The Impact of Hybrid Compositional Film/Structure on Organic–Inorganic Perovskite Solar Cells
Abstract
:1. Introduction
2. Organic–Inorganic Hybrid Perovskites
2.1. Chemical Structures of Perovskites
2.2. Tuning Photoelectric Properties with Hybrid Cations and Anions in Perovskites
3. Solar Cells Based on Hybrid Perovskites
3.1. A Brief Summary of Key Parameters for Perovskite Solar Cells
3.2. Hybrid Architectures in PSCs
4. Hybrid Cations in Perovskites for Improvements in PSC Stability
4.1. Cs-MA Hybrid Cation PSCs
4.2. Cs-FA Hybrid Cation PSCs
4.3. Multication Hybridization for PSCs
5. Hybrid-Dimension Perovskite-Based PSCs
5.1. Hybrid 1-D/2-D/3-D Structured PSCs
5.2. Graded-Dimension Perovskite-Based PSCs
6. Other Hybrid PSCs
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviation
0-D | zero-dimensional |
1-D | one-dimensional |
2-D | two-dimensional |
3-D | three-dimensional |
4-ABPACl | butylphosphonic acid 4-ammonium chloride |
α-bis-PCBM | α bis (1-[3-(methoxycarbonyl) propyl]-1-phenyl)-[6.6] M |
BCP | bathocuproine |
BEI | Butylamine iodide |
BL | blocking layer |
BA | butylamine |
Cs | Cesium |
CB | conduction band |
C60SAM | C60self-assembled monolayer |
CA | cyclopropylamine |
CHMA | cyclohexylammonium iodide |
DFT | density functional theory |
ETL | electron transporting layer |
ETM | electron transporting material |
EDA | ethylenediamine |
FTO | fluorine-doped tin oxide |
FA | Formamidinium |
FAI | Formamidinium iodide |
FF | fill factor |
HTM | hole transport material |
HTL | hole transporting layer |
ITO | indium tin oxide |
LUMO | lowest unoccupied molecular orbital |
MA | methylammonium |
MP | mesoporous |
NERL | National renewable energy laboratory |
PCBM | [6,6]-phenyl-C61-butyric acid methyl ester |
PC61BM | [6,6]-phenyl-C61-butyric acid methyl ester |
PSCs | perovskite solar cells |
PCE | power conversion efficiency |
PEDOT:PSS | poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) |
PFNBr | poly9,9-bis6-(N,N,N-trimethylammonium)hexylfluorene-alt-co-phenylenebromide |
PTAA | polytriarylamine |
PMMA | Polymethyl methacrylate polymer |
PTAA | poly-(3-thiopheneaceticacid) |
PEG | polyethylene glycol |
PEAI | phenylethylammonium iodide |
PZPY | 3-(2-pyridyl)-pyrazol-1-yl |
PEA | phenylethylammonium |
PEI | poly(ethyleneimine) |
PC71BM | [6,6]-phenyl C71butyric acid methyl-ester |
PBDB-T | poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b′]dithiophene)-co-(1,3-di(5-thiophene-2-yl)-5,7-bis(2-ethylhexyl)benzo[1,2-c:4,5-c′]dithiophene-4,8-dione)] |
Pd | Plumbum |
Rb | Rubidium |
RMS | root mean square |
Sn | Stannum |
SCN | thiocyanate |
spiro-OMeTAD | 2,2′,7,7′-tetrakis-(N,N-di-p-methoxyphenylamine)9,9′-spirobifluorene |
TBP | 4-tert-butylpyridine |
TMA | tetramethylammonium |
TEA | tetra-ethyl ammonium |
VB | valence band |
References
- Qiu, X.; Cao, B.; Yuan, S.; Chen, X.; Qiu, Z.; Jiang, Y.; Ye, Q.; Wang, H.; Zeng, H.; Liu, J.; et al. From unstable CsSnI3 to air-stable Cs2SnI6: A lead-free perovskite solar cell light absorber with bandgap of 1.48 eV and high absorption coefficient. Sol. Energy Mater. Sol. Cells 2017, 159, 227–234. [Google Scholar] [CrossRef]
- D’Innocenzo, V.; Srimath Kandada, A.R.; De Bastiani, M.; Gandini, M.; Petrozza, A. Tuning the Light Emission Properties by Band Gap Engineering in Hybrid Lead Halide Perovskite. J. Am. Chem. Soc. 2014, 136, 17730–17733. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Yuan, Y.; Shao, Y.; Yan, Y. Understanding the physical properties of hybrid perovskites for photovoltaic applications. Nat. Rev. Mater. 2017, 2, 17042. [Google Scholar] [CrossRef]
- Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 2009, 131, 6050–6051. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.S.; Park, B.-W.; Jung, E.H.; Jeon, N.J.; Kim, Y.C.; Lee, D.U.; Shin, S.S.; Seo, J.; Kim, E.K.; Noh, J.H.; et al. Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells. Science 2017, 356, 1376–1379. [Google Scholar] [CrossRef] [PubMed]
- Saliba, M.; Matsui, T.; Domanski, K.; Seo, J.-Y.; Ummadisingu, A.; Zakeeruddin, S.M.; Correa-Baena, J.-P.; Tress, W.R.; Abate, A.; Hagfeldt, A.; et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 2016, 354, 206–209. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.S.; Noh, J.H.; Jeon, N.J.; Kim, Y.C.; Ryu, S.; Seo, J.; Seok, S.I. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 2015, 348, 1234–1237. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.P.; Chen, Q.; Li, G.; Luo, S.; Song, T.B.; Duan, H.S.; Hong, Z.R.; You, J.B.; Liu, Y.S.; Yang, Y. Interface engineering of highly efficient perovskite solar cells. Science 2014, 345, 542–546. [Google Scholar] [CrossRef] [PubMed]
- Burschka, J.; Pellet, N.; Moon, S.-J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M.K.; Grätzel, M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499, 316. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.M.; Teuscher, J.; Miyasaka, T.; Murakami, T.N.; Snaith, H.J. Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science 2012, 338, 643–647. [Google Scholar] [CrossRef] [PubMed]
- Im, J.-H.; Lee, C.-R.; Lee, J.-W.; Park, S.-W.; Park, N.-G. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 2011, 3, 4088–4093. [Google Scholar] [CrossRef] [PubMed]
- National Renewable Energy Laboratory. Available online: https://www.nrel.gov/pv/assets/images/efficiency-chart.jpg (accessed on May 2018).
- Xu, F.; Zhang, T.; Li, G.; Zhao, Y. Mixed cation hybrid lead halide perovskites with enhanced performance and stability. J. Mater. Chem. A 2017, 5, 11450–11461. [Google Scholar] [CrossRef]
- Ono, L.K.; Juarez-Perez, E.J.; Qi, Y. Progress on Perovskite Materials and Solar Cells with Mixed Cations and Halide Anions. ACS Appl. Mater. Interfaces 2017, 9, 30197–30246. [Google Scholar] [CrossRef] [PubMed]
- Correa-Baena, J.-P.; Abate, A.; Saliba, M.; Tress, W.; Jesper Jacobsson, T.; Gratzel, M.; Hagfeldt, A. The rapid evolution of highly efficient perovskite solar cells. Energy Environ. Sci. 2017, 10, 710–727. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, Z.B.; Cai, Y.Y.; Liu, H.; Qin, Q.Q.; Tai, Q.D.; Lu, X.B.; Gao, X.S.; Shui, L.L.; Wu, S.J.; et al. High performance planar perovskite solar cells based on CH3NH3PbI3-x(SCN)(x) perovskite film and SnO2 electron transport layer prepared in ambient air with 70% humility. Electrochim. Acta 2018, 260, 468–476. [Google Scholar] [CrossRef]
- Cheng, X.F.; Hou, X.; Zhou, J.; Gao, B.J.; He, J.H.; Li, H.; Xu, Q.F.; Li, N.J.; Chen, D.Y.; Lu, J.M. Pseudohalide-Induced 2D (CH3NH3)2PbI2(SCN)2 Perovskite for Ternary Resistive Memory with High Performance. Small 2018, 14, 1703667. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Pan, Y.; Wang, Z.; Xia, Y.; Chen, Y.; Huang, W. Additive engineering for highly efficient organic-inorganic halide perovskite solar cells: Recent advances and perspectives. J. Mater. Chem. A 2017, 5, 12602–12652. [Google Scholar] [CrossRef]
- Tress, W.; Yavari, M.; Domanski, K.; Yadav, P.; Niesen, B.; Correa Baena, J.P.; Hagfeldt, A.; Graetzel, M. Interpretation and evolution of open-circuit voltage, recombination, ideality factor and subgap defect states during reversible light-soaking and irreversible degradation of perovskite solar cells. Energy Environ. Sci. 2018, 11, 151–165. [Google Scholar] [CrossRef]
- Djurisic, A.B.; Liu, F.Z.; Tam, H.W.; Wong, M.K.; Ng, A.; Surya, C.; Chen, W.; He, Z.B. Perovskite solar cells—An overview of critical issues. Prog. Quantum Electron. 2017, 53, 1–37. [Google Scholar] [CrossRef]
- Yu, H.; Yeom, H.I.; Lee, J.W.; Lee, K.; Hwang, D.; Yun, J.; Ryu, J.; Lee, J.; Bae, S.; Kim, S.K.; et al. Superfast Room-Temperature Activation of SnO2 Thin Films via Atmospheric Plasma Oxidation and their Application in Planar Perovskite Photovoltaics. Adv. Mater. 2018, 30, 1704825. [Google Scholar] [CrossRef] [PubMed]
