tobias G, Da Ros T, Fusco C. Epoxidation of Carbon Nanocapsules: Decoration of Single-Walled Carbon Nanotubes Filled with Metal Halides. Nanomaterials. 2018; 8(3):137. https://doi.org/10.3390/nano8030137
Chicago/Turabian StyleD’Accolti, Lucia, Agnieszka Gajewska, Magdalena Kierkowicz, Markus Martincic, Angelo Nacci, Stefania Sandoval, Belén Ballesteros, Gerard Tobias, Tatiana Da Ros, and Caterina Fusco. 2018. "Epoxidation of Carbon Nanocapsules: Decoration of Single-Walled Carbon Nanotubes Filled with Metal Halides" Nanomaterials 8, no. 3: 137. https://doi.org/10.3390/nano8030137
APA StyleD’Accolti, L., Gajewska, A., Kierkowicz, M., Martincic, M., Nacci, A., Sandoval, S., Ballesteros, B., Tobias, G., Da Ros, T., & Fusco, C. (2018). Epoxidation of Carbon Nanocapsules: Decoration of Single-Walled Carbon Nanotubes Filled with Metal Halides. Nanomaterials, 8(3), 137. https://doi.org/10.3390/nano8030137