Electronic Transport Mechanism for Schottky Diodes Formed by Au/HVPE a-Plane GaN Templates Grown via In Situ GaN Nanodot Formation
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tang, F.; Zhu, T.; Oehler, F.; Fu, W.Y.; Griffiths, J.T.; Massabuau, F.C.-P.; Kappers, M.J.; Martin, T.L.; Bagot, P.A.; Moody, M.P. Indium clustering in a-plane InGaN quantum wells as evidenced by atom probe tomography. Appl. Phys. Lett. 2015, 106, 072104. [Google Scholar] [CrossRef]
- Jang, S.; Jung, S.; Park, J.; Kim, S.; Baik, K.H. Terahertz dielectric response of nonpolar a-plane GaN films. ECS Trans. 2017, 77, 127–131. [Google Scholar] [CrossRef]
- Sugiyama, T.; Honda, Y.; Yamaguchi, M.; Amano, H.; Isobe, Y.; Iwaya, M.; Takeuchi, T.; Kamiyama, S.; Akasaki, I.; Imade, M. Small current collapse in AlGaN/GaN HFETs on a-plane GaN self-standing substrate. Phys. Status Solidi (c) 2012, 9, 875–878. [Google Scholar] [CrossRef]
- Isobe, Y.; Ikki, H.; Sakakibara, T.; Iwaya, M.; Takeuchi, T.; Kamiyama, S.; Akasaki, I.; Sugiyama, T.; Amano, H.; Imade, M. Nonpolar a-plane AlGaN/GaN heterostructure field-effect transistors grown on freestanding GaN substrate. Appl. Phys. Express 2011, 4, 064102. [Google Scholar] [CrossRef]
- Matocha, K.; Tilak, V.; Dunne, G. Comparison of metal-oxide-semiconductor capacitors on c-and m-plane gallium nitride. Appl. Phys. lett. 2007, 90, 123511. [Google Scholar] [CrossRef]
- Wang, Y.-L.; Ren, F.; Lim, W.; Pearton, S.; Baik, K.H.; Hwang, S.-M.; Seo, Y.G.; Jang, S. Hydrogen sensing characteristics of non-polar a-plane GaN schottky diodes. Curr. Appl. Phys. 2010, 10, 1029–1032. [Google Scholar] [CrossRef]
- Rudziński, M.; Kudrawiec, R.; Patriarche, G.; Kucharski, R.; Caban, P.; Strupiński, W. Simultaneous growth of GaN/AlGaN quantum wells on c-, a-, m-, and (20.1)-plane GaN bulk substrates obtained by the ammonothermal method: Structural studies. J. Cryst. Growth 2015, 414, 87–93. [Google Scholar] [CrossRef]
- Zhang, J.; Tian, W.; Wu, F.; Wan, Q.; Wang, Z.; Zhang, J.; Li, Y.; Dai, J.; Fang, Y.; Wu, Z. The effects of substrate nitridation on the growth of nonpolar a-plane GaN on r-plane sapphire by metalorganic chemical vapor deposition. Appl. Surf. Sci. 2014, 307, 525–532. [Google Scholar] [CrossRef]
- Ryu, S.R.; Ram, S.G.; Kwon, Y.H.; Yang, W.C.; Kim, S.H.; Woo, Y.D.; Shin, S.H.; Kang, T.W. HVPE growth of self-aligned gan nanorods on c-plane, a-plane, r-plane, and m-plane sapphire wafers. J. Mater. Sci. 2015, 50, 6260–6267. [Google Scholar] [CrossRef]
- Moldawer, A.; Bhattacharyya, A.; Zhou, L.; Smith, D.J.; Moustakas, T.D. Characterization of a-plane GaN templates grown by hvpe and high efficiency deep uv emitting AlGaN/AlN MQWs grown by MBE on such templates. Phys. Status Solidi (c) 2014, 11, 585–589. [Google Scholar] [CrossRef]
- Lee, M.; Mikulik, D.; Yang, M.; Park, S. Nearly perfect GaN crystal via pit-assisted growth by HVPE. CrystEngComm 2017, 19, 2036–2041. [Google Scholar] [CrossRef]