- Abdi-Jalebi, M.; Andaji-Garmaroudi, Z.; Cacovich, S.; Stavrakas, C.; Philippe, B.; Richter, J.M.; Alsari, M.; Booker, E.P.; Hutter, E.M.; Pearson, A.J.; et al. Maximizing and stabilizing luminescence from halide perovskites with potassium passivation. Nature 2018, 555, 497. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, F.Z.; Waqas, M.; Leung, T.L.; Tam, H.W.; Lan, X.Q.; Tu, B.; Chen, W.; Djurišić, A.B.; He, Z.B. Formamidinium-Based Lead Halide Perovskites: Structure, Properties, and Fabrication Methodologies. Small Methods 2018, 1700387. [Google Scholar] [CrossRef]
- Cao, D.H.; Stoumpos, C.C.; Farha, O.K.; Hupp, J.T.; Kanatzidis, M.G. 2D Homologous Perovskites as Light-Absorbing Materials for Solar Cell Applications. J. Am. Chem. Soc. 2015, 137, 7843–7850. [Google Scholar] [CrossRef] [PubMed]
- Smith, I.C.; Hoke, E.T.; Solis-Ibarra, D.; McGehee, M.D.; Karunadasa, H.I. A Layered Hybrid Perovskite Solar-Cell Absorber with Enhanced Moisture Stability. Angew. Chem. 2014, 126, 11414–11417. [Google Scholar] [CrossRef]
- Tsai, H.; Nie, W.; Blancon, J.-C.; Stoumpos, C.C.; Asadpour, R.; Harutyunyan, B.; Neukirch, A.J.; Verduzco, R.; Crochet, J.J.; Tretiak, S.; et al. High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells. Nature 2016, 536, 312. [Google Scholar] [CrossRef] [PubMed]
- Shao, S.; Liu, J.; Portale, G.; Fang, H.-H.; Blake, G.R.; ten Brink, G.H.; Koster, L.J.A.; Loi, M.A. Highly Reproducible Sn-Based Hybrid Perovskite Solar Cells with 9% Efficiency. Adv. Energy Mater. 2018, 8, 1702019. [Google Scholar] [CrossRef]
- Lin, Y.; Bai, Y.; Fang, Y.; Chen, Z.; Yang, S.; Zheng, X.; Tang, S.; Liu, Y.; Zhao, J.; Huang, J. Enhanced Thermal Stability in Perovskite Solar Cells by Assembling 2D/3D Stacking Structures. J. Phys. Chem. Lett. 2018, 9, 654–658. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Ma, Y.; Zhang, C.; Liu, C.; Li, W.; Schropp, R.E.I.; Mai, Y. Thermodynamically Self-Healing 1D–3D Hybrid Perovskite Solar Cells. Adv. Energy Mater. 2018, 1703421. [Google Scholar] [CrossRef]
- Zhang, T.; Dar, M.I.; Li, G.; Xu, F.; Guo, N.; Grätzel, M.; Zhao, Y. Bication lead iodide 2D perovskite component to stabilize inorganic α-CsPbI3 perovskite phase for high-efficiency solar cells. Sci. Adv. 2017, 3, e1700841. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Leng, C.; Ji, Y.; Wei, X.; Sun, K.; Tang, L.; Yang, J.; Luo, W.; Li, C.; Deng, Y.; et al. 2D/3D perovskite hybrids as moisture-tolerant and efficient light absorbers for solar cells. Nanoscale 2016, 8, 18309–18314. [Google Scholar] [CrossRef] [PubMed]
- Asghar, M.I.; Zhang, J.; Wang, H.; Lund, P.D. Device stability of perovskite solar cells—A review. Renew. Sustain. Energy Rev. 2017, 77, 131–146. [Google Scholar] [CrossRef]
- Mesquita, I.; Andrade, L.; Mendes, A. Perovskite solar cells: Materials, configurations and stability. Renew. Sustain. Energy Rev. 2018, 82, 2471–2489. [Google Scholar] [CrossRef]
- Yavari, M.; Mazloum-Ardakani, M.; Gholipour, S.; Marinova, N.; Delgado, J.L.; Turren-Cruz, S.H.; Domanski, K.; Taghavinia, N.; Saliba, M.; Grätzel, M.; et al. Carbon Nanoparticles in High-Performance Perovskite Solar Cells. Adv. Energy Mater. 2018, 1702719. [Google Scholar] [CrossRef]
- Son, D.-Y.; Im, J.-H.; Kim, H.-S.; Park, N.-G. 11% Efficient Perovskite Solar Cell Based on ZnO Nanorods: An Effective Charge Collection System. J. Phys. Chem. C 2014, 118, 16567–16573. [Google Scholar] [CrossRef]
- Abrusci, A.; Stranks, S.D.; Docampo, P.; Yip, H.-L.; Jen, A.K.Y.; Snaith, H.J. High-Performance Perovskite-Polymer Hybrid Solar Cells via Electronic Coupling with Fullerene Monolayers. Nano Lett. 2013, 13, 3124–3128. [Google Scholar] [CrossRef] [PubMed]
- Qin, P.-L.; Yang, G.; Ren, Z.-W.; Cheung, S.H.; So, S.K.; Chen, L.; Hao, J.; Hou, J.; Li, G. Stable and Efficient Organo-Metal Halide Hybrid Perovskite Solar Cells via π-Conjugated Lewis Base Polymer Induced Trap Passivation and Charge Extraction. Adv. Mater. 2018, 30, 1706126. [Google Scholar] [CrossRef] [PubMed]
- Goldschmidt, V.M. Die Gesetze der Krystallochemie. Sci. Nat. 1926, 14, 477–485. [Google Scholar] [CrossRef]
- Brivio, F.; Frost, J.M.; Skelton, J.M.; Jackson, A.J.; Weber, O.J.; Weller, M.T.; Goni, A.R.; Leguy, A.M.A.; Barnes, P.R.F.; Walsh, A. Lattice dynamics and vibrational spectra of the orthorhombic, tetragonal, and cubic phases of methylammonium lead iodide. Phys. Rev. B 2015, 92, 144308. [Google Scholar] [CrossRef]
- Ian, M.R.; Enrico, L.C.; Nava, S. Dielectric and Structural Characteristics of Ba- and Sr-based Complex Perovskites as a Function of Tolerance Factor. Jpn. J. Appl. Phys. 1994, 33, 3984. [Google Scholar]
- Li, Z.; Yang, M.; Park, J.-S.; Wei, S.-H.; Berry, J.J.; Zhu, K. Stabilizing Perovskite Structures by Tuning Tolerance Factor: Formation of Formamidinium and Cesium Lead Iodide Solid-State Alloys. Chem. Mater. 2016, 28, 284–292. [Google Scholar] [CrossRef]
- Travis, W.; Glover, E.N.K.; Bronstein, H.; Scanlon, D.O.; Palgrave, R.G. On the application of the tolerance factor to inorganic and hybrid halide perovskites: A revised system. Chem. Sci. 2016, 7, 4548–4556. [Google Scholar] [CrossRef]
- Ng, C.H.; Ripolles, T.S.; Hamada, K.; Teo, S.H.; Lim, H.N.; Bisquert, J.; Hayase, S. Tunable Open Circuit Voltage by Engineering Inorganic Cesium Lead Bromide/Iodide Perovskite Solar Cells. Sci. Rep. 2018, 8, 2482. [Google Scholar] [CrossRef] [PubMed]
- An, H.; Kim, W.K.; Wu, C.; Kim, T.W. Highly-stable memristive devices based on poly(methylmethacrylate): CsPbCl3 perovskite quantum dot hybrid nanocomposites. Org. Electron. 2018, 56, 41–45. [Google Scholar] [CrossRef]
- Haque, M.A.; Sheikh, A.D.; Guan, X.W.; Wu, T. Metal Oxides as Efficient Charge Transporters in Perovskite Solar Cells. Adv. Energy Mater. 2017, 7, 23. [Google Scholar] [CrossRef]
- Da, P.M.; Zheng, G.F. Tailoring interface of lead-halide perovskite solar cells. Nano Res. 2017, 10, 1471–1497. [Google Scholar] [CrossRef]
- Wang, J.; Peng, J.; Sun, Y.; Liu, X.; Chen, Y.; Liang, Z. FAPbCl3 Perovskite as Alternative Interfacial Layer for Highly Efficient and Stable Polymer Solar Cells. Adv. Electron. Mater. 2016, 2, 1600329. [Google Scholar] [CrossRef]
- Li, G.; Rivarola, F.W.R.; Davis, N.J.L.K.; Bai, S.; Jellicoe, T.C.; Peña, F.d.l.; Hou, S.; Ducati, C.; Gao, F.; Friend, R.H.; et al. Highly Efficient Perovskite Nanocrystal Light-Emitting Diodes Enabled by a Universal Crosslinking Method. Adv. Mater. 2016, 28, 3528–3534. [Google Scholar] [CrossRef] [PubMed]
- Yin, W.-J.; Yan, Y.; Wei, S.-H. Anomalous Alloy Properties in Mixed Halide Perovskites. J. Phys. Chem. Lett. 2014, 5, 3625–3631. [Google Scholar] [CrossRef] [PubMed]
- Zeng, W.J.; Liu, X.M.; Guo, X.R.; Niu, Q.L.; Yi, J.P.; Xia, R.D.; Min, Y. Morphology Analysis and Optimization: Crucial Factor Determining the Performance of Perovskite Solar Cells. Molecules 2017, 22, 23. [Google Scholar] [CrossRef] [PubMed]
- Eperon, G.E.; Burlakov, V.M.; Docampo, P.; Goriely, A.; Snaith, H.J. Morphological Control for High Performance, Solution-Processed Planar Heterojunction Perovskite Solar Cells. Adv. Funct. Mater. 2014, 24, 151–157. [Google Scholar] [CrossRef]
- Stranks, S.D.; Eperon, G.E.; Grancini, G.; Menelaou, C.; Alcocer, M.J.P.; Leijtens, T.; Herz, L.M.; Petrozza, A.; Snaith, H.J. Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber. Science 2013, 342, 341–344. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Johnston, M.B.; Snaith, H.J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 2013, 501, 395. [Google Scholar] [CrossRef] [PubMed]
- Ball, J.M.; Lee, M.M.; Hey, A.; Snaith, H.J. Low-temperature processed meso-superstructured to thin-film perovskite solar cells. Energy Environ. Sci. 2013, 6, 1739–1743. [Google Scholar] [CrossRef]
- Yang, X.; Yan, X.; Wang, W.; Zhu, X.; Li, H.; Ma, W.; Sheng, C. Light induced metastable modification of optical properties in CH3NH3PbI3−xBrx perovskite films: Two-step mechanism. Org. Electron. 2016, 34, 79–83. [Google Scholar] [CrossRef]
