Piezoelectric Response of Aligned Electrospun Polyvinylidene Fluoride/Carbon Nanotube Nanofibrous Membranes
Abstract
:1. Introduction
2. Results and Discussion
2.1. Morphology of Electrospun Nanofibrous Membranes
2.2. Crystallinity of Electrospun Nanofiber Membranes
2.3. Piezoelectric Properties of Electrospun Nanofibrous Membranes
2.4. Mechanical Properties of Electrospun Nanofibrous Membranes
2.5. Piezoelectric Responses of Electrospun Nanofibrous Membranes
2.5.1. Piezoelectric Responses under Dynamic Compression
2.5.2. Piezoelectric Responses under Dynamic Tension
2.5.3. Piezoelectric Responses under Dynamic Bending
3. Materials and Methods
3.1. Materials
3.2. Preparation of Aligned Electrospun PVDF/CNT Nanofibrous Membranes
3.3. Characterization
4. Conclusions
- The randomly oriented electrospun PVDF, aligned electrospun PVDF, and aligned PVDF/CNT nanofibrous membranes were successfully prepared by using fixed or rotating collectors.
- By adjusting the ES parameters, the β content and the d33 value of the aligned electrospun PVDF are increased relative to those of randomly oriented electrospun PVDF, because the rotating drum provided additional mechanical poling to the aligned electrospun PVDF. The aligned PVDF/CNT showed even greater enhancements in β phase content and d33 value.
- The tensile sensitivities of the PVDF samples were much higher than the compressive sensitivities because the tension was applied vertical to the polarization direction of the PVDF membranes.
- When the PVDF samples were subjected to bending, the output voltage did not increase linearly with increased bending angles because of the complicated forces involved. However, the ease of achieving high electric outputs indicates that bending forces are promising sources with high sensing sensitivity and resolution.
Author Contributions
Funding
Conflicts of Interest
References
- Nandi, A.K.; Mandelkern, L. The influence of chain structure on the equilibrium melting temperature of poly(vinylidene fluoride). J. Polym. Sci. Part B: Polym. Phys. 1991, 29, 1287–1297. [Google Scholar] [CrossRef]
- Cross, L.E. Ferroelectric materials for electromechanical transducer applications. Mater. Chem. Phys. 1996, 43, 108–115. [Google Scholar] [CrossRef]
- Humphreys, J.; Lewis, E.L.V.; Ward, I.M.; Nix, E.L.; McGrath, J.C. A study of the mechanical anisotropy of high-draw, low-draw, and voided PVDF. J. Polym. Sci. Part B: Polym. Phys 1998, 26, 141–158. [Google Scholar] [CrossRef]
- Ke, K.; Pötschke, P.; Jehnichen, D.; Fischer, D.; Voit, B. Achieving β-phase poly(vinylidene fluoride) from melt cooling: Effect of surface functionalized carbon nanotubes. Polymer 2014, 55, 611–619. [Google Scholar] [CrossRef]
- Ouyang, Z.W.; Chen, E.C.; Wu, T.M. Enhanced piezoelectric and mechanical properties of electroactive polyvinylidene fluoride/iron oxide composites. Mater. Chem. Phys. 2015, 149–150, 172–178. [Google Scholar] [CrossRef]
- Fakhri, P.; Mahmood, H.; Jaleh, B.; Pegoretti, A. Improved electroactive phase content and dielectric properties of flexible PVDF nanocomposite films filled with Au- and Cu-doped graphene oxide hybrid nanofiller. Synthetic Met. 2016, 220, 653–660. [Google Scholar] [CrossRef] [Green Version]
- Merlini, C.; Barra, G.; Medeiros Araujo, T.; Pegoretti, A. Electrically pressure sensitive poly(vinylidene fluoride)/polypyrrole electrospun mats. RSC Adv. 2014, 4, 15749–15758. [Google Scholar] [CrossRef]
