Structure and Magnetism of Mn5Ge3 Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Crystal Structure and Microstructure Measurements
3.2. Magnetic Properties
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Chappert, C.; Fert, A.; Van Dau, F.N. The emergence of spin electronics in data storage. Nat. Mater. 2007, 6, 813–823. [Google Scholar] [CrossRef] [PubMed]
- Yakushiji, K.; Ernult, F.; Imamura, H.; Yamane, K.; Mitani, S.; Takanashi, K.; Takahashi, S.; Maekawa, S.; Fujimori, H. Enhanced Spin Accumulation and Novel Magnetotransport in Nanoparticles. Nat. Mater. 2005, 4, 57–61. [Google Scholar] [CrossRef] [PubMed]
- Winkler, E.; Zysler, R.D.; Mansilla, M.V.; Fiorani, D. Surface anisotropy effects in NiO nanoparticles. Phys. Rev. B 2005, 72, 132409. [Google Scholar] [CrossRef]
- Gambardella, P.; Rusponi, S.; Veronese, M.; Dhesi, S.S.; Grazioli, C.; Dallmeyer, A.; Cabria, I.; Zeller, R.; Dederichs, P.H.; Kern, K. Giant Magnetic Anisotropy of Single Cobalt Atoms and Nanoparticles. Science 2003, 300, 1130–1133. [Google Scholar] [CrossRef] [PubMed]
- Balasubramanian, B.; Manchanda, P.; Skomski, R.; Mukherjee, P.; Das, B.; George, T.A.; Hadjipanayis, G.C.; Sellmyer, D. Unusual spin correlations in a nanomagnet. J. Appl. Phys. Lett. 2015, 106, 242401. [Google Scholar] [CrossRef]
- Das, B.; Balasubramanian, B.; Manchanda, P.; Mukherjee, P.; Skomski, R.; Hadjipanayis, G.C.; Sellmyer, D.J. Mn5Si3 Nanoparticles: Synthesis and Size-Induced Ferromagnetism. Nano Lett. 2016, 16, 1132–1137. [Google Scholar] [CrossRef] [PubMed]
- Coey, J.M.D. Permanent magnets: Plugging the gap. Scr. Mater. 2012, 67, 524–529. [Google Scholar] [CrossRef]
- Jonietz, F.; Mühlbauer, S.; Pfleiderer, C.; Neubauer, A.; Münzer, W.; Bauer, A.; Adams, T.; Georgii, R.; Böni, P.; Duine, R.A.; et al. Spin transfer torques in MnSi at ultralow current densities. Science 2010, 330, 1648–1651. [Google Scholar] [CrossRef] [PubMed]
- Picozzi, S.; Continenza, A.; Freeman, A.J. First-principles characterization of ferromagnetic Mn5Ge3 for spintronic applications. Phys. Rev. B 2004, 70, 235205. [Google Scholar] [CrossRef]
- Zeng, C.; Erwin, S.C.; Feldman, L.C.; Li, A.P.; Jin, R.; Song, Y.; Thompson, J.R.; Weitering, H.H. Epitaxial ferromagnetic Mn5Ge3 on Ge(111). Appl. Phys. Lett. 2003, 83, 5002–5004. [Google Scholar] [CrossRef]
- Zeng, C.; Zhu, W.; Erwin, S.C.; Zhang, Z.; Weitering, H.H. Initial stages of Mn adsorption on Ge(111). Phys. Rev. B 2004, 70, 205340. [Google Scholar] [CrossRef]
- Stroppa, A.; Peressi, M. Competing magnetic phases of Mn5Ge3 compound. Phys. Status Solidi A 2007, 204, 44–52. [Google Scholar] [CrossRef]
- Olive-mendez, S.; Spiesser, A.; Michez, L.A.; Le Thanh, V.; Glachant, A.; Derrien, J.; Devillers, T.; Barski, A.; Jamet, M. Epitaxial growth of Mn5Ge3/Ge(111) heterostructures for spin injection. Thin Solid Films 2008, 517, 191–196. [Google Scholar] [CrossRef]
- Gajdzik, M.; Sürgers, C.; Kelemen, M.T.; Löhneysen, H.V. Strongly enhanced Curie temperature in carbon-doped Mn5Ge3 films. J. Magn. Magn. Mater. 2000, 221, 248–254. [Google Scholar] [CrossRef]
- Sürgers, C.; Potzger, K.; Strache, T.; Möller, W.; Fischer, G.; Joshi, N.; Löhneysen, H.V. Magnetic order by C-ion implantation into Mn5Si3 and Mn5Ge3 and its lateral modification. Appl. Phys. Lett. 2008, 93, 062503. [Google Scholar] [CrossRef]