- Sutton, R.J.; Eperon, G.E.; Miranda, L.; Parrott, E.S.; Kamino, B.A.; Patel, J.B.; Hörantner, M.T.; Johnston, M.B.; Haghighirad, A.A.; Moore, D.T.; et al. Bandgap-Tunable Cesium Lead Halide Perovskites with High Thermal Stability for Efficient Solar Cells. Adv. Energy Mater. 2016, 6, 1502458. [Google Scholar] [CrossRef]
- Rehman, W.; Milot, R.L.; Eperon, G.E.; Wehrenfennig, C.; Boland, J.L.; Snaith, H.J.; Johnston, M.B.; Herz, L.M. Charge-Carrier Dynamics and Mobilities in Formamidinium Lead Mixed-Halide Perovskites. Adv. Mater. 2015, 27, 7938–7944. [Google Scholar] [CrossRef] [PubMed]
- Sadhanala, A.; Deschler, F.; Thomas, T.H.; Dutton, S.E.; Goedel, K.C.; Hanusch, F.C.; Lai, M.L.; Steiner, U.; Bein, T.; Docampo, P.; et al. Preparation of Single-Phase Films of CH3NH3Pb(I1–xBrx)3 with Sharp Optical Band Edges. J. Phys. Chem. Lett. 2014, 5, 2501–2505. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.; Deng, Y.; Zheng, X.; Bai, Y.; Fang, Y.; Dong, Q.; Wei, H.; Huang, J. Composition Engineering in Doctor-Blading of Perovskite Solar Cells. Adv. Energy Mater. 2017, 7, 1700302. [Google Scholar] [CrossRef]
- Nelson, J. The Physics of Solar Cells; Imperial College Press: London, UK, 2007. [Google Scholar]
- Yoo, S.; Domercq, B.; Kippelen, B. Intensity-dependent equivalent circuit parameters of organic solar cells based on pentacene and C60. J. Appl. Phys. 2005, 97, 103706. [Google Scholar] [CrossRef]
- Yan, J.; Saunders, B.R. Third-generation solar cells: A review and comparison of polymer: Fullerene, hybrid polymer and perovskite solar cells. RSC Adv. 2014, 4, 43286–43314. [Google Scholar] [CrossRef]
- Ravishankar, S.; Gharibzadeh, S.; Roldán-Carmona, C.; Grancini, G.; Lee, Y.; Ralaiarisoa, M.; Asiri, A.M.; Koch, N.; Bisquert, J.; Nazeeruddin, M.K. Influence of Charge Transport Layers on Open-Circuit Voltage and Hysteresis in Perovskite Solar Cells. Joule 2018, 2, 788–798. [Google Scholar] [CrossRef]
- Jeng, J.Y.; Chiang, Y.F.; Lee, M.H.; Peng, S.R.; Guo, T.F.; Chen, P.; Wen, T.C. CH3NH3PbI3 Perovskite/Fullerene Planar-Heterojunction Hybrid Solar Cells. Adv. Mater. 2013, 25, 3727–3732. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Li, K.; Wang, Y.; Feng, X.; Liao, Z.; Su, Q.; Lin, X.; He, Z. Black Phosphorus Quantum Dots for Hole Extraction of Typical Planar Hybrid Perovskite Solar Cells. J. Phys. Chem. Lett. 2017, 8, 591–598. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Xu, L.; Feng, X.; Jie, J.; He, Z. Metal Acetylacetonate Series in Interface Engineering for Full Low-Temperature-Processed, High-Performance, and Stable Planar Perovskite Solar Cells with Conversion Efficiency over 16% on 1 cm2 Scale. Adv. Mater. 2017, 29, 1603923. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Zhu, Y.; Yu, Y.; Xu, L.; Zhang, G.; He, Z. Low Cost and Solution Processed Interfacial Layer Based on Poly(2-ethyl-2-oxazoline) Nanodots for Inverted Perovskite Solar Cells. Chem. Mater. 2016, 28, 4879–4883. [Google Scholar] [CrossRef]
- Chen, W.; Wu, Y.Z.; Yue, Y.F.; Liu, J.; Zhang, W.J.; Yang, X.D.; Chen, H.; Bi, E.B.; Ashraful, I.; Gratzel, M.; et al. Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science 2015, 350, 944–948. [Google Scholar] [CrossRef] [PubMed]
- Nie, W.; Tsai, H.; Blancon, J.-C.; Liu, F.; Stoumpos, C.C.; Traore, B.; Kepenekian, M.; Durand, O.; Katan, C.; Tretiak, S.; et al. Critical Role of Interface and Crystallinity on the Performance and Photostability of Perovskite Solar Cell on Nickel Oxide. Adv. Mater. 2018, 30, 1703879. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Zhou, Y.; Wang, L.; Wu, Y.; Tu, B.; Yu, B.; Liu, F.; Tam, H.W.; Wang, G.; Djurišić, A.B.; et al. Molecule-Doped Nickel Oxide: Verified Charge Transfer and Planar Inverted Mixed Cation Perovskite Solar Cell. Adv. Mater. 2018, 30, e1800515. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Wu, Y.; Fan, J.; Djurišić, A.B.; Liu, F.; Tam, H.W.; Ng, A.; Surya, C.; Chan, W.K.; Wang, D.; et al. Understanding the Doping Effect on NiO: Toward High-Performance Inverted Perovskite Solar Cells. Adv. Energy Mater. 2018, 1703519. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, G.-N.; Xu, L.-M.; Gu, R.; Xu, Z.-H.; Wang, H.-J.; He, Z.-B. Low temperature processed, high-performance and stable NiOx based inverted planar perovskite solar cells via a poly(2-ethyl-2-oxazoline) nanodots cathode electron-extraction layer. Mater. Today Energy 2016, 1–2, 1–10. [Google Scholar] [CrossRef]
- Nejand, B.A.; Ahmadi, V.; Gharibzadeh, S.; Shahverdi, H.R. Cuprous Oxide as a Potential Low-Cost Hole-Transport Material for Stable Perovskite Solar Cells. ChemSusChem 2016, 9, 302–313. [Google Scholar] [CrossRef] [PubMed]
- Rao, H.; Ye, S.; Sun, W.; Yan, W.; Li, Y.; Peng, H.; Liu, Z.; Bian, Z.; Li, Y.; Huang, C. A 19.0% efficiency achieved in CuOx-based inverted CH3NH3PbI3−xClx solar cells by an effective Cl doping method. Nano Energy 2016, 27, 51–57. [Google Scholar] [CrossRef]
- Zuo, C.; Ding, L. Solution-Processed Cu2O and CuO as Hole Transport Materials for Efficient Perovskite Solar Cells. Small 2015, 11, 5528–5532. [Google Scholar] [CrossRef] [PubMed]
- Qin, P.; He, Q.; Yang, G.; Yu, X.; Xiong, L.; Fang, G. Metal ions diffusion at heterojunction chromium Oxide/CH3NH3PbI3 interface on the stability of perovskite solar cells. Surf. Interfaces 2018, 10, 93–99. [Google Scholar] [CrossRef]
- Qin, P.L.; Lei, H.W.; Zheng, X.L.; Liu, Q.; Tao, H.; Yang, G.; Ke, W.J.; Xiong, L.B.; Qin, M.C.; Zhao, X.Z.; et al. Copper-Doped Chromium Oxide Hole-Transporting Layer for Perovskite Solar Cells: Interface Engineering and Performance Improvement. Adv. Mater. Interfaces 2016, 3, 1500799. [Google Scholar] [CrossRef]
- Wang, D.; Elumalai, N.K.; Mahmud, M.A.; Wright, M.; Upama, M.B.; Chan, K.H.; Xu, C.; Haque, F.; Conibeer, G.; Uddin, A. V2O5-PEDOT: PSS bilayer as hole transport layer for highly efficient and stable perovskite solar cells. Org. Electron. 2018, 53, 66–73. [Google Scholar] [CrossRef]
- Yao, X.; Qi, J.; Xu, W.; Jiang, X.; Gong, X.; Cao, Y. Cesium-Doped Vanadium Oxide as the Hole Extraction Layer for Efficient Perovskite Solar Cells. ACS Omega 2018, 3, 1117–1125. [Google Scholar] [CrossRef]
- Byranvand, M.M.; Kim, T.; Song, S.; Kang, G.; Ryu, S.U.; Park, T. p-Type CuI Islands on TiO2 Electron Transport Layer for a Highly Efficient Planar-Perovskite Solar Cell with Negligible Hysteresis. Adv. Energy Mater. 2018, 8, 1702235. [Google Scholar] [CrossRef]
- Tan, H.; Jain, A.; Voznyy, O.; Lan, X.; Garcia de Arquer, F.P.; Fan, J.Z.; Quintero-Bermudez, R.; Yuan, M.; Zhang, B.; Zhao, Y.; et al. Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science 2017, 355, 722–726. [Google Scholar] [CrossRef] [PubMed]
- Duan, J.; Xiong, Q.; Feng, B.; Xu, Y.; Zhang, J.; Wang, H. Low-temperature processed SnO2 compact layer for efficient mesostructure perovskite solar cells. CA-Cancer J. Clin. 2016, 391, 677–683. [Google Scholar]
- Jiang, Q.; Zhang, L.; Wang, H.; Yang, X.; Meng, J.; Liu, H.; Yin, Z.; Wu, J.; Zhang, X.; You, J. Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells. Nat. Energy 2016, 1, 16177. [Google Scholar] [CrossRef]
- Ke, W.; Fang, G.; Liu, Q.; Xiong, L.; Qin, P.; Tao, H.; Wang, J.; Lei, H.; Li, B.; Wan, J.; et al. Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells. J. Am. Chem. Soc. 2015, 137, 6730–6733. [Google Scholar] [CrossRef] [PubMed]
- Ke, W.; Zhao, D.; Cimaroli, A.J.; Grice, C.R.; Qin, P.; Liu, Q.; Xiong, L.; Yan, Y.; Fang, G. Effects of annealing temperature of tin oxide electron selective layers on the performance of perovskite solar cells. J. Mater. Chem. A 2015, 3, 24163–24168. [Google Scholar] [CrossRef]
