Borylation of α,β-Unsaturated Acceptors by Chitosan Composite Film Supported Copper Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Analytical Methods
2.3. General Procedure for the Sample Preparation for ICP Analysis to Determine Catalyst Loading
2.4. General Procedure for the Sample Preparation for ICP Analysis to Determine Metal Leaching
2.5. General Procedure for CP@Cu NPs-Catalyzed Borylation of α,β-Unsaturated Acceptors in Aqueous Media
2.6. General Procedure for Gram-Scale Synthesis of 3a
2.7. Recycling and Reuse of CP@Cu NPs
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Miyaura, N.; Suzuki, A. Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chem. Rev. 1995, 95, 2457–2483. [Google Scholar] [CrossRef]
- Molander, G.A.; Ellis, N. Organotrifluoroborates: Protected boronic acids that expand the versatility of the suzuki coupling reaction. Acc. Chem. Res. 2007, 40, 275–286. [Google Scholar] [CrossRef] [PubMed]
- Matteson, D.S. α-Amidoboronic acids: A synthetic challenge and their properties as serine protease inhibitors. Med. Res. Rev. 2008, 28, 233–246. [Google Scholar] [CrossRef] [PubMed]
- Dembitsky, V.M.; Al Quntar, A.A.A.; Srebnik, M. Natural and synthetic small boron-containing molecules as potential inhibitors of bacterial and fungal quorum sensing. Chem. Rev. 2011, 111, 209–237. [Google Scholar] [CrossRef] [PubMed]
- Smoum, R.; Rubinstein, A.; Dembitsky, V.M.; Srebnik, M. Boron containing compounds as protease inhibitors. Chem. Rev. 2012, 112, 4156–4220. [Google Scholar] [CrossRef] [PubMed]
- O'Farrell, A.M.; Vliet, A.V.; Farha, K.A.; Cherrington, J.M.; Campbell, D.A.; Li, X. Pharmacokinetic and pharmacodynamic assessments of the dipeptidyl peptidase-4 Inhibitor PHX1149: Double-blind, placebo-controlled, single-and multiple-dose studies in healthy subjects. Clin. Ther. 2007, 29, 1692–1705. [Google Scholar] [CrossRef] [PubMed]
- Paramore, A.; Frantz, S. Bortezomib. Nat. Rev. Drug Discov. 2003, 2, 611–612. [Google Scholar] [CrossRef] [PubMed]
- Beenen, M.A.; An, C.; Ellman, J.A. Asymmetric copper-catalyzed synthesis of α-amino boronate esters from N-tert-butanesulfinyl aldimines. J. Am. Chem. Soc. 2008, 130, 6910–6911. [Google Scholar] [CrossRef] [PubMed]
- Dorsey, B.D.; Iqbal, M.; Chatterjee, S.; Menta, E.; Bernardini, R.; Bernareggi, A.; Cassarà, P.G.; D’Arasmo, G.; Ferretti, E.; Munari, S.D.; et al. Discovery of a potent, selective, and orally active proteasome inhibitor for the treatment of cancer. J. Med. Chem. 2008, 51, 1068–1072. [Google Scholar] [CrossRef] [PubMed]
- Cvek, B. Ixazomib citrate. Drugs Future 2012, 37, 561–565. [Google Scholar] [CrossRef]
- Deloux, L.; Srebnik, M. Asymmetric boron-catalyzed reactions. Chem. Rev. 1993, 93, 763–784. [Google Scholar] [CrossRef]
- Mahrwald, R. Diastereoselection in lewis-acid-mediated aldol additions. Chem. Rev. 1999, 99, 1095–1120. [Google Scholar] [CrossRef] [PubMed]
- Burkhardt, E.R.; Matos, K. Boron reagents in process chemistry: Excellent tools for selective reductions. Chem. Rev. 2006, 106, 2617–2650. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, T.; Ishibashi, A.; Koyanagi, M.; Ihara, H.; Eichenauer, N.; Suginome, M. C–H Activation-based transformation of naphthalenes to 3-Iodo-2-naphthylboronic acid derivatives for use in iterative coupling synthesis of helical oligo(naphthalene-2,3-diyl)s. Bull. Chem. Soc. Jpn. 2017, 90, 604–606. [Google Scholar] [CrossRef]
