High Performance of Supercapacitor from PEDOT:PSS Electrode and Redox Iodide Ion Electrolyte
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Modification of MWCNTs
2.3. Preparation of PEDOT:PSS/MWCNTs Composite Electrode
2.4. Characterization
3. Results and Discussion
3.1. Properties of the PEDOT:PSS/MWCNTs Films
3.2. Electrochemical Properties of the PEDOT:PSS/MWCNTs Electrodes
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
Abbreviations
PEDOT:PSS | poly(3,4-ethylenedioxythiophene) (PEDOT):poly (styrene sulfonate) (PSS) |
MWCNTs | Multi-walled carbon nanotubes |
AC | Active carbon |
SEM | Scanning electron microscopy |
XRD | X-ray diffractometer |
PVA | Polyvinyl alcohol |
References
- Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845–854. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Yu, M.; Zhai, T.; Wang, G.; Xie, S.; Liu, T.; Liang, C.; Tong, Y.; Li, Y. High energy density asymmetric quasi-solid-state supercapacitor based on porous vanadium nitride nanowire anode. Nano Lett. 2013, 13, 2628–2633. [Google Scholar] [CrossRef] [PubMed]
- Lota, G.; Frackowiak, E. Striking capacitance of carbon/iodide interface. Electrochem. Commun. 2009, 11, 87–90. [Google Scholar] [CrossRef]
- Senthilkumar, S.T.; Selvan, R.K.; Melo, J.S. Redox additive/active electrolytes: A novel approach to enhance the performance of supercapacitors. J. Mater. Chem. A 2013, 1, 12386–12394. [Google Scholar] [CrossRef]
- Zhong, C.; Deng, Y.; Hu, W.; Qiao, J.; Zhang, L.; Zhang, J. A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem. Soc. Rev. 2015, 44, 7484–7539. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.J.; Zhu, Y.Q.; Chen, X.Y.; Cao, Y. Pronounced improvement of supercapacitor capacitance by using redox active electrolyte of p-phenylenediamine. Electrochim. Acta 2015, 176, 941–948. [Google Scholar] [CrossRef]
- Roldán, S.; Blanco, C.; Granda, M.; Menéndez, R.; Santamaría, R. Towards a further generation of high-energy carbon-based capacitors by using redox-active electrolytes. Angew. Chem. 2011, 50, 1699–1701. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zu, L.; Lian, H.; Hu, Z.; Jiang, Y.; Liu, Y.; Wang, X.; Cui, X. An ultrahigh performance supercapacitors based on simultaneous redox in both electrode and electrolyte. J. Alloy. Compd. 2017, 694, 136–144. [Google Scholar] [CrossRef]
- Chen, W.; Rakhi, R.B.; Alshareef, H.N. Capacitance enhancement of polyaniline coated curved-graphene supercapacitors in a redox-active electrolyte. Nanoscale 2013, 5, 4134. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.J.; Wu, J.H.; Fan, L.Q.; Lin, Y.Z.; Chen, S.H.; Chen, Y.; Wang, J.L.; Huang, M.L.; Lin, J.M.; Lan, Z. Application of a novel redox-active electrolyte in MnO2-based supercapacitors. Sci. China Chem. 2012, 55, 1319–1324. [Google Scholar] [CrossRef]
- Hu, Z.; Zu, L.; Jiang, Y.; Lian, H.; Liu, Y.; Wang, X.; Cui, X. High performance nanocomposite electrodes of mesoporous silica platelet-polyaniline synthesized via impregnation polymerization. Polym. Compos. 2017, 38. [Google Scholar] [CrossRef]
- Zu, L.; Cui, X.; Jiang, Y.; Hu, Z.; Lian, H.; Liu, Y.; Jin, Y.; Li, Y.; Wang, X. Preparation and electrochemical characterization of mesoporous polyaniline-silica nanocomposites as an electrode material for pseudocapacitors. Materials 2015, 8, 1369–1383. [Google Scholar] [CrossRef] [PubMed]