- Ren, X.; Yang, D.; Yang, Z.; Feng, J.; Zhu, X.; Niu, J.; Liu, Y.; Zhao, W.; Liu, S.F. Solution-Processed Nb:SnO2 Electron Transport Layer for Efficient Planar Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2017, 9, 2421–2429. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Huang, K.; Yu, X.; Yang, Z.; Xiao, K.; Qiang, Y.; Zhu, X.; Xu, L.; Wang, P.; Cui, C.; et al. Enhanced Electronic Properties of SnO2 via Electron Transfer from Graphene Quantum Dots for Efficient Perovskite Solar Cells. ACS Nano 2017, 11, 9176–9182. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Kelly, T.L. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat. Photonics 2013, 8, 133. [Google Scholar] [CrossRef]
- Cao, J.; Wu, B.; Chen, R.; Wu, Y.; Hui, Y.; Mao, B.W.; Zheng, N. Efficient, Hysteresis-Free, and Stable Perovskite Solar Cells with ZnO as Electron-Transport Layer: Effect of Surface Passivation. Adv. Mater. 2018, 30, 1705596. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Wu, J.; Zhang, T.; Wang, Y.; Liu, D.; Chen, H.; Ji, L.; Liu, C.; Ahmad, W.; Chen, Z.D.; et al. Perovskite Solar Cells with ZnO Electron-Transporting Materials. Adv. Mater. 2018, 30, 1703737. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Tan, C.H.; Du, T.; Morbidoni, M.; Lin, C.-T.; Xu, S.; Durrant, J.R.; McLachlan, M.A. ZnO-PCBM bilayers as electron transport layers in low-temperature processed perovskite solar cells. Sci. Bull. 2018, 63, 343–348. [Google Scholar] [CrossRef]
- Bowring, A.R.; Bertoluzzi, L.; O’Regan, B.C.; McGehee, M.D. Reverse Bias Behavior of Halide Perovskite Solar Cells. Adv. Energy Mater. 2018, 8, 1702365. [Google Scholar] [CrossRef]
- Tian, C.; Castro, E.; Betancourt-Solis, G.; Nan, Z.; Fernandez-Delgado, O.; Jankuru, S.; Echegoyen, L. Fullerene derivative with a branched alkyl chain exhibits enhanced charge extraction and stability in inverted planar perovskite solar cells. New J. Chem. 2018, 42, 2896–2902. [Google Scholar] [CrossRef]
- Wang, Z.; Fang, J.; Mi, Y.; Zhu, X.; Ren, H.; Liu, X.; Yan, Y. Enhanced performance of perovskite solar cells by ultraviolet-ozone treatment of mesoporous TiO2. Appl. Surf. Sci. 2018, 436, 596–602. [Google Scholar] [CrossRef]
- Seo, J.Y.; Uchida, R.; Kim, H.S.; Saygili, Y.; Luo, J.; Moore, C.; Kerrod, J.; Wagstaff, A.; Eklund, M.; McIntyre, R.; et al. Boosting the Efficiency of Perovskite Solar Cells with CsBr-Modified Mesoporous TiO2 Beads as Electron-Selective Contact. Adv. Funct. Mater. 2018, 28, 1705763. [Google Scholar] [CrossRef]
- Jeon, N.J.; Noh, J.H.; Yang, W.S.; Kim, Y.C.; Ryu, S.; Seo, J.; Seok, S.I. Compositional engineering of perovskite materials for high-performance solar cells. Nature 2015, 517, 476. [Google Scholar] [CrossRef] [PubMed]
- Guarnera, S.; Abate, A.; Zhang, W.; Foster, J.M.; Richardson, G.; Petrozza, A.; Snaith, H.J. Improving the Long-Term Stability of Perovskite Solar Cells with a Porous Al2O3 Buffer Layer. J. Phys. Chem. Lett. 2015, 6, 432–437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pearson, A.J.; Eperon, G.E.; Hopkinson, P.E.; Habisreutinger, S.N.; Wang, J.T.W.; Snaith, H.J.; Greenham, N.C. Oxygen Degradation in Mesoporous Al2O3/CH3NH3PbI3−xClx Perovskite Solar Cells: Kinetics and Mechanisms. Adv. Energy Mater. 2016, 6, 1600014. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, Z.; Mei, A.; Jiang, Y.; Hou, X.; Wang, Q.; Du, K.; Rong, Y.; Zhou, Y.; Xu, G.; et al. Improved Performance of Printable Perovskite Solar Cells with Bifunctional Conjugated Organic Molecule. Adv. Mater. 2018, 30, 1705786. [Google Scholar] [CrossRef] [PubMed]
- Mejía Escobar, M.A.; Pathak, S.; Liu, J.; Snaith, H.J.; Jaramillo, F. ZrO2/TiO2 Electron Collection Layer for Efficient Meso-Superstructured Hybrid Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2017, 9, 2342–2349. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.S.; Yeom, E.J.; Yang, W.S.; Hur, S.; Kim, M.G.; Im, J.; Seo, J.; Noh, J.H.; Seok, S.I. Colloidally prepared La-doped BaSnO3 electrodes for efficient, photostable perovskite solar cells. Science 2017, 356, 167–171. [Google Scholar] [CrossRef] [PubMed]
- Jeon, N.J.; Noh, J.H.; Kim, Y.C.; Yang, W.S.; Ryu, S.; Seok, S.I. Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater. 2014, 13, 897–903. [Google Scholar] [CrossRef] [PubMed]
- Ko, Y.; Kim, Y.; Lee, C.; Kim, Y.; Jun, Y. Investigation of Hole-Transporting Poly(triarylamine) on Aggregation and Charge Transport for Hysteresisless Scalable Planar Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2018, 10, 11633–11641. [Google Scholar] [CrossRef] [PubMed]
- Heo, J.H.; Im, S.H.; Noh, J.H.; Mandal, T.N.; Lim, C.-S.; Chang, J.A.; Lee, Y.H.; Kim, H.-J.; Sarkar, A.; Nazeeruddin, M.K.; et al. Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat. Photonics 2013, 7, 486. [Google Scholar] [CrossRef]
- Christians, J.A.; Schulz, P.; Tinkham, J.S.; Schloemer, T.H.; Harvey, S.P.; Tremolet de Villers, B.J.; Sellinger, A.; Berry, J.J.; Luther, J.M. Tailored interfaces of unencapsulated perovskite solar cells for >1000 hour operational stability. Nat. Energy 2018, 3, 68–74. [Google Scholar] [CrossRef]
- Turren-Cruz, S.-H.; Saliba, M.; Mayer, M.T.; Juarez-Santiesteban, H.; Mathew, X.; Nienhaus, L.; Tress, W.; Erodici, M.P.; Sher, M.-J.; Bawendi, M.G.; et al. Enhanced charge carrier mobility and lifetime suppress hysteresis and improve efficiency in planar perovskite solar cells. Energy Environ. Sci. 2018, 11, 78–86. [Google Scholar] [CrossRef]
- Han, Y.; Meyer, S.; Dkhissi, Y.; Weber, K.; Pringle, J.M.; Bach, U.; Spiccia, L.; Cheng, Y.-B. Degradation observations of encapsulated planar CH3NH3PbI3 perovskite solar cells at high temperatures and humidity. J. Mater. Chem. A 2015, 3, 8139–8147. [Google Scholar] [CrossRef]
- Berhe, T.A.; Su, W.-N.; Chen, C.-H.; Pan, C.-J.; Cheng, J.-H.; Chen, H.-M.; Tsai, M.-C.; Chen, L.-Y.; Dubale, A.A.; Hwang, B.-J. Organometal halide perovskite solar cells: Degradation and stability. Energy Environ. Sci. 2016, 9, 323–356. [Google Scholar] [CrossRef]
- Eperon, G.E.; Paterno, G.M.; Sutton, R.J.; Zampetti, A.; Haghighirad, A.A.; Cacialli, F.; Snaith, H.J. Inorganic caesium lead iodide perovskite solar cells. J. Mater. Chem. A 2015, 3, 19688–19695. [Google Scholar] [CrossRef]
- Stoumpos, C.C.; Malliakas, C.D.; Kanatzidis, M.G. Semiconducting Tin and Lead Iodide Perovskites with Organic Cations: Phase Transitions, High Mobilities, and Near-Infrared Photoluminescent Properties. Inorg. Chem. 2013, 52, 9019–9038. [Google Scholar] [CrossRef] [PubMed]
- Eperon, G.E.; Stranks, S.D.; Menelaou, C.; Johnston, M.B.; Herz, L.M.; Snaith, H.J. Formamidinium lead trihalide: A broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 2014, 7, 982–988. [Google Scholar] [CrossRef]
- Giorgi, G.; Yamashita, K. Zero-dipole molecular organic cations in mixed organic-inorganic halide perovskites: Possible chemical solution for the reported anomalous hysteresis in the current-voltage curve measurements. Nanotechnology 2015, 26, 442001. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.; Jeong, J.; Kim, H.-B.; Kim, S.; Walker, B.; Kim, G.-H.; Kim, J.Y. Cesium-doped methylammonium lead iodide perovskite light absorber for hybrid solar cells. Nano Energy 2014, 7, 80–85. [Google Scholar] [CrossRef]
- Niemann, R.G.; Gouda, L.; Hu, J.G.; Tirosh, S.; Gottesman, R.; Cameron, P.J.; Zaban, A. Cs+ incorporation into CH3NH3PbI3 perovskite: Substitution limit and stability enhancement. J. Mater. Chem. A 2016, 4, 17819–17827. [Google Scholar] [CrossRef]
- Niu, G.; Li, W.; Li, J.; Liang, X.; Wang, L. Enhancement of thermal stability for perovskite solar cells through cesium doping. RSC Adv. 2017, 7, 17473–17479. [Google Scholar] [CrossRef]
- Niu, G.; Yu, H.; Li, J.; Wang, D.; Wang, L. Controlled orientation of perovskite films through mixed cations toward high performance perovskite solar cells. Nano Energy 2016, 27, 87–94. [Google Scholar] [CrossRef]