- Chen, B.; Cao, P.; Yin, X.; Liao, Y.; Jiang, L.; Ye, J.; Wang, M.; Liao, J. Modular synthesis of enantioenriched 1,1,2-triarylethanes by an enantioselective arylboration and cross-coupling sequence. ACS Catal. 2017, 7, 2425–2429. [Google Scholar] [CrossRef]
- Halima, T.B.; Zhang, W.; Yalaoui, I.; Hong, X.; Yang, Y.-F.; Houk, K.N.; Newman, S.G. Palladium-catalyzed suzuki–miyaura coupling of aryl esters. J. Am. Chem. Soc. 2017, 139, 1311–1318. [Google Scholar] [CrossRef] [PubMed]
- Lennox, A.J.J.; Lloyd-Jones, G.C. Selection of boron reagents for suzuki–miyaura coupling. Chem. Soc. Rev. 2014, 43, 412–443. [Google Scholar] [CrossRef] [PubMed]
- Muncipinto, G.; Moquist, P.N.; Schreiber, S.L.; Schaus, S.E. Catalytic diastereoselective petasis reactions. Angew. Chem. Int. Ed. 2011, 50, 8172–8175. [Google Scholar] [CrossRef] [PubMed]
- Miura, T.; Nishida, Y.; Morimoto, M.; Murakami, M. Enantioselective synthesis of anti homoallylic alcohols from terminal alkynes and aldehydes based on concomitant use of a cationic iridium complex and a chiral phosphoric acid. J. Am. Chem. Soc. 2013, 135, 11497–11500. [Google Scholar] [CrossRef] [PubMed]
- Ripin, D.H.B.; Cai, W.; Brenek, S.J. A safe, scaleable method for the oxidation of carbon-boron bonds with oxone. Tetrahedron Lett. 2000, 41, 5817–5819. [Google Scholar] [CrossRef]
- Ito, H.; Yamanaka, H.; Tateiwa, J.-I.; Hosomi, A. Boration of an α,β-enone using a diboron promoted by a copper(I)–phosphine mixture catalyst. Tetrahedron Lett. 2000, 41, 6821–6825. [Google Scholar] [CrossRef]
- Kou, T.; Jun, T.; Tatsuo, I.; Norio, M. Synthesis of 1-alkenylboronic esters via palladium-catalyzed cross-coupling reaction of bis(pinacolato)diboron with 1-alkenyl halides and triflates. Chem. Lett. 2000, 29, 126–127. [Google Scholar] [CrossRef]
- Takushi, S.; Takahiro, A.; Kenji, T.; Li, Z.; Hisao, N. Asymmetric β-boration of α,β-unsaturatedcarbonyl compoundspromoted by chiral rhodium–bisoxazolinylphenyl catalysts. Chem. Commun. 2009, 40, 5987–5989. [Google Scholar] [CrossRef]
- Hirano, K.; Yorimitsu, H.; Oshima, K. Nickel-catalyzed β-boration of α,β-unsaturated esters and amides with bis(pinacolato)diboron. Org. Lett. 2007, 9, 5031–5033. [Google Scholar] [CrossRef] [PubMed]
- Bell, N.J.; Cox, A.J. Platinum catalysed 3,4- and 1,4-diboration of α,β-unsaturated carbonyl compounds using bis-pinacolatodiboron. Chem. Commun. 2004, 16, 1854–1855. [Google Scholar] [CrossRef] [PubMed]
- Bonet, A.; Guláys, H.; Koshevoy, I.O.; Estevan, F.; Sanaú, M.; Úbeda, M.A.; Fernández, E. Tandem β-boration/arylation of α,β-unsaturated carbonyl compounds by using a single palladium complex to catalyse both steps. Chem. Eur. J. 2010, 16, 6382–6390. [Google Scholar] [CrossRef] [PubMed]
- Kajiwara, T.; Terabayashi, T.; Yamashita, M.; Nozaki, K. Syntheses, structures, and reactivities of borylcopper and-zinc compounds: 1,4-silaboration of an α,β-unsaturated ketone to form a γ-siloxyallylborane. Angew. Chem. Int. Ed. 2008, 47, 6606–6610. [Google Scholar] [CrossRef] [PubMed]
- Mun, S.; Lee, J.-E.; Yun, J. Copper-catalyzed β-borylation of α,β-unsaturated carbonyl compounds: Rate acceleration by alcohol additives. Org. Lett. 2006, 8, 4887–4889. [Google Scholar] [CrossRef] [PubMed]