- You, Z.; Cui, X.; Lei, Z.; Cai, X.; Yang, L.; Wang, X.; Lian, H. New supercapacitors based on the synergetic redox effect between electrode and electrolyte. Materials 2016, 9, 734. [Google Scholar]
- Jiang, Y.; Cui, X.; Zu, L.; Hu, Z.; Gan, J.; Lian, H.; Liu, Y.; Xing, G. High rate performance nanocomposite electrode of mesoporous manganese dioxide/silver nanowires in ki electrolytes. Nanomaterials 2015, 5, 1638–1653. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Cui, X.; Zu, L.; Zhang, Y.; Gao, X.; Lian, H.; Liu, Y.; Wang, X. Ultra high electrical performance of nano nickel oxide and polyaniline composite materials. Polymers 2017, 9, 288. [Google Scholar] [CrossRef]
- Hu, Z.; Zu, L.; Jiang, Y.; Lian, H.; Liu, Y.; Li, Z.; Chen, F.; Wang, X.; Cui, X. High specific capacitance of polyaniline/mesoporous manganese dioxide composite using Ki-H2SO4 electrolyte. Polymers 2015, 7, 1939–1953. [Google Scholar] [CrossRef]
- Zhang, Q.E.; Zhou, A.A.; Wang, J.; Wu, J.; Bai, H. Degradation-induced capacitance: A new insight into the superior capacitive performance of polyaniline/graphene composites. Energy Environ. Sci. 2017, 10, 2372–2382. [Google Scholar] [CrossRef]
- Meng, Q.; Cai, K.; Chen, Y.; Chen, L. Research progress on conducting polymer based supercapacitor electrode materials. Nano Energy 2017, 36, 268–285. [Google Scholar] [CrossRef]
- Laforgue, A.; Simon, P.; Sarrazin, C.; Fauvarque, J.F. Polythiophene-based supercapacitors. J. Power Sources 1999, 80, 142–148. [Google Scholar] [CrossRef]
- Abdulla, S.; Mathew, T.L.; Pullithadathil, B. Highly sensitive, room temperature gas sensor based on polyaniline-multiwalled carbon nanotubes (pani/mwcnts) nanocomposite for trace-level ammonia detection. Sens. Actuators Chem. 2015, 221, 1523–1534. [Google Scholar] [CrossRef]
- Karade, S.S.; Sankapal, B.R. Room temperature pedot:Pss encapsulated mwcnts thin film for electrochemical supercapacitor. J. Electroanal. Chem. 2016, 771, 80–86. [Google Scholar] [CrossRef]
- Furukawa, K.; Yoshimoto, N.; Egashira, M.; Morita, M. Anodic behavior of stainless-steel substrate in organic electrolyte solutions containing different lithium salts. Electrochim. Acta 2014, 140, 125–131. [Google Scholar] [CrossRef]
- Belin, T.; Epron, F. Characterization methods of carbon nanotubes: A review. Mater. Sci. Eng. B 2005, 119, 105–118. [Google Scholar] [CrossRef]
- Selvaganesh, S.V.; Mathiyarasu, J.; Phani, K.L.N.; Yegnaraman, V. Chemical synthesis of pedot–au nanocomposite. Nanoscale Res. Lett. 2007, 2, 546–549. [Google Scholar] [CrossRef]
- Zhao, D.; Zhang, Q.; Chen, W.; Yi, X.; Liu, S.; Wang, Q.; Liu, Y.; Li, J.; Li, X.; Yu, H. Highly flexible and conductive cellulose-mediated pedot: Pss/mwcnt composite films for supercapacitor electrodes. ACS Appl. Mater. Interfaces 2017, 9, 13213–13222. [Google Scholar] [CrossRef] [PubMed]
- Sudhagar, P.; Nagarajan, S.; Lee, Y.G.; Song, D.; Son, T.; Cho, W.; Heo, M.; Lee, K.; Won, J.; Kang, Y.S. Synergistic catalytic effect of a composite (cos/pedot: Pss) counter electrode on triiodide reduction in dye-sensitized solar cells. ACS Appl. Mater. Interfaces 2011, 3, 1838–1843. [Google Scholar] [CrossRef] [PubMed]
- Song, D.; Li, M.; Li, Y.; Zhao, X.; Jiang, B.; Jiang, Y. Highly transparent and efficient counter electrode using SiO2/pedot-pss composite for bifacial dye-sensitized solar cells. ACS Appl. Mater. Interfaces 2014, 6, 7126–7132. [Google Scholar] [CrossRef] [PubMed]