- Amilusik, M.; Sochacki, T.; Lucznik, B.; Fijalkowski, M.; Iwinska, M.; Weyher, J.; Grzanka, E.; Krupczynska, P.; Khachapuridze, A.; Grzegory, I. Homoepitaxial HVPE GaN growth on non-and semi-polar seeds. J. Cryst. Growth 2015, 403, 48–54. [Google Scholar] [CrossRef]
- Kong, B.H.; Sun, Q.; Han, J.; Lee, I.-H.; Cho, H.K. Classification of stacking faults and dislocations observed in nonpolar a-plane GaN epilayers using transmission electron microscopy. Appl. Surf. Sci. 2012, 258, 2522–2528. [Google Scholar] [CrossRef]
- Paskova, T.; Kroeger, R.; Paskov, P.; Figge, S.; Hommel, D.; Monemar, B.; Haskell, B.; Fini, P.; Speck, J.; Nakamura, S. Microscopic emission properties of nonpolar α-plane GaN grown by HVPE. In Gallium Nitride Materials and Devices; International Society for Optics and Photonics: Bellingham, WA, USA, 2006; p. 612106. [Google Scholar]
- Wu, Y.-H.; Lee, C.-H.; Chu, C.-M.; Yeh, Y.-H.; Chen, C.-L.; Lee, W.-I. A simple growth method to produce a-plane GaN thick films by hydride vapor phase epitaxy. Jpn. J. Appl. Phys. 2013, 52, 08JB08. [Google Scholar] [CrossRef]
- Lee, M.; Mikulik, D.; Park, S. Thick GaN growth via gan nanodot formation by HVPE. CrystEngComm 2017, 19, 930–935. [Google Scholar] [CrossRef]
- Phark, S.-H.; Kim, H.; Song, K.M.; Kang, P.G.; Shin, H.S.; Kim, D.-W. Current transport in Pt schottky contacts to a-plane n-type GaN. J. Phys. D Appl. Phys. 2010, 43, 165102. [Google Scholar] [CrossRef]
- Kim, H.; Lee, S.-N.; Park, Y.; Kwak, J.S.; Seong, T.-Y. Metallization contacts to nonpolar a-plane n-type GaN. Appl. Phys. Lett. 2008, 93, 032105. [Google Scholar] [CrossRef]
- Schwartzkopf, M.; Buffet, A.; Körstgens, V.; Metwalli, E.; Schlage, K.; Benecke, G.; Perlich, J.; Rawolle, M.; Rothkirch, A.; Heidmann, B. From atoms to layers: In situ gold cluster growth kinetics during sputter deposition. Nanoscale 2013, 5, 5053–5062. [Google Scholar] [CrossRef] [PubMed]
- Imer, B.M.; Wu, F.; DenBaars, S.P.; Speck, J.S. Improved quality (11 2¯ 0) a-plane GaN with sidewall lateral epitaxial overgrowth. Appl. Phys. Lett. 2006, 88, 061908. [Google Scholar] [CrossRef]
- Moram, M.; Johnston, C.; Kappers, M.; Humphreys, C. Measuring dislocation densities in nonpolar a-plane GaN films using atomic force microscopy. J. Phys. D Appl. Phys. 2010, 43, 055303. [Google Scholar] [CrossRef]
- Taşçıoğlu, İ.; Aydemir, U.; Altındal, Ş.; Kınacı, B.; Özçelik, S. Analysis of the forward and reverse bias iv characteristics on Au/PVA: Zn/n-Si schottky barrier diodes in the wide temperature range. J. Appl. Phys. 2011, 109, 054502. [Google Scholar] [CrossRef]
- Kumar, A.; Arafin, S.; Amann, M.C.; Singh, R. Temperature dependence of electrical characteristics of Pt/GaN schottky diode fabricated by UHV e-beam evaporation. Nanoscale Res. Lett. 2013, 8, 481. [Google Scholar] [CrossRef] [PubMed]
- Peta, K.R.; Kim, M.D. Leakage current transport mechanism under reverse bias in Au/Ni/GaN schottky barrier diode. Superlattices Microstruct. 2017, 113, 678–683. [Google Scholar] [CrossRef]