- Thorpe, S.B.; Calderone, J.A.; Santos, W.L. Unexpected copper(II) catalysis: Catalytic amine base promoted β-borylation of α,β-unsaturated carbonyl compounds in water. Org. Lett. 2012, 14, 1918–1921. [Google Scholar] [CrossRef] [PubMed]
- Stavber, G.; Časar, Z. CuII and Cu0 catalyzed mono borylation of unsaturated hydrocarbons with B2pin2: Entering into the water. ChemCatChem 2014, 6, 2162–2174. [Google Scholar] [CrossRef]
- Kobayashi, S.; Xu, P.; Endo, T.; Ueno, M.; Kitanosono, T. Chiral copper(II)-catalyzed enantioselective boron conjugate additions to α,β-unsaturated carbonyl compounds in water. Angew. Chem. Int. Ed. 2012, 51, 12763–12766. [Google Scholar] [CrossRef] [PubMed]
- Kitanosono, T.; Xu, P.; Isshiki, S.; Zhu, L.; Kobayashi, S. Cu(II)-catalyzed asymmetric boron conjugate addition to α,β-unsaturated imines in water. Chem. Commun. 2014, 50, 9336–9339. [Google Scholar] [CrossRef] [PubMed]
- Kitanosono, T.; Xu, P.; Kobayashi, S. Heterogeneous versus homogeneous copper(II) catalysis in enantioselective conjugate-addition reactions of boron in water. Chem. Asian J. 2014, 9, 179–188. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Kitanosono, T.; Xu, P.; Kobayashi, S. A Cu(II)-based strategy for catalytic enantioselective β-borylation of α,β-unsaturated acceptors. Chem. Commun. 2015, 51, 11685–11688. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Kitanosono, T.; Xu, P.; Kobayashi, S. Chiral Cu(II)-catalyzed enantioselective β-borylation of α,β-unsaturated nitriles in water. Beilstein J. Org. Chem. 2015, 11, 2007–2011. [Google Scholar] [CrossRef] [PubMed]
- Thathagar, M.B.; Beckers, J.; Rothenberg, G. Palladium-free and ligand-free Sonogashira cross-coupling. Green Chem. 2004, 6, 215–218. [Google Scholar] [CrossRef]
- Noujima, A.; Mitsudome, T.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. Selective deoxygenation of epoxides to alkenes with molecular hydrogen using a hydrotalcite-supported gold catalyst: A concerted effect between gold nanoparticles and basic sites on a support. Angew. Chem. Int. Ed. 2011, 50, 2986–2989. [Google Scholar] [CrossRef] [PubMed]
- Mitsudome, T.; Mikami, Y.; Matoba, M.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. Design of a silver–cerium dioxide core–shell nanocomposite catalyst for chemoselective reduction reactions. Angew. Chem. Int. Ed. 2012, 51, 136–139. [Google Scholar] [CrossRef] [PubMed]
- Mitsudome, T.; Takahashi, Y.; Ichikawa, S.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. Metal–ligand core–shell nanocomposite catalysts for the selective semihydrogenation of alkynes. Angew. Chem. Int. Ed. 2013, 52, 1481–1485. [Google Scholar] [CrossRef] [PubMed]
- Xiao, B.; Niu, Z.; Wang, Y.G.; Jia, W.; Shang, J.; Zhang, L.; Wang, D.; Fu, Y.; Zeng, J.; He, W.; et al. Copper nanocrystal plane effect on stereoselectivity of catalytic deoxygenation of aromatic epoxides. J. Am. Chem. Soc. 2015, 137, 3791–3794. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.-F.; Sun, Y.-Y.; Wu, Y.-D.; Dai, J.-J.; Xu, J.; Huang, Y.; Xu, H.-J. Borylation and selective reduction of α,β-unsaturated ketones under mild conditions catalyzed by Cu nanoparticles. Tetrahedron 2016, 72, 5691–5698. [Google Scholar] [CrossRef]