- Zhang, L.Y.; Zhang, Y.; Guan, W.B.; Wang, K.F.; Cheng, Z.X.; Wang, Y.X. Large enhanced conversion efficiency of perovskite solar cells by CsBr doping. J. Mater. Sci. 2017, 52, 13203–13211. [Google Scholar] [CrossRef]
- Chang, Y.; Wang, L.; Zhang, J.; Zhou, Z.; Li, C.; Chen, B.; Etgar, L.; Cui, G.; Pang, S. CH3NH2 gas induced (110) preferred cesium-containing perovskite films with reduced PbI6 octahedron distortion and enhanced moisture stability. J. Mater. Chem. A 2017, 5, 4803–4808. [Google Scholar] [CrossRef]
- Sedighi, R.; Tajabadi, F.; Taghavinia, N. Vapor assisted deposition of alkaline doped perovskites: Pure phase formation of CsxMA1−xPbI3. Electrochim. Acta 2018, 259, 485–491. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, P.; Wang, S.; Wang, Z.; Cai, B.; Zheng, X.; Chen, Y.; Yuan, N.; Ding, J.; Zhang, W.H. Heterojunction Engineering for High Efficiency Cesium Formamidinium Double-Cation Lead Halide Perovskite Solar Cells. ChemSusChem 2018, 11, 837–842. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Xu, P.; Liu, J.; You, X.Z. Sequential Introduction of Cations Deriving Large-Grain CsxFA1−xPbI3 Thin Film for Planar Hybrid Solar Cells: Insight into Phase-Segregation and Thermal-Healing Behavior. Small 2017, 13, 1603225. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Ma, C.; Xie, Y.; Cheng, Y.; Tian, Y.; Li, M.; Ma, Y.; Lee, C.-S.; Tsang, S.W. Air-Processed Mixed-Cation Cs0.15FA0.85PbI3 Planar Perovskite Solar Cells Derived from PbI2-CsI-FAI Intermediate Complex. J. Mater. Chem. A 2018, 6, 7731–7740. [Google Scholar] [CrossRef]
- Rehman, W.; McMeekin, D.P.; Patel, J.B.; Milot, R.L.; Johnston, M.B.; Snaith, H.J.; Herz, L.M. Photovoltaic mixed-cation lead mixed-halide perovskites: Links between crystallinity, photo-stability and electronic properties. Energy Environ. Sci. 2017, 10, 361–369. [Google Scholar] [CrossRef]
- Zhou, Y.Y.; Kwun, J.; Garces, H.F.; Pang, S.P.; Padture, N.P. Observation of phase-retention behavior of the HC(NH2)(2)PbI3 black perovskite polymorph upon mesoporous TiO2 scaffolds. Chem. Commun. 2016, 52, 7273–7275. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Tian, F.; Xie, Z.; Qin, G. Efficiency evaluation on Csx[NH2CH = NH2]1−xPb(I1−yBry)3/crystalline silicon tandem solar cells. Sol. Energy 2017, 147, 432–438. [Google Scholar] [CrossRef]
- Jiang, Y.; Leyden, M.R.; Qiu, L.; Wang, S.; Ono, L.K.; Wu, Z.; Juarez-Perez, E.J.; Qi, Y. Combination of Hybrid CVD and Cation Exchange for Upscaling Cs-Substituted Mixed Cation Perovskite Solar Cells with High Efficiency and Stability. Adv. Funct. Mater. 2018, 28, 1703835. [Google Scholar] [CrossRef]
- Lee, J.W.; Kim, D.H.; Kim, H.S.; Seo, S.W.; Cho, S.M.; Park, N.G. Formamidinium and Cesium Hybridization for Photo- and Moisture-Stable Perovskite Solar Cell. Adv. Energy Mater. 2015, 5, 1501310. [Google Scholar] [CrossRef]
- Yi, C.; Luo, J.; Meloni, S.; Boziki, A.; Ashari-Astani, N.; Grätzel, C.; Zakeeruddin, S.M.; Röthlisberger, U.; Grätzel, M. FA CS PB BR IEntropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells. Energy Environ. Sci. 2016, 9, 656–662. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, C.; Grice, C.R.; Shrestha, N.; Chen, J.; Zhao, D.; Liao, W.; Cimaroli, A.J.; Roland, P.J.; Ellingson, R.J.; et al. Improving the Performance of Formamidinium and Cesium Lead Triiodide Perovskite Solar Cells using Lead Thiocyanate Additives. ChemSusChem 2016, 9, 3288–3297. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Saidaminov, M.I.; Tan, H.; Zhao, Y.; Kim, Y.; Choi, J.; Jo, J.W.; Fan, J.; Quintero-Bermudez, R.; Yang, Z.; et al. Amide-Catalyzed Phase-Selective Crystallization Reduces Defect Density in Wide-Bandgap Perovskites. Adv. Mater. 2018, 30, 1706275. [Google Scholar] [CrossRef] [PubMed]
- McMeekin, D.P.; Sadoughi, G.; Rehman, W.; Eperon, G.E.; Saliba, M.; Horantner, M.T.; Haghighirad, A.; Sakai, N.; Korte, L.; Rech, B.; et al. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 2016, 351, 151–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, P.F.; Zhou, S.W.; Zhou, Y.G.; Xia, W.; Sun, L.; Cheng, J.G.; Xu, C.X.; Lu, Y.W. Fabrication of Cs(x)FA(1-x)PbI(3) Mixed-Cation Perovskites via Gas-Phase-Assisted Compositional Modulation for Efficient and Stable Photovoltaic Devices. ACS Appl. Mater. Interfaces 2017, 9, 42708–42716. [Google Scholar] [CrossRef] [PubMed]
- Conings, B.; Babayigit, A.; Klug, M.T.; Bai, S.; Gauquelin, N.; Sakai, N.; Wang, J.T.-W.; Verbeeck, J.; Boyen, H.-G.; Snaith, H.J. A Universal Deposition Protocol for Planar Heterojunction Solar Cells with High Efficiency Based on Hybrid Lead Halide Perovskite Families. Adv. Mater. 2016, 28, 10701. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; McMeekin, D.P.; Sakai, N.; Reenen, S.V.; Wojciechowski, K.; Patel, J.B.; Johnston, M.B.; Snaith, H.J. Efficient and Air-Stable Mixed-Cation Lead Mixed-Halide Perovskite Solar Cells with n-Doped Organic Electron Extraction Layers. Adv. Mater. 2017, 29, 1604186. [Google Scholar] [CrossRef] [PubMed]
- Bischak, C.G.; Hetherington, C.L.; Wu, H.; Aloni, S.; Ogletree, D.F.; Limmer, D.T.; Ginsberg, N.S. Origin of Reversible Photoinduced Phase Separation in Hybrid Perovskites. Nano Lett. 2017, 17, 1028–1033. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Zong, Y.; Zhou, Y.; Yang, M.; Li, Z.; Game, O.S.; Zhu, K.; Zhu, R.; Gong, Q.; Padture, N.P. High-Performance Formamidinium-Based Perovskite Solar Cells via Microstructure-Mediated δ-to-α Phase Transformation. Chem. Mater. 2017, 29, 3246–3250. [Google Scholar] [CrossRef]
- Xiao, M.; Huang, F.; Huang, W.; Dkhissi, Y.; Zhu, Y.; Etheridge, J.; Gray-Weale, A.; Bach, U.; Cheng, Y.B.; Spiccia, L. A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. Angew. Chem. Int. Ed. Engl. 2014, 53, 9898–9903. [Google Scholar] [CrossRef] [PubMed]
- Bush, K.A.; Palmstrom, A.F.; Yu, Z.J.; Boccard, M.; Cheacharoen, R.; Mailoa, J.P.; McMeekin, D.P.; Hoye, R.L.Z.; Bailie, C.D.; Leijtens, T.; et al. 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nat. Energy 2017, 2, 17009. [Google Scholar] [CrossRef]
- Eperon, G.E.; Leijtens, T.; Bush, K.A.; Prasanna, R.; Green, T.; Wang, J.T.-W.; McMeekin, D.P.; Volonakis, G.; Milot, R.L.; May, R.; et al. Perovskite-perovskite tandem photovoltaics with optimized bandgaps. Science 2016. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Liu, D.T.; Wang, Y.F.; Zhang, T.; Gu, X.L.; Zhang, P.; Wu, J.; Chen, Z.D.; Zhao, Y.C.; Li, S.B. Theoretical lifetime extraction and experimental demonstration of stable cesium-containing tri-cation perovskite solar cells with high efficiency. Electrochim. Acta 2018, 265, 98–106. [Google Scholar] [CrossRef]
- Draguta, S.; Christians, J.A.; Morozov, Y.V.; Mucunzi, A.; Manser, J.S.; Kamat, P.V.; Luther, J.M.; Kuno, M. A quantitative and spatially resolved analysis of the performance-bottleneck in high efficiency, planar hybrid perovskite solar cells. Energy Environ. Sci. 2018, 11, 960–969. [Google Scholar] [CrossRef]
- Mahboubi Soufiani, A.; Zhuo, Y.; Young, T.; Miyata, A.; Surrente, A.; Pascoe, A.R.; Galkowski, K.; Abdi-Jalebi, M.; Brenes, R.; Urban, J.; et al. Impact of Microstructure on the Electron-hole Interaction in Metal Halide Perovskites. Energy Environ. Sci. 2017, 10, 1358–1366. [Google Scholar] [CrossRef]
- Tsai, H.; Asadpour, R.; Blancon, J.-C.; Stoumpos, C.C.; Durand, O.; Strzalka, J.W.; Chen, B.; Verduzco, R.; Ajayan, P.M.; Tretiak, S.; et al. Light-induced lattice expansion leads to high-efficiency perovskite solar cells. Science 2018, 360, 67–70. [Google Scholar] [CrossRef] [PubMed]
- Saliba, M.; Matsui, T.; Seo, J.Y.; Domanski, K.; Correa-Baena, J.P.; Nazeeruddin, M.K.; Zakeeruddin, S.M.; Tress, W.; Abate, A.; Hagfeldt, A.; et al. Cesium-containing triple cation perovskite solar cells: Improved stability, reproducibility and high efficiency. Energy Environ. Sci. 2016, 9, 1989–1997. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Hutter, E.M.; Rieder, P.; Grill, I.; Hanisch, J.; Aygüler, M.F.; Hufnagel, A.G.; Handloser, M.; Bein, T.; Hartschuh, A.; et al. Understanding the Role of Cesium and Rubidium Additives in Perovskite Solar Cells: Trap States, Charge Transport, and Recombination. Adv. Energy Mater. 2018, 1703057. [Google Scholar] [CrossRef]