- Saito, Y.; Kitamura, T.; Wada, Y.; Yanagida, S. Application of poly(3,4-ethylenedioxythiophene) to counter electrode in dye-sensitized solar cells. Chem. Lett. 2002, 2002, 1060–1061. [Google Scholar] [CrossRef]
- Nakayama, M.; Sato, A.; Nakagawa, K. Selective sorption of iodide onto organo-MnO₂ film and its electrochemical desorption and detection. Anal. Chim. Acta 2015, 877, 64. [Google Scholar] [CrossRef] [PubMed]
- Trancik, J.E.; Barton, S.C.; Hone, J. Transparent and catalytic carbon nanotube films. Nano Lett. 2008, 8, 982. [Google Scholar] [CrossRef] [PubMed]
- Rhee, Y.H.; Ahn, D.J.; Ko, M.J.; Jin, H.-Y.; Jin, J.-H.; Min, N.K. Enhanced electrocatalytic activity of plasma functionalized multi-walled carbon nanotube-entrapped poly(3,4-ethylendioxythiophene): Poly(styrene sulfonate) photocathode. Electrochim. Acta 2014, 146, 68–72. [Google Scholar] [CrossRef]
- Mi, H.; Zhang, X.; Ye, X.; Yang, S. Preparation and enhanced capacitance of core–shell polypyrrole/polyaniline composite electrode for supercapacitors. J. Power Sources 2008, 176, 403–409. [Google Scholar] [CrossRef]
- Rajesh, M.; Justin Raj, C.; Kim, B.C.; Manikandan, R.; Kim, K.H.; Park, S.Y.; Yu, K.H. Evaporative successive ionic layer adsorption and reaction polymerization of pedot: A simple and cost effective technique for binder free supercapacitor electrodes. Electrochim. Acta 2017, 240, 231–238. [Google Scholar] [CrossRef]
- Ramya, R.; Sivasubramanian, R.; Sangaranarayanan, M.V. Conducting polymers-based electrochemical supercapacitors—Progress and prospects. Electrochim. Acta 2013, 101, 109–129. [Google Scholar] [CrossRef]
- Wei, H.; Gu, H.; Guo, J.; Wei, S.; Liu, J.; Guo, Z. Silica doped nanopolyaniline with endured electrochemical energy storage and the magnetic field effects. J. Phys. Chem. C 2013, 117, 13000–13010. [Google Scholar] [CrossRef]
- Rao, S.; Punnoose, D.; Bae, J.-H.; Durga, I.K.; Thulasi-Varma, C.V.; Naresh, B.; Subramanian, A.; Raman, V.; Kim, H.-J. Preparation and electrochemical performances of nis with pedot:Pss chrysanthemum petal like nanostructure for high performance supercapacitors. Electrochim. Acta 2017, 254, 269–279. [Google Scholar]
- Tang, P.; Han, L.; Zhang, L. Facile synthesis of graphite/pedot/MnO2 composites on commercial supercapacitor separator membranes as flexible and high-performance supercapacitor electrodes. ACS Appl. Mater. Interfaces 2014, 6, 10506–10515. [Google Scholar] [CrossRef] [PubMed]
- Sonia, T.S.; Mini, P.A.; Nandhini, R.; Sujith, K.; Avinash, B.; Nair, S.V.; Subramanian, K.R.V. Composite supercapacitor electrodes made of activated carbon/pedot: Pss and activated carbon/doped pedot. Bull. Mater. Sci. 2013, 36, 547–551. [Google Scholar] [CrossRef]
- Maiti, S.; Pramanik, A.; Mahanty, S. Interconnected network of MnO2 nanowires with a “cocoonlike” morphology: Redox couple-mediated performance enhancement in symmetric aqueous supercapacitor. ACS Appl. Mater. Interfaces 2014, 6, 10754. [Google Scholar] [CrossRef] [PubMed]
- Sriprachuabwong, C.; Karuwan, C.; Wisitsorrat, A.; Phokharatkul, D.; Lomas, T.; Sritongkham, P.; Tuantranont, A. Inkjet-printed graphene-pedot:Pss modified screen printed carbon electrode for biochemical sensing. J. Mater. Chem. 2012, 22, 5478. [Google Scholar] [CrossRef]
- Lee, H.U.; Yin, J.L.; Park, S.W.; Park, J.Y. Preparation and characterization of pedot:Pss wrapped carbon nanotubes/MnO2 composite electrodes for flexible supercapacitors. Synth. Met. 2017, 228, 84–90. [Google Scholar] [CrossRef]