- Xu, P.; Li, B.; Wang, L.; Qin, C.; Zhu, L. A green and recyclable chitosan supported catalyst for the borylation of α,β-unsaturated acceptors in water. Catal. Commun. 2016, 86, 23–26. [Google Scholar] [CrossRef]
- Zhu, L.; Li, B.; Wang, S.; Wang, W.; Wang, L.; Ding, L.; Qin, C. Recyclable heterogeneous chitosan supported copper catalyst for silyl conjugate addition to α,β-unsaturated acceptors in water. Polymers 2018, 10, 385. [Google Scholar] [CrossRef]
- Kadib, A.E. Chitosan as a sustainable organocatalyst: A concise overview. ChemSusChem 2015, 8, 217–244. [Google Scholar] [CrossRef] [PubMed]
- De Souza, J.F.; da Silva, G.T.; Fajardo, A.R. Chitosan-based film supported copper nanoparticles: A potential and reusable catalyst for the reduction of aromatic nitro compounds. Carbohydr. Polym. 2017, 161, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Isegawa, M.; Sameera, W.M.C.; Sharma, A.K.; Kitanosono, T.; Kato, M.; Kobayashi, S.; Morokuma, K. Copper-catalyzed enantioselective boron conjugate addition: DFT and AFIR study on different selectivities of Cu(I) and Cu(II) catalysts. ACS Catal. 2017, 7, 5370–5380. [Google Scholar] [CrossRef]
- Wang, W.; Li, B.-J.; Xiao, Z.-F.; Yan, F.; Wei, P.-R.; Wang, L.-S.; Zhu, L. Basic copper carbonate catalyzed silyl conjugate additions to α,β-unsaturated carbonyls in water. J. Chin. Chem. Soc. 2018, 65, 81–86. [Google Scholar] [CrossRef]
Entry | Catalyst | Solvent | Additive | Yield(%) b |
---|---|---|---|---|
1 | CP@Cu NPs | toluene | -- | NR c |
2 | CP@Cu NPs | Et2O | -- | NR c |
3 | CP@Cu NPs | THF | -- | trace |
4 | CP@Cu NPs | toluene | MeOH | 7 |
5 | CP@Cu NPs | Et2O | MeOH | 6 |
6 | CP@Cu NPs | THF | MeOH | 32 |
7 | CP@Cu NPs | acetone | MeOH | 66 |
8 | CP@Cu NPs | MeOH | -- | 70 |
9 d | CP@Cu NPs | THF/H2O = 2/1 | -- | 75 |
10 d | CP@Cu NPs | MeOH/H2O = 2/1 | -- | 89 |
11 d | CP@Cu NPs | acetone/H2O = 2/1 | -- | 91 |
12 d | CP@Cu NPs | acetone/H2O = 4/1 | -- | 95 |
13 d | CP@Cu NPs | acetone/H2O = 1/4 | -- | 76 |
14 d | -- | acetone/H2O = 4/1 | -- | NR c |
15 d,e | CS@Cu | acetone/H2O = 4/1 | -- | 35 |
16 d,f | CS/PEG@Cu NPs | acetone/H2O = 4/1 | -- | 75 |
15 d,g | CP@Cu NPs | acetone/H2O = 4/1 | -- | 89 |
16 c,h | CP@Cu NPs | acetone/H2O = 4/1 | -- | 94 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, W.; Han, B.; Yan, F.; Ding, L.; Li, B.; Wang, L.; Zhu, L. Borylation of α,β-Unsaturated Acceptors by Chitosan Composite Film Supported Copper Nanoparticles. Nanomaterials 2018, 8, 326. https://doi.org/10.3390/nano8050326
Wen W, Han B, Yan F, Ding L, Li B, Wang L, Zhu L. Borylation of α,β-Unsaturated Acceptors by Chitosan Composite Film Supported Copper Nanoparticles. Nanomaterials. 2018; 8(5):326. https://doi.org/10.3390/nano8050326
Chicago/Turabian StyleWen, Wu, Biao Han, Feng Yan, Liang Ding, Bojie Li, Liansheng Wang, and Lei Zhu. 2018. "Borylation of α,β-Unsaturated Acceptors by Chitosan Composite Film Supported Copper Nanoparticles" Nanomaterials 8, no. 5: 326. https://doi.org/10.3390/nano8050326
APA StyleWen, W., Han, B., Yan, F., Ding, L., Li, B., Wang, L., & Zhu, L. (2018). Borylation of α,β-Unsaturated Acceptors by Chitosan Composite Film Supported Copper Nanoparticles. Nanomaterials, 8(5), 326. https://doi.org/10.3390/nano8050326