- Yang, G.; Chen, C.; Yao, F.; Chen, Z.; Zhang, Q.; Zheng, X.; Ma, J.; Lei, H.; Qin, P.; Xiong, L.; et al. Effective Carrier-Concentration Tuning of SnO2 Quantum Dot Electron-Selective Layers for High-Performance Planar Perovskite Solar Cells. Adv. Mater. 2018, 30, 1706023. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.H.; Zhang, C.J.; Wang, S.T.; Liu, G.; Xia, H.Y.; Tong, S.C.; He, J.; Niu, D.M.; Zhou, C.H.; Ding, K.X.; et al. Low-Temperature Processed, Efficient, and Highly Reproducible Cesium-Doped Triple Cation Perovskite Planar Heterojunction Solar Cells. Sol. RRL 2018, 2, 1700209. [Google Scholar] [CrossRef]
- Sun, Y.; Peng, J.; Chen, Y.; Yao, Y.; Liang, Z. Triple-cation mixed-halide perovskites: Towards efficient, annealing-free and air-stable solar cells enabled by Pb(SCN)2 additive. Sci. Rep. 2017, 7, 46193. [Google Scholar] [CrossRef] [PubMed]
- Matsui, T.; Seo, J.Y.; Saliba, M.; Zakeeruddin, S.M.; Grätzel, M. Room-Temperature Formation of Highly Crystalline Multication Perovskites for Efficient, Low-Cost Solar Cells. Adv. Mater. 2017, 29, 1606258. [Google Scholar] [CrossRef] [PubMed]
- Deepa, M.; Salado, M.; Calio, L.; Kazim, S.; Shivaprasad, S.M.; Ahmad, S. Cesium power: Low Cs+ levels impart stability to perovskite solar cells. Phys. Chem. Chem. Phys. 2017, 19, 4069–4077. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Liu, L.; Wang, X.; Chen, G.; Tian, W.; Miyasaka, T. Highly efficient and stable low-temperature processed ZnO solar cells with triple cation perovskite absorber. J. Mater. Chem. A 2017, 5, 13439–13447. [Google Scholar] [CrossRef]
- Zhang, M.; Yun, J.S.; Ma, Q.; Zheng, J.; Lau, C.F.J.; Deng, X.; Kim, J.; Kim, D.; Seidel, J.; Green, M.A.; et al. High-Efficiency Rubidium-Incorporated Perovskite Solar Cells by Gas Quenching. ACS Energy Lett. 2017, 2, 438–444. [Google Scholar] [CrossRef]
- Duong, T.; Mulmudi, H.K.; Shen, H.; Wu, Y.; Barugkin, C.; Mayon, Y.O.; Nguyen, H.T.; Macdonald, D.; Peng, J.; Lockrey, M.; et al. Structural engineering using rubidium iodide as a dopant under excess lead iodide conditions for high efficiency and stable perovskites. Nano Energy 2016, 30, 330–340. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, G.; Fu, W.; Qin, M.; Yang, W.; Yan, J.; Zhang, Z.; Lu, X.; Chen, H. Orientation Regulation of Phenylethylammonium Cation Based 2D Perovskite Solar Cell with Efficiency Higher Than 11%. Adv. Energy Mater. 2018, 1702498. [Google Scholar] [CrossRef]
- Yuan, M.; Quan, L.N.; Comin, R.; Walters, G.; Sabatini, R.; Voznyy, O.; Hoogland, S.; Zhao, Y.; Beauregard, E.M.; Kanjanaboos, P.; et al. Perovskite energy funnels for efficient light-emitting diodes. Nat. Nanotechnol. 2016, 11, 872. [Google Scholar] [CrossRef] [PubMed]
- Yao, K.; Wang, X.; Xu, Y.-X.; Li, F.; Zhou, L. Multilayered Perovskite Materials Based on Polymeric-Ammonium Cations for Stable Large-Area Solar Cell. Chem. Mater. 2016, 28, 3131–3138. [Google Scholar] [CrossRef]
- Blancon, J.C.; Tsai, H.; Nie, W.; Stoumpos, C.C.; Pedesseau, L.; Katan, C.; Kepenekian, M.; Soe, C.M.M.; Appavoo, K.; Sfeir, M.Y.; et al. Extremely efficient internal exciton dissociation through edge states in layered 2D perovskites. Science 2017, 355, 1288–1291. [Google Scholar] [CrossRef] [PubMed]
- Ye, H.-Y.; Liao, W.-Q.; Hu, C.-L.; Zhang, Y.; You, Y.-M.; Mao, J.-G.; Li, P.-F.; Xiong, R.-G. Bandgap Engineering of Lead-Halide Perovskite-Type Ferroelectrics. Adv. Mater. 2016, 28, 2579–2586. [Google Scholar] [CrossRef] [PubMed]
- Milot, R.L.; Sutton, R.J.; Eperon, G.E.; Haghighirad, A.A.; Martinez Hardigree, J.; Miranda, L.; Snaith, H.J.; Johnston, M.B.; Herz, L.M. Charge-Carrier Dynamics in 2D Hybrid Metal–Halide Perovskites. Nano Lett. 2016, 16, 7001–7007. [Google Scholar] [CrossRef] [PubMed]
- Koh, T.M.; Shanmugam, V.; Schlipf, J.; Oesinghaus, L.; Müller-Buschbaum, P.; Ramakrishnan, N.; Swamy, V.; Mathews, N.; Boix, P.P.; Mhaisalkar, S.G. Nanostructuring Mixed-Dimensional Perovskites: A Route toward Tunable, Efficient Photovoltaics. Adv. Mater. 2016, 28, 3653–3661. [Google Scholar] [CrossRef] [PubMed]
- Grancini, G.; Roldán-Carmona, C.; Zimmermann, I.; Mosconi, E.; Lee, X.; Martineau, D.; Narbey, S.; Oswald, F.; De Angelis, F.; Graetzel, M.; et al. One-Year stable perovskite solar cells by 2D/3D interface engineering. Nat. Commun. 2017, 8, 15684. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Liu, C.; Du, P.; Zheng, J.; Gong, X. Bulk heterojunction perovskite hybrid solar cells with large fill factor. Energy Environ. Sci. 2015, 8, 1245–1255. [Google Scholar] [CrossRef]
- Wang, Z.; Lin, Q.; Chmiel, F.P.; Sakai, N.; Herz, L.M.; Snaith, H.J. Efficient ambient-air-stable solar cells with 2D–3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites. Nat. Energy 2017, 2, 17135. [Google Scholar] [CrossRef]
- Zhang, T.; Xie, L.; Chen, L.; Guo, N.; Li, G.; Tian, Z.; Mao, B.; Zhao, Y. In Situ Fabrication of Highly Luminescent Bifunctional Amino Acid Crosslinked 2D/3D NH3C4H9COO(CH3NH3PbBr3)n Perovskite Films. Adv. Funct. Mater. 2017, 27, 1603568. [Google Scholar] [CrossRef]
- Hu, Y.; Qiu, T.; Bai, F.; Ruan, W.; Zhang, S. Highly Efficient and Stable Solar Cells with 2D MA3Bi2I9/3D MAPbI3 Heterostructured Perovskites. Adv. Energy Mater. 2018, 1703620. [Google Scholar] [CrossRef]
- Ran, C.; Xi, J.; Gao, W.; Yuan, F.; Lei, T.; Jiao, B.; Hou, X.; Wu, Z. Bilateral Interface Engineering toward Efficient 2D–3D Bulk Heterojunction Tin Halide Lead-Free Perovskite Solar Cells. ACS Energy Lett. 2018, 3, 713–721. [Google Scholar] [CrossRef]
- Paul, T.; Chatterjee, B.K.; Maiti, S.; Sarkar, S.; Besra, N.; Das, B.K.; Panigrahi, K.J.; Thakur, S.; Ghorai, U.K.; Chattopadhyay, K.K. Tunable cathodoluminescence over the entire visible window from all-inorganic perovskite CsPbX3 1D architecture. J. Mater. Chem. C 2018, 6, 3322–3333. [Google Scholar] [CrossRef]
- Ji, C.; Wang, P.; Wu, Z.; Sun, Z.; Li, L.; Zhang, J.; Hu, W.; Hong, M.; Luo, J. Inch-Size Single Crystal of a Lead-Free Organic–Inorganic Hybrid Perovskite for High-Performance Photodetector. Adv. Funct. Mater. 2018, 28, 1705467. [Google Scholar] [CrossRef]
- Zhou, C.; Tian, Y.; Wang, M.; Rose, A.; Besara, T.; Doyle, N.K.; Yuan, Z.; Wang, J.C.; Clark, R.; Hu, Y.; et al. Low-Dimensional Organic Tin Bromide Perovskites and Their Photoinduced Structural Transformation. Angew. Chem. Int. Ed. 2017, 56, 9018–9022. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.; Zhou, C.; Tian, Y.; Shu, Y.; Messier, J.; Wang, J.C.; van de Burgt, L.J.; Kountouriotis, K.; Xin, Y.; Holt, E.; et al. One-dimensional organic lead halide perovskites with efficient bluish white-light emission. Nat. Commun. 2017, 8, 14051. [Google Scholar] [CrossRef] [PubMed]
- Yao, K.; Wang, X.; Li, F.; Zhou, L. Mixed perovskite based on methyl-ammonium and polymeric-ammonium for stable and reproducible solar cells. Chem. Commun. 2015, 51, 15430–15433. [Google Scholar] [CrossRef] [PubMed]
- Yao, K.; Wang, X.F.; Xu, Y.X.; Li, F. A general fabrication procedure for efficient and stable planar perovskite solar cells: Morphological and interfacial control by in-situ-generated layered perovskite. Nano Energy 2015, 18, 165–175. [Google Scholar] [CrossRef]
- Bai, Y.; Xiao, S.; Hu, C.; Zhang, T.; Meng, X.; Lin, H.; Yang, Y.; Yang, S. Dimensional Engineering of a Graded 3D–2D Halide Perovskite Interface Enables Ultrahigh Voc Enhanced Stability in the p-i-n Photovoltaics. Adv. Energy Mater. 2017, 7, 1701038. [Google Scholar] [CrossRef]
- Yang, S.; Wang, Y.; Liu, P.; Cheng, Y.-B.; Zhao, H.J.; Yang, H.G. Functionalization of perovskite thin films with moisture-tolerant molecules. Nat. Energy 2016, 1, 15016. [Google Scholar] [CrossRef]