- Slipukhina, I.; Arras, E.; Mavropoulos, P.; Pochet, P. Simulation of the enhanced Curie temperature in Mn5Ge3Cx compounds. Appl. Phys. Lett. 2009, 94, 192505. [Google Scholar] [CrossRef]
- Chen, T.Y.; Chien, C.L.; Petrovic, C. Enhanced Curie temperature and spin polarization in Mn4FeGe3. Appl. Phys. Lett. 2007, 91, 142505. [Google Scholar] [CrossRef]
- Stroppa, A.; Kresse, G.; Continenza, A. Spin polarization tuning in Mn5−xFexGe3. Appl. Phys. Lett. 2008, 93, 092502. [Google Scholar] [CrossRef]
- Songlin, D.; Tegus, O.; Brück, E.; de Boer, F.R.; Buschow, K.H.J. Magnetic and magnetocaloric properties of Mn5Ge3−xSbx. J. Alloys Compd. 2002, 337, 269–271. [Google Scholar] [CrossRef]
- Tawara, Y.; Sato, K. On the Magnetic Anisotropy of Single Crystal of Mn5Ge3. Proc. Phys. Soc. Jpn. 1963, 18, 773–777. [Google Scholar] [CrossRef]
- Forsyth, J.B.; Brown, P.J. The spatial distribution of magnetization density in Mn5Ge3. J. Phys. Condens. Matter 1990, 2, 2713. [Google Scholar] [CrossRef]
- Kappel, G.; Fischer, G.; Jaegle, A. On the saturation magnetization of Mn5Ge3. Phys. Lett. 1973, 42, 267–268. [Google Scholar] [CrossRef]
- Kalvig, R.; Jedryka, E.; Aleshkevych, P.; Wojcik, M.; Bednarski, W.; Petit, M.; Michez, L. Ferromagnetic resonance in Mn5Ge3 epitaxial films with weak stripe domain structure. J. Phys. D Appl. Phys. 2017, 50, 125001. [Google Scholar] [CrossRef]
- Sürgers, C.; Fischer, G.; Winkel, P.; Löhneysen, H.V. Magnetotransport in ferromagnetic Mn5Ge3, Mn5Ge3C0.8, and Mn5Si3C0.8 thin films. Phys. Rev. B 2014, 90, 104421. [Google Scholar] [CrossRef]
- Kim, H.; Jung, G.; Lim, J.; Chung, K.H.; Kahng, S.; Son, W.; Han, S. Epitaxial Mn5Ge3 nano-islands on a Ge(001) surface. Nanotechnology 2008, 19, 025707. [Google Scholar] [CrossRef] [PubMed]
- Le, T.; Dau, M.; Thanh, V.L.; Nam, D.N.H.; Petit, M.; Michez, L.A.; Nguyen, V.; Nguyen, M. Growth competition between semiconducting Ge1−xMnx nanocolumns and metallic Mn5Ge3 clusters. Adv. Nat. Sci. Nanosci. Nanotechnol. 2012, 3, 025007. [Google Scholar] [CrossRef]
- Park, Y.D.; Wilson, A.; Hanbicki, A.T.; Mattson, J.E.; Ambrose, T.; Spanos, G.; Jonker, B.T. Magnetoresistance of Mn:Ge ferromagnetic nanoclusters in a diluted magnetic semiconductor matrix. Appl. Phys. Lett. 2001, 78, 2739–2741. [Google Scholar] [CrossRef]
- Lechner, R.T.; Holý, V.; Ahlers, S.; Bougeard, D.; Stangl, J.; Trampert, A.; Navarro-Quezada, A.; Bauer, G. Self-assembled Mn5Ge3 nanomagnets close to the surface and deep inside a Ge1−xMnx epilayer. Appl. Phys. Lett. 2009, 95, 023102. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S.; Zhang, W.; Shalimov, A.; Wang, Y.; Huang, Z.; Buerger, D.; Mücklich, A.; Zhang, W.; Schmidt, H.; Helm, M. Magnetic Mn5Ge3 nanocrystals embedded in crystalline Ge: A magnet/semiconductor hybrid synthesized by ion implantation. Nanoscale Res. Lett. 2012, 7, 528. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.; Jamet, M.; Barski, A.; Devillers, T.; Yu, I.; Porret, C.; Bayle-Guillemaud, P.; Favre-Nicolin, V.; Gambarelli, S.; Maurel, V.; et al. Structure and magnetism of Ge3Mn5 clusters. J. Appl. Phys. 2011, 109, 013911. [Google Scholar] [CrossRef]