- Zhou, H.; Liu, G.; Liu, J.; Wang, Y.; Ai, Q.; Huang, J.; Yuan, Z.; Tan, L.; Chen, Y. Effective network formation of pedot by in-situ polymerization using novel organic template and nanocomposite supercapacitor. Electrochim. Acta 2017, 247, 871–879. [Google Scholar] [CrossRef]
- Rajesh, M.; Raj, C.J.; Manikandan, R.; Kim, B.C.; Park, S.Y.; Yu, K.H. A high performance pedot/pedot symmetric supercapacitor by facile in-situ hydrothermal polymerization of pedot nanostructures on flexible carbon fibre cloth electrodes. Mater. Today Energy 2017, 6, 96–104. [Google Scholar] [CrossRef]
- Zhang, H.; Li, J.; Gu, C.; Yao, M.; Yang, B.; Lu, P.; Ma, Y. High performance, flexible, poly(3,4-ethylenedioxythiophene) supercapacitors achieved by doping redox mediators in organogel electrolytes. J. Power Sources 2016, 332, 413–419. [Google Scholar] [CrossRef]
- Lu, X.; Zheng, D.; Zhai, T.; Liu, Z.; Huang, Y.; Xie, S.; Tong, Y. Facile synthesis of large-area manganese oxide nanorod arrays as a high-performance electrochemical supercapacitor. Energy Environ. Sci. 2011, 4, 2915. [Google Scholar] [CrossRef]
- Patil, D.S.; Pawar, S.A.; Shin, J.C. Silver decorated pedot:Pss wrapped MnO2 nanowires for electrochemical supercapacitor applications. J. Ind. Eng. Chem. 2018. [Google Scholar] [CrossRef]
- Nabilah Azman, N.H.; Lim, H.N.; Sulaiman, Y. Effect of electropolymerization potential on the preparation of pedot/graphene oxide hybrid material for supercapacitor application. Electrochim. Acta 2016, 188, 785–792. [Google Scholar] [CrossRef]
- Hsu, Y.-K.; Chen, Y.-C.; Lin, Y.-G.; Chen, L.-C.; Chen, K.-H. Direct-growth of poly(3,4-ethylenedioxythiophene) nanowires/carbon cloth as hierarchical supercapacitor electrode in neutral aqueous solution. J. Power Sources 2013, 242, 718–724. [Google Scholar] [CrossRef]
- Veerasubramani, G.K.; Krishnamoorthy, K.; Radhakrishnan, S.; Kim, N.-J.; Kim, S.J. Synthesis, characterization, and electrochemical properties of comoo4 nanostructures. Int. J. Hydrog. Energy 2014, 39, 5186–5193. [Google Scholar] [CrossRef]
KI (mol/L) | Rs (Ω cm−2) | Rct (Ω cm−2) | Rct Standard Deviation (%) |
---|---|---|---|
0 | 1.14 | 2.46 | 5.1 |
0.02 | 1.65 | 1.68 | 2.109 |
0.05 | 1.37 | 1.09 | 2.55 |
0.10 | 1.30 | 0.81 | 2.555 |
0.20 | 1.44 | 1.03 | 3.169 |
0.10 (stability test) | 1.403 | 2.78 | 0.6711 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, X.; Zu, L.; Cai, X.; Li, C.; Lian, H.; Liu, Y.; Wang, X.; Cui, X. High Performance of Supercapacitor from PEDOT:PSS Electrode and Redox Iodide Ion Electrolyte. Nanomaterials 2018, 8, 335. https://doi.org/10.3390/nano8050335
Gao X, Zu L, Cai X, Li C, Lian H, Liu Y, Wang X, Cui X. High Performance of Supercapacitor from PEDOT:PSS Electrode and Redox Iodide Ion Electrolyte. Nanomaterials. 2018; 8(5):335. https://doi.org/10.3390/nano8050335
Chicago/Turabian StyleGao, Xing, Lei Zu, Xiaomin Cai, Ce Li, Huiqin Lian, Yang Liu, Xiaodong Wang, and Xiuguo Cui. 2018. "High Performance of Supercapacitor from PEDOT:PSS Electrode and Redox Iodide Ion Electrolyte" Nanomaterials 8, no. 5: 335. https://doi.org/10.3390/nano8050335
APA StyleGao, X., Zu, L., Cai, X., Li, C., Lian, H., Liu, Y., Wang, X., & Cui, X. (2018). High Performance of Supercapacitor from PEDOT:PSS Electrode and Redox Iodide Ion Electrolyte. Nanomaterials, 8(5), 335. https://doi.org/10.3390/nano8050335