- Chen, J.; Seo, J.Y.; Park, N.G. Simultaneous Improvement of Photovoltaic Performance and Stability by In Situ Formation of 2D Perovskite at (FAPbI3)0.88(CsPbBr3)0.12/CuSCN Interface. Adv. Energy Mater. 2018, 1702714. [Google Scholar] [CrossRef]
- Chen, P.; Bai, Y.; Wang, S.; Lyu, M.; Yun, J.H.; Wang, L. In Situ Growth of 2D Perovskite Capping Layer for Stable and Efficient Perovskite Solar Cells. Adv. Funct. Mater. 2018, 1706923. [Google Scholar] [CrossRef]
- Cho, K.T.; Grancini, G.; Lee, Y.; Oveisi, E.; Ryu, J.; Almora, O.; Tschumi, M.; Schouwink, P.A.; Seo, G.; Heo, S.; et al. Selective growth of layered perovskites for stable and efficient photovoltaics. Energy Environ. Sci. 2018, 11, 952–959. [Google Scholar] [CrossRef]
- Zhang, J.; Bai, D.; Jin, Z.; Bian, H.; Wang, K.; Sun, J.; Wang, Q.; Liu, S. 3D–2D–0D Interface Profiling for Record Efficiency All-Inorganic CsPbBrI2 Perovskite Solar Cells with Superior Stability. Adv. Energy Mater. 2018, 1703246. [Google Scholar] [CrossRef]
- Lee, J.W.; Seol, D.J.; Cho, A.N.; Park, N.G. High-Efficiency Perovskite Solar Cells Based on the Black Polymorph of HC(NH2)2PbI3. Adv. Mater. 2014, 26, 4991–4998. [Google Scholar] [CrossRef] [PubMed]
- Cho, K.T.; Paek, S.; Grancini, G.; Roldán-Carmona, C.; Gao, P.; Lee, Y.; Nazeeruddin, M.K. Highly efficient perovskite solar cells with a compositionally engineered perovskite/hole transporting material interface. Energy Environ. Sci. 2017, 10, 621–627. [Google Scholar] [CrossRef]
- Etgar, L.; Gao, P.; Xue, Z.; Peng, Q.; Chandiran, A.K.; Liu, B.; Nazeeruddin, M.K.; Grätzel, M. Mesoscopic CH3NH3PbI3/TiO2 Heterojunction Solar Cells. J. Am. Chem. Soc. 2012, 134, 17396–17399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.-S.; Lee, J.-W.; Yantara, N.; Boix, P.P.; Kulkarni, S.A.; Mhaisalkar, S.; Grätzel, M.; Park, N.-G. High Efficiency Solid-State Sensitized Solar Cell-Based on Submicrometer Rutile TiO2 Nanorod and CH3NH3PbI3 Perovskite Sensitizer. Nano Lett. 2013, 13, 2412–2417. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Shi, W.; Luo, J.; Pellet, N.; Yi, C.; Li, X.; Zhao, X.; Dennis, T.J.S.; Li, X.; Wang, S.; et al. Isomer-Pure Bis-PCBM-Assisted Crystal Engineering of Perovskite Solar Cells Showing Excellent Efficiency and Stability. Adv. Mater. 2017, 29, 1606806. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Wei, J.; Li, H.; Yan, Y.; Zhou, W.; Yu, D.; Zhao, Q. A polymer scaffold for self-healing perovskite solar cells. Nat. Commun. 2016, 7, 10228. [Google Scholar] [CrossRef] [PubMed]
- Chiang, C.-H.; Wu, C.-G. Bulk heterojunction perovskite–PCBM solar cells with high fill factor. Nat. Photonics 2016, 10, 196. [Google Scholar] [CrossRef]
- Xu, J.; Buin, A.; Ip, A.H.; Li, W.; Voznyy, O.; Comin, R.; Yuan, M.; Jeon, S.; Ning, Z.; McDowell, J.J.; et al. Perovskite–fullerene hybrid materials suppress hysteresis in planar diodes. Nat. Commun. 2015, 6, 7081. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Ibrahim Dar, M.; Yi, C.; Luo, J.; Tschumi, M.; Zakeeruddin, S.M.; Nazeeruddin, M.K.; Han, H.; Grätzel, M. Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid ω-ammonium chlorides. Nat. Chem. 2015, 7, 703. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Wang, K.; Du, P.; Yi, C.; Meng, T.; Gong, X. Efficient Solution-Processed Bulk Heterojunction Perovskite Hybrid Solar Cells. Adv. Energy Mater. 2015, 5, 1402024. [Google Scholar] [CrossRef]
- Jiang, J.; Wang, Q.; Jin, Z.; Zhang, X.; Lei, J.; Bin, H.; Zhang, Z.G.; Li, Y.; Liu, S. Polymer Doping for High-Efficiency Perovskite Solar Cells with Improved Moisture Stability. Adv. Energy Mater. 2018, 8, 1701757. [Google Scholar] [CrossRef]
- Chung, C.C.; Narra, S.; Jokar, E.; Wu, H.P.; Diau, E.W.G. Inverted planar solar cells based on perovskite/graphene oxide hybrid composites. J. Mater. Chem. A 2017, 5, 13957–13965. [Google Scholar] [CrossRef]
- Hadadian, M.; Correa-Baena, J.P.; Goharshadi, E.K.; Ummadisingu, A.; Seo, J.Y.; Luo, J.; Gholipour, S.; Zakeeruddin, S.M.; Saliba, M.; Abate, A.; et al. Enhancing Efficiency of Perovskite Solar Cells via N-doped Graphene: Crystal Modification and Surface Passivation. Adv. Mater. 2016, 28, 8681–8686. [Google Scholar] [CrossRef] [PubMed]
- Qian, L.; Sun, Y.; Wu, M.; Xie, D.; Ding, L.; Shi, G. A Solution-Processed High-Performance Phototransistor based on a Perovskite Composite with Chemically Modified Graphenes. Adv. Mater. 2017, 29, 1606175. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Chen, Y.; Liu, H.; Wang, J.; Fang, X.; Liang, Z. Chemical decoration of CH3NH3PbI3 perovskites with graphene oxides for photodetector applications. Chem. Commun. 2015, 51, 9659–9661. [Google Scholar] [CrossRef] [PubMed]
Device Structure | Perovskite | Jsc (mA·cm−2) | Voc (V) | FF (%) | PCE (%) | Year | Ref. |
---|---|---|---|---|---|---|---|
ITO/PEDOT:PSS/perovskie/PCBM/Al | Cs0.1MA0.9PbI3 | 10.10 | 1.05 | 0.73 | 7.68 | 2014 | [113] |
FTO/c-TiO2/mp-TiO2/perovskite/Spiro-OMeTAD/Ag | CsxMA1−xPbI3 | / | / | / | / | 2016 | [114] |
FTO/c-TiO2/mp-TiO2/perovskite/Spiro-OMeTAD/Ag | Cs0.1MA0.9PbI3 | 20.97 | 1.10 | 0.74 | 17.08 | 2017 | [118] |
FTO/c-TiO2/mp-TiO2/perovskite/Spiro-OMeTAD/Au | Cs0.09MA0.91PbI3 | 22.57 | 1.06 | 0.76 | 18.1 | 2017 | [115] |
FTO/c-TiO2/mp-TiO2/perovskite/Spiro-OMeTAD/Au | Cs0.1MA0.9PbI3 | 19.20 | 0.96 | 0.70 | 13.0 | 2018 | [119] |
FTO/c-TiO2/mp-TiO2/perovskite/Spiro-OMeTAD/Ag | (CsBr)0.1 (MAPbI3)0.9 | 22.60 | 0.93 | 0.65 | 13.6 | 2017 | [117] |
FTO/c-TiO2/mp-TiO2/perovskite/Spiro-OMeTAD/Au | (MAPbI3)0.9 (CsPbBr3)0.1, | 22.8 | 1.05 | 0.73 | 17.6 | 2016 | [116] |
Device Structure | Perovskite | Jsc (mA·cm−2) | Voc (V) | FF (%) | PCE (%) | Year | Ref. |
---|---|---|---|---|---|---|---|
FTO/c-TiO2/perovskite/Spiro-OMeTAD/Ag | Cs0.1FA0.9PbI3 | 23.5 | 1.06 | 0.66 | 16.5 | 2015 | [127] |
FTO/c-TiO2/mp-TiO2/perovskite/Spiro-OMeTAD/Au | Cs0.2FA0.8PbI3 | 21.5 | 1.01 | 0.7 | 15.69 | 2016 | [128] |
FTO/c-TiO2/mTiO2/perovskite/Spiro-OMeTAD/Au | Cs0.2FA0.8PbI2.84Br0.16 | 21.9 | 1.07 | 0.74 | 17.35 | 2016 | [128] |
FTO/NiO/perovskite/PCBM/PFN-Br/Ag | Cs0.2FA0.8PbI3 | 19.85 | 1.01 | 0.71 | 15.38 | 2017 | [121] |
FTO/SnO2/C60-SAM/perovskite/Spiro-OMeTAD/Au | Cs0.2FA0.8PbI3 | 21.85 | 1.06 | 0.76 | 17.61 | 2016 | [129] |
FTO/SnO2/C60-SAM/perovskite/Spiro-OMeTAD/Au | Cs0.2FA0.8PbI3 & 0.6% Pb(SCN)2 | 22.25 | 1.09 | 0.81 | 19.57 | 2016 | [129] |
ITO/c-TiO2/perovskite/Spiro-OMeTAD/Au | FA0.83Cs0.17Pb(I0.6Br0.4)3 | 18.34 | 1.23 | 0.79 | 17.8 | 2018 | [130] |
FTO/SnO2/PCBM/perovskite/Spiro-OMeTAD/Ag | FA0.83Cs0.17Pb(I0.6Br0.4)3 | 19.4 | 1.19 | 0.78 | 17.9 | 2016 | [131] |
FTO/c-TiO2/perovskite/Spiro-OMeTAD/Ag | Cs0.15FA0.85PbI3 | 22.85 | 0.91 | 0.69 | 14.46 | 2017 | [132] |
ITO/SnO2/C60/perovskite/Spiro-OMeTAD/Ag | FA0.85Cs0.15Pb(I0.95Br0.05)3 | 22.4 | 1.01 | 0.72 | 16.2 | 2016 | [133] |
ITO/TPD/perovskite/C60/Ag | Cs0.15FA0.85PbI3 | 23.36 | 1.00 | 0.64 | 15.18 | 2018 | [122] |
FTO/c-TiO2/perovskite/Spiro-OMeTAD/Ag | FA0.85Cs0.15PbI3 | 21.50 | 1.08 | 0.75 | 17.3 | 2016 | [41] |
FTO/SnO2/C60/perovskite/spiro-OMeTAD/Au | (HC(NH2)2)0.83Cs0.17Pb(I0.6Br0.4)3 | 23.0 | 1.06 | 0.75 | 18.3 | 2017 | [134] |
FTO/c-TiO2/perovskite/Spiro-OMeTAD/Au | Cs0.07FA0.93PbI3 | 21.9 | 0.98 | 0.72 | 15.3 | 2018 | [126] |
Device Structure | Perovskite | Jsc (mA·cm−2) | Voc (V) | FF (%) | PCE (%) | Year | Ref. |
---|---|---|---|---|---|---|---|
FTO/c-TiO2/mp-TiO2/perovskite/PTAA/Au | MA-FAPb-Br-I | 25.00 | 1.10 | 0.80 | 22.1 | 2017 | [5] |
FTO/SnO2/C60/perovskite/Spiro-OMeTAD/Ag | (FA0.83MA0.17)0.95 Cs0.05Pb(I0.9Br0.1)3 | 22.6 | 1.08 | 0.74 | 18.0 | 2016 | [133] |
ITO/NiOx/F6TCNNQ/perovskite/PCBM/Zracc/Ag | Cs-FA-MAPb-Br-I | 23.18 | 1.12 | 0.80 | 20.86 | 2018 | [70] |
FTO/SnO2/perovskite/Spiro-OMeTAD/Au | Cs0.056FA0.76MA0.15PbI2.42Br0.48 | 22.03 | 1.15 | 0.77 | 19.56 | 2018 | [21] |