- Park, Y.D.; Hambicki, A.T.; Erwin, S.C.; Hellberg, C.S.; Sullivan, J.M.; Mattson, J.E.; Ambrose, T.F.; Wilson, A.; Spanos, G.; Jonker, B.T. A Group-IV Ferromagnetic Semiconductor: MnxGe1−x. Science 2002, 295, 651–654. [Google Scholar] [CrossRef] [PubMed]
- Li, A.P.; Shen, J.; Thompson, J.R.; Weitering, H.H. Ferromagnetic percolation in MnxGe1−x dilute magnetic semiconductor. Appl. Phys. Lett. 2005, 86, 152507. [Google Scholar] [CrossRef]
- Yuan, H.K.; Chen, H.; Kuang, A.L.; Tian, C.L.; Wang, J.Z. Electronic structural and magnetic properties of Mn5Ge3 clusters. J. Chem. Phys. 2013, 139, 204307. [Google Scholar] [CrossRef] [PubMed]
- Haberland, H.; Karrais, M.; Mall, M.; Thurner, Y. Thin films from energetic cluster impact: A feasibility study. J. Vac. Sci. Technol. 1992, 10, 3266–3271. [Google Scholar] [CrossRef]
- Stoyanov, S.; Skumryev, V.; Zhang, Y.; Huang, Y.; Hadjipanayis, G.C.; Nogués, J. High anisotropy Sm-Co. nanoparticles: Preparation by cluster gun technique and their magnetic properties. J. Appl. Phys. 2003, 93, 7592–7594. [Google Scholar] [CrossRef]
- Zhang, Y.; Runge, A.P.; Shan, Z.S.; Sellmyer, D.J. Magnetic and magneto-optical properties of Mn5(Ge1−xMx)3 alloys with M=Sn, Pb. J. Appl. Phys. 1994, 75, 6354–6356. [Google Scholar] [CrossRef]
- PowderCell 2.3 Powder Pattern Calculation from Single Crystal Data and Refinement of Experimental Curves. Available online: http://www.ccp14.ac.uk (accessed on 5 April 2018).
- Kneller, E.; Seeger, A.; Kronmüller, H. Ferromagnetism; Springer: Berlin/Heidelberg, Germany, 1962; pp. 151–152. [Google Scholar]
- Hadjipanayis, G.; Sellmyer, D.J.; Brandt, B. Rare-earth-rich metallic glasses. I. Magnetic hysteresis. Phys. Rev. B 1981, 23, 3349–3354. [Google Scholar] [CrossRef]
- Skomski, R.; Kumar, P.; Balamurugan, B.; Das, B.; Manchanda, P.; Raghani, P.; Kashyap, A.; Sellmyer, D.J. Exchange and Magnetic Order in Bulk and Nanostructured Fe5Si3. J. Magn. Magn. Mater. 2018, in press. [Google Scholar]
Average Particle Size (nm) (TEM) | Average Particle Size (nm) (Scherrer’s Equation) | Lattice Parameters (Å) (Fitting) |
---|---|---|
S1 7.2 | 7.3 | a = b = 7.183 Å, c = 5.080 Å |
S2 10 | 12.2 | a = b = 7.167 Å, c = 5.011 Å |
S3 12.6 | 16.7 | a = b = 7.193 Å, c = 5.078 Å |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tosun, O.; Salehi-Fashami, M.; Balasubramanian, B.; Skomski, R.; Sellmyer, D.J.; Hadjipanayis, G.C. Structure and Magnetism of Mn5Ge3 Nanoparticles. Nanomaterials 2018, 8, 241. https://doi.org/10.3390/nano8040241
Tosun O, Salehi-Fashami M, Balasubramanian B, Skomski R, Sellmyer DJ, Hadjipanayis GC. Structure and Magnetism of Mn5Ge3 Nanoparticles. Nanomaterials. 2018; 8(4):241. https://doi.org/10.3390/nano8040241
Chicago/Turabian StyleTosun, Onur, Mohammed Salehi-Fashami, Balamurugan Balasubramanian, Ralph Skomski, David J. Sellmyer, and George C. Hadjipanayis. 2018. "Structure and Magnetism of Mn5Ge3 Nanoparticles" Nanomaterials 8, no. 4: 241. https://doi.org/10.3390/nano8040241
APA StyleTosun, O., Salehi-Fashami, M., Balasubramanian, B., Skomski, R., Sellmyer, D. J., & Hadjipanayis, G. C. (2018). Structure and Magnetism of Mn5Ge3 Nanoparticles. Nanomaterials, 8(4), 241. https://doi.org/10.3390/nano8040241