- Iucolano, F.; Roccaforte, F.; Giannazzo, F.; Raineri, V. Barrier inhomogeneity and electrical properties of Pt/GaN schottky contacts. J. Appl. Phys. 2007, 102, 113701. [Google Scholar] [CrossRef]
- Rajpalke, M.K.; Bhat, T.N.; Roul, B.; Kumar, M.; Krupanidhi, S. Current transport in nonpolar a-plane InN/GaN heterostructures schottky junction. J. Appl. Phys. 2012, 112, 023706. [Google Scholar] [CrossRef]
- Song, Y.; Van Meirhaeghe, R.; Laflere, W.; Cardon, F. On the difference in apparent barrier height as obtained from capacitance-voltage and current-voltage-temperature measurements on Al/p-InP schottky barriers. Solid-State Electron. 1986, 29, 633–638. [Google Scholar] [CrossRef]
- Kwietniewski, N.; Sochacki, M.; Szmidt, J.; Guziewicz, M.; Kaminska, E.; Piotrowska, A. Influence of surface cleaning effects on properties of schottky diodes on 4H–SiC. Appl. Surf. Sci. 2008, 254, 8106–8110. [Google Scholar] [CrossRef]
- Kim, H.; Phark, S.H.; Song, K.M.; Kim, D.W. Electrical characterization of pt schottky contacts to a-plane n-type GaN. In AIP Conference Proceedings; AIP: Melville, NY, USA, 2011; pp. 923–924. [Google Scholar]
- Yu, L.; Liu, Q.; Xing, Q.; Qiao, D.; Lau, S.; Redwing, J. The role of the tunneling component in the current–voltage characteristics of metal-GaN schottky diodes. J. Appl. Phys. 1998, 84, 2099–2104. [Google Scholar] [CrossRef]
- Jang, J.-S.; Kim, D.; Seong, T.-Y. Schottky barrier characteristics of Pt contacts to n-type InGaN. J. Appl. Phys. 2006, 99, 073704. [Google Scholar] [CrossRef]
- Zhi, T.; Tao, T.; Liu, B.; Li, Y.; Zhuang, Z.; Zhang, G.; Xie, Z.; Zhang, R.; Zheng, Y. Asymmetric tunneling model of forward leakage current in GaN/InGaN light emitting diodes. AIP Adv. 2015, 5, 087151. [Google Scholar] [CrossRef] [Green Version]
- Sze, S. Physics of Semiconductors Devices; John Wiley & Son: Hoboken, NJ, USA, 2006. [Google Scholar]
- Faraz, S.; Willander, M.; Wahab, Q. Interface state density distribution in Au/n-ZnO nanorods schottky diodes. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2012; p. 012006. [Google Scholar]
- Padovani, F.; Stratton, R. Field and thermionic-field emission in schottky barriers. Solid-State Electron. 1966, 9, 695–707. [Google Scholar] [CrossRef]
- Hacke, P.; Detchprohm, T.; Hiramatsu, K.; Sawaki, N. Schottky barrier on n-type GaN grown by hydride vapor phase epitaxy. Appl. Phys. Lett. 1993, 63, 2676–2678. [Google Scholar] [CrossRef]
- Miller, E.; Yu, E.; Waltereit, P.; Speck, J. Analysis of reverse-bias leakage current mechanisms in GaN grown by molecular-beam epitaxy. Appl. Phys. Lett. 2004, 84, 535–537. [Google Scholar] [CrossRef]
- Diale, M.; Auret, F.D. Effects of chemical treatment on barrier height and ideality factors of Au/GaN schottky diodes. Phys. B Condens. Matter 2009, 404, 4415–4418. [Google Scholar] [CrossRef]