ITO/PEN/QD-SnO2/perovskite/Spiro-OMeTAD/Au | Cs0.05(MA0.17FA0.83)0.95Pb(I0.83Br0.17)3 | 23.05 | 1.13 | 0.79 | 20.79 | 2018 | [146] |
ITO/SnO2/Perovskite/Spiro-OMeTAD/Ag | FA0.945MA0.025Cs0.03 Pb(I0.975Br0.025)3 | 24.94 | 1.12 | 0.73 | 20.51 | 2018 | [147] |
FTO/QD-SnO2/perovskite/PBDBT/Spiro-OMeTAD/Au | (CsPbI3)0.04(FAPb I3)0.82(MAPbBr3)0.14 | 22.39 | 1.12 | 0.79 | 19.85 | 2018 | [37] |
FTO/c-TiO2/perovskite/Spiro-OMeTAD/Au | Cs-FA-MAPb-Br-I | 21.77 | 1.13 | 0.76 | 18.76 | 2018 | [141] |
FTO/c-TiO2/mp-TiO2/perovskite/Spiro-OMeTAD/Au | Cs0.06FA0.79MA0.15 Pb(I0.85Br0.15)3 & KI | 23.2 | 1.17 | 0.79 | 21.5 | 2018 | [22] |
ITO/PTAA/perovskite/C60/BCP/Cu | MA0.6FA0.38Cs0.02PbI2.975Br0.025 & 5 mol% MACl | 22.70 | 1.10 | 0.73 | 19.2 | 2017 | [59] |
ITO/PEDOT:PSS/perovskite/PC61BM/Bphen/Al | FA0.7MA0.2Cs0.1Pb (I5/6Br1/6)3 & Pb(SCN)2 | 18.21 | 1.06 | 0.73 | 16.09 | 2017 | [148] |
FTO/c-TiO2/mp-TiO2/perovskite/PTAA/Au | (FA0.79MA0.16Cs0.05) Pb(I0.83Br0.17)3 | 21.5 | 1.15 | 0.73 | 18.10 | 2017 | [149] |
FTO/c-TiO2/mp-TiO2/perovskite/Spiro-OMeTAD/Au | Cs0.05(MA0.15FA0.85)0.95 Pb(I0.85Br0.15)3 | 21.7 | 1.05 | 0.75 | 17.1 | 2017 | [150] |
ITO/ZnO/perovskite/Spiro-OMeTAD/Ag | Cs6(MA0.17FA0.83)94Pb(I0.83Br0.17)3 | 22.5 | 1.12 | 0.73 | 18.6 | 2017 | [151] |
FTO/bl-TiO2/Li-mp-TiO2/perovskite/Spiro-OMeTAD/Au | (FAPbI3)0.83(MAPbBr3)0.17 | 23.50 | 1.07 | 0.74 | 21.1 | 2016 | [144] |
FTO/c-TiO2/Li-mp-TiO2/perovskite/Spiro-OMeTAD/Au | Rb5(Cs5MAFA)0.95Pb(IBr)x | 22.8 | 1.18 | 0.81 | 21.8 | 2016 | [6] |
FTO/c-TiO2/perovskite/Spiro-OMeTAD/Au | Rb0.05Cs0.05[(FA0.83MA0.17)]0.9 Pb(I0.83Br0.17)3 | 20.65 | 1.47 | 0.72 | 17.02 | 2018 | [145] |
FTO/c-TiO2/mp-TiO2/perovskite/Spiro-OMeTAD/Au | FA0.80MA0.15Rb0.05 PbI2.55Br0.45 | 23.2 | 1.17 | 0.73 | 20.0 | 2017 | [152] |
FTO/c-TiO2/mp-TiO2/perovskite/PTAA/Au | Rb-MA-FA-Pb-I-Br | 23.24 | 1.12 | 0.72 | 18.80 | 2016 | [153] |
Device Sintructure | Perovskite | Jsc (mA·cm−2) | Voc (V) | FF (%) | PCE (%) | Year | Ref. |
---|---|---|---|---|---|---|---|
ITO/PEDOT:PSS/perovskite/PCBM/Al | CH3NH3PbI3/A10C60 | 19.41 | 0.88 | 0.82 | 13.97 | 2015 | [162] |
FTO/SnO2/PC61BM/perovskite/Spiro-OMeTAD/Au | BA0.05(FA0.83 Cs0.17)0.95Pb(I0.8Br0.2)3 | 22.7 | 1.14 | 0.8 | 20.6 | 2017 | [163] |
FTO/c-TiO2/perovskite/Spiro-OMeTAD /Au | CsPbI3•0.025EDAPbI4 | 14.53 | 1.15 | 0.71 | 11.86 | 2017 | [164] |
FTO/bl-TiO2/perovskite/Spiro-OMeTAD /Au | MAPbI3/MA3Bi2I9 | 23.03 | 1.09 | 0.76 | 18.97 | 2018 | [165] |
ITO/PEDOT:PSS/perovskite/C60/BCP/Al | FASnI3/PEAI | 24.1 | 0.52 | 0.71 | 9.01 | 2018 | [27] |
FTO/c-TiO2/mp-TiO2/perovskite/TBP/Au | Cs0.04MA0.16FA0.8PbI0.85Br0.15/PZPY | 21.70 | 1.08 | 0.77 | 18.10 | 2018 | [29] |
FTO/c-TiO2/mp-TiO2/perovskite/Spiro-OMeTAD/Au | CH3NH3PbI3/(HOOC(CH2)4 NH3)2PbI4 | 18.84 | 1.02 | 0.75 | 14.6 | 2017 | [161] |
FTO/c-TiO2/mp-TiO2/perovskite/ZrO2/Carbon | CH3NH3PbI3/(HOOC(CH2)4 NH3)2PbI4 | 23.99 | 0.85 | 0.63 | 12.71 | 2017 | [161] |
FTO/c-TiO2/mp-TiO2/perovskite/Spiro-OMeTAD/Ag | (MAPbI3)1−x/ [(PEI)2PbI4]x | 20.10 | 1.07 | 0.73 | 15.60 | 2015 | [171] |
ITO/PEDOT:PSS/Perovskite/PCBM/LiF/Ag | [(PEI)2PbI4]x/ (MAPbI3)1−x | 19.95 | 1.07 | 0.72 | 25.27 | 2015 | [172] |
FTO/c-TiO2/mp-TiO2/perovskite/Spiro-OMeTAD/Au | (IC2H4NH3)2 (CH3NH3)n−1PbnI3n+1:CH3NH3PbI3 | 14.88 | 0.83 | 0.69 | 9.03 | 2016 | [160] |
ITO/PEDOT:PSS/Perovskite/C60/BCP/Ag | (PEA,FA)SnI3 | 20.07 | 0.47 | 0.74 | 6.98 | 2018 | [166] |
Device Sintructure | Perovskite | Jsc (mA cm−2) | Voc (V) | FF (%) | PCE (%) | Year | Ref. |
---|---|---|---|---|---|---|---|
ITO/PEDOT:PSS/perovskite/PCBM/Rhodamine 101/LiF/Ag | CA2PbI4/MAPbIxCl3−x | 19.29 | 0.92 | 0.77 | 13.86 | 2016 | [31] |
FTO/TiO2/perovskite/Spiro-OMeTAD/Au | CH3NH3PbI3 (TMA) | 20.10 | 0.99 | 0.65 | 13.00 | 2016 | [174] |
FTO/c-TiO2/perovskite/Spiro-OMeTAD/Au | CH3NH3PbI3 (TEA) | 19.60 | 0.99 | 0.67 | 12.89 | 2016 | [174] |
FTO/c-TiO2/mp-TiO2/perovskite/CuSCN/Au | (5AVA)2PbI4/(FAPbI3)0.88(Cs PbBr3)0.12 & HI | 21.93 | 1.07 | 0.72 | 16.75 | 2018 | [175] |
FTO/c-TiO2/mp-TiO2/perovskite/Spiro-OMeTAD/Au | Cs0.05(FA0.83 MA0.17)0.95Pb(I0.83Br0.17)3 | 22.89 | 1.11 | 0.73 | 18.51 | 2018 | [176] |
ITO/PTAA/perovskite/PCBM/C60/BCP/Cu | MAPbI3/BA | 22.49 | 1.11 | 0.78 | 19.56 | 2018 | [28] |
ITO/PTAA/perovskite/PCBM/C60/BCP/Cu | MAPbI3/BAI | 22.59 | 1.09 | 0.77 | 18.85 | 2018 | [28] |
FTO/c-TiO2/mp-TiO2/perovskite/Spiro-OMeTAD/Au | FAPbI3/MAPbI3 | 20.97 | 1.03 | 0.74 | 16.01 | 2014 | [179] |
FTO/c-TiO2/mp-TiO2/perovskite/Spiro-OMeTAD/Au | (FAPbI3)0.85(MAPbBr3)0.15/FAPbBr3−xIx | 23.18 | 1.16 | 0.79 | 21.31 | 2017 | [180] |
FTO/c-TiO2/mp-TiO2/perovskite/Spiro-OMeTAD/Au | Cs0.1FA0.74MA0.13PbI2.48Br0.39/PEIA | 22.73 | 1.14 | 0.76 | 20.08 | 2018 | [177] |
FTO/c-TiO2/mp-TiO2/perovskite/PTAA/Au | 3-D/2-D/0-D CsPbBrI2 | 12.93 | 1.19 | 0.80 | 12.39 | 2018 | [178] |
FTO/NiOx/perovskite/PCBM/Ag | MAPbI3/PEAI | 21.8 | 1.17 | 0.78 | 19.89 | 2017 | [173] |
Device Structure | Perovskite | Jsc(mA cm−2) | Voc (V) | FF (%) | PCE (%) | Year | Ref. |
---|---|---|---|---|---|---|---|
FTO/c-TiO2/mp-Li-TiO2/perovskit/Spiro-OMeTAD/Ag | Cs0.05(MA0.17FA0.83)0.95 Pb(I0.83Br0.17)3:carbon nanoparticles | 22.10 | 1.16 | 0.72 | 18.30 | 2018 | [34] |
FTO/c-TiO2/P61BM/perovskit/P3HT/Mo3/Ag | CH3NH3PbI3:PC 61BM | 26.86 | 0.9 | 0.53 | 12.78 | 2015 | [188] |
FTO/SnO2/perovskite/Spiro-OMeTAD /Au | (CsPbI3)0.04(FAPbI3) 0.82(MAPbBr3)0.14: PBDB-T | 22.39 | 1.11 | 0.78 | 19.38 | 2018 | [35] |
ITO/Mixing graphene oxide/perovskite/PCBM/Ag | MAPbI3:Mixing graphene oxide | 20.71 | 0.96 | 0.76 | 15.20 | 2017 | [190] |
FTO/c-TiO2/mp-TiO2/perovskit/Spiro-OMeTAD/Au | FA0.85 MA0.15 Pb(I0.85 Br0.15)3:reduced graphene oxides | 21.80 | 1.15 | 0.74 | 18.73 | 2016 | [191] |
ITO/PEDOT:PSS/Perovskite/Ca/PC71BM/Al | CH3NH3PbI3:PC61BM | 20.20 | 0.97 | 0.82 | 16.0 | 2016 | [185] |
FTO/c-TiO2/mp-TiO2/perovskit/Spiro-OMeTAD/Au | CH3NH3PbI3:4-ABPACl | 21.98 | 1.00 | 0.70 | 15.38 | 2015 | [187] |
FTO/c-TiO2/perovskite/Spiro-OMeTAD/Au | MAI:(Pb(Ac)2):PCBM | 18.0 | 1.08 | 0.75 | 14.4 | 2015 | [186] |
FTO/c-TiO2/mp-TiO2/perovskite/Spiro-OMeTAD/Au | CH3NH3PbI3−xClx: C60SAM | 19.60 | 0.84 | 0.72 | 11.7 | 2013 | [36] |
FTO/c-TiO2/mp-TiO2/perovskite/Spiro-OMeTAD/Au | (FAI)0.81(PbI2)0.85 (MABr)0.15(PbBr2)0.15: α-bis-PCBM | 23.73 | 1.11 | 0.73 | 20.80 | 2017 | [183] |
FTO/c-TiO2/perovskite/Spiro-OMeTAD/Au | CH3NH3PbI:PC61BM | 22.5 | 0.98 | 0.72 | 15.4 | 2016 | [184] |
FTO/c-TiO2/perovskite/Spiro-OMeTAD/Au | CH3NH3PbI:J71 | 22.31 | 1.11 | 0.78 | 19.19 | 2018 | [189] |
FTO/c-TiO2/perovskite/Spiro-OMeTAD/Au | CH3NH3PbI:J50 | 22.28 | 1.10 | 0.76 | 18.81 | 2018 | [189] |
FTO/c-TiO2/perovskite/Spiro-OMeTAD/Au | CH3NH3PbI:J51 | 22.11 | 1.10 | 0.77 | 18.92 | 2018 | [189] |
FTO/c-TiO2/perovskite/Spiro-OMeTAD/Au | CH3NH3PbI:J61 | 22.35 | 1.10 | 0.75 | 18.69 | 2018 | [189] |
FTO/c-TiO2/perovskite/Spiro-OMeTAD/Au | CH3NH3PbI:N2200 | 22.27 | 1.10 | 0.77 | 19.07 | 2018 | [189] |
FTO/c-TiO2/perovskite/Spiro-OMeTAD/Au | CH3NH3PbI:PMMA | 21.71 | 1.11 | 0.76 | 18.40 | 2018 | [189] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Chen, W.; Chen, G.; Liu, L.; He, Z.; Liu, R. The Impact of Hybrid Compositional Film/Structure on Organic–Inorganic Perovskite Solar Cells. Nanomaterials 2018, 8, 356. https://doi.org/10.3390/nano8060356
Wu Y, Chen W, Chen G, Liu L, He Z, Liu R. The Impact of Hybrid Compositional Film/Structure on Organic–Inorganic Perovskite Solar Cells. Nanomaterials. 2018; 8(6):356. https://doi.org/10.3390/nano8060356
Chicago/Turabian StyleWu, Yinghui, Wei Chen, Guo Chen, Liyu Liu, Zhubing He, and Ruchuan Liu. 2018. "The Impact of Hybrid Compositional Film/Structure on Organic–Inorganic Perovskite Solar Cells" Nanomaterials 8, no. 6: 356. https://doi.org/10.3390/nano8060356
APA StyleWu, Y., Chen, W., Chen, G., Liu, L., He, Z., & Liu, R. (2018). The Impact of Hybrid Compositional Film/Structure on Organic–Inorganic Perovskite Solar Cells. Nanomaterials, 8(6), 356. https://doi.org/10.3390/nano8060356