- Janardhanam, V.; Jyothi, I.; Lee, J.-H.; Kim, J.-Y.; Reddy, V.R.; Choi, C.-J. Electrical properties and carrier transport mechanism of Au/n-GaN schottky contact modified using a copper pthalocyanine (CuPc) interlayer. Mater. Trans. 2014, 55, 758–762. [Google Scholar] [CrossRef]
- Garg, M.; Kumar, A.; Nagarajan, S.; Sopanen, M.; Singh, R. Investigation of significantly high barrier height in Cu/GaN schottky diode. AIP Adv. 2016, 6, 015206. [Google Scholar] [CrossRef]
- Fang, Z.-Q.; Look, D.C.; Jasinski, J.; Benamara, M.; Liliental-Weber, Z.; Molnar, R.J. Evolution of deep centers in GaN grown by hydride vapor phase epitaxy. Appl. Phys. Lett. 2001, 78, 332–334. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, K.; Yoshikawa, A.; Sandhu, A. Wide Bandgap Semiconductors; Springer: Berlin/Heidelberg, Germany, 2007; p. 239. [Google Scholar]
- Cho, H.; Kim, C.; Hong, C.-H. Electron capture behaviors of deep level traps in unintentionally doped and intentionally doped n-type GaN. J. Appl. Phys. 2003, 94, 1485–1489. [Google Scholar] [CrossRef]
- Look, D.C.; Fang, Z.-Q.; Claflin, B. Identification of donors, acceptors, and traps in bulk-like HVPE GaN. J. Cryst. Growth 2005, 281, 143–150. [Google Scholar] [CrossRef]
- Armstrong, A.; Arehart, A.; Green, D.; Mishra, U.; Speck, J.; Ringel, S. Impact of deep levels on the electrical conductivity and luminescence of gallium nitride codoped with carbon and silicon. J. Appl. Phys. 2005, 98, 053704. [Google Scholar] [CrossRef]
- Pak, S.W.; Lee, D.U.; Kim, E.K.; Park, S.H.; Joo, K.; Yoon, E. Defect states of a-plane GaN grown on r-plane sapphire by controlled integration of silica nano-spheres. J. Cryst. Growth 2013, 370, 78–81. [Google Scholar] [CrossRef]
- Song, H.; Kim, E.K.; Baik, K.H.; Hwang, S.-M.; Jang, Y.W.; Lee, J.Y. Characterization of deep levels in a-plane GaN epi-layers grown using various growth techniques. J. Cryst. Growth 2012, 340, 23–27. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, M.; Vu, T.K.O.; Lee, K.S.; Kim, E.K.; Park, S. Electronic Transport Mechanism for Schottky Diodes Formed by Au/HVPE a-Plane GaN Templates Grown via In Situ GaN Nanodot Formation. Nanomaterials 2018, 8, 397. https://doi.org/10.3390/nano8060397
Lee M, Vu TKO, Lee KS, Kim EK, Park S. Electronic Transport Mechanism for Schottky Diodes Formed by Au/HVPE a-Plane GaN Templates Grown via In Situ GaN Nanodot Formation. Nanomaterials. 2018; 8(6):397. https://doi.org/10.3390/nano8060397
Chicago/Turabian StyleLee, Moonsang, Thi Kim Oanh Vu, Kyoung Su Lee, Eun Kyu Kim, and Sungsoo Park. 2018. "Electronic Transport Mechanism for Schottky Diodes Formed by Au/HVPE a-Plane GaN Templates Grown via In Situ GaN Nanodot Formation" Nanomaterials 8, no. 6: 397. https://doi.org/10.3390/nano8060397
APA StyleLee, M., Vu, T. K. O., Lee, K. S., Kim, E. K., & Park, S. (2018). Electronic Transport Mechanism for Schottky Diodes Formed by Au/HVPE a-Plane GaN Templates Grown via In Situ GaN Nanodot Formation. Nanomaterials, 8(6), 397. https://doi.org/10.3390/nano8060397