- Merlini, C.; Barra, G.M.D.O.; Araujo, T.M.; Pegoretti, A. The effect of compressive stress on the electrically resistivity of poly(vinylidene fluoride)/polypyrrole blends. Synthetic Met. 2014, 196, 186–192. [Google Scholar] [CrossRef]
- Merlini, C.; Pegoretti, A.; Araujo, T.M.; Ramoa, S.D.A.S.; Schreiner, W.H.; Barra, G.M.D.O. Electrospinning of doped and undoped-polyaniline/poly(vinylidene fluoride) blends. Synthetic Met. 2016, 213, 34–41. [Google Scholar] [CrossRef] [Green Version]
- Levi, N.; Czerw, R.; Xing, S.; Iyer, P.; Carroll, D.L. Properties of Polyvinylidene Difluoride-Carbon Nanotube Blends. Nano Lett. 2004, 4, 1267–1271. [Google Scholar] [CrossRef]
- Ahn, Y.; Lim, J.Y.; Hong, S.M.; Lee, J.; Ha, J.; Choi, H.J.; Seo, Y. Enhanced Piezoelectric Properties of Electrospun Poly(vinylidene fluoride)/Multiwalled Carbon Nanotube Composites Due to High β-Phase Formation in Poly(vinylidene fluoride). J. Phys. Chem. C. 2013, 117, 11791–11799. [Google Scholar] [CrossRef]
- Huang, S.; Yee, W.A.; Tjiu, W.C.; Liu, Y.L.; Kotaki, M.; Boey, Y.C.F.; Ma, J.; Liu, T.; Lu, X. Electrospinning of Polyvinylidene Difluoride with Carbon Nanotubes: Synergistic Effects of Extensional Force and Interfacial Interaction on Crystalline Structures. Langmuir 2008, 24, 13621–13626. [Google Scholar] [CrossRef] [PubMed]
- Mago, G.; Kalyon, D.M.; Fisher, F.T. Membranes of Polyvinylidene Fluoride and PVDF Nanocomposites with Carbon Nanotubes via Immersion Precipitation. J. Nanomater. 2008, 759825. [Google Scholar] [CrossRef]
- Huang, X.; Jiang, P.; Kim, C.; Liu, F.; Yin, Y. Influence of aspect ratio of carbon nanotubes on crystalline phases and dielectric properties of poly(vinylidene fluoride). Eur. Polym. J. 2009, 45, 377–386. [Google Scholar] [CrossRef]
- Layek, R.K.; Samanta, S.; Chatterjee, D.P.; Nandi, A.K. Physical and mechanical properties of poly(methyl methacrylate)-functionalized graphene/poly(vinylidine fluoride) nanocomposites: Piezoelectric β polymorph formation. Polymer 2010, 51, 5846–5856. [Google Scholar] [CrossRef]
- Wang, J.; Wu, J.; Xu, W.; Zhang, Q.; Fu, Q. Preparation of poly(vinylidene fluoride) films with excellent electric property, improved dielectric property and dominant polar crystalline forms by adding a quaternary phosphorus salt functionalized graphene. Compos. Sci. Technol. 2014, 91, 1–7. [Google Scholar] [CrossRef]
- Kim, J.; Loh, K.J.; Lynch, J.P. Piezoelectric polymeric thin films tuned by carbon nanotube fillers. In Proceedings of SPIE: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2008; International Society for Optics and Photonics: Bellingham, WA, USA, 2008; Volume 6932, p. 693232. [Google Scholar]
- Wu, C.M.; Chou, M.H. Polymorphism, piezoelectricity and sound absorption of electrospun PVDF membranes with and without carbon nanotubes. Compos. Sci. Technol. 2016, 127, 127–133. [Google Scholar] [CrossRef]
- Baji, A.; Mai, Y.W.; Wong, S.C.; Abtahi, M.; Chen, P. Electrospinning of polymer nanofibers: Effects on oriented morphology, structures and tensile properties. Compos. Sci. Technol. 2010, 70, 703–718. [Google Scholar] [CrossRef]
- Wang, L.Y.; Ma, S.Y.; Wu, D.Z. Electrospinning of aligned PVDF nanofibers with piezoelectricity and its application in pressure sensors. Opt. Precis. Eng. 2016, 24, 2498–2504. [Google Scholar] [CrossRef]
- Wang, Y.R.; Zheng, J.M.; Ren, G.Y.; Zhang, P.H.; Xu, C. A flexible piezoelectric force sensor based on PVDF fabrics. Smart Mater. Struc. 2011, 20, 045009. [Google Scholar] [CrossRef]
- Liu, Z.H.; Pan, C.T.; Lin, L.W.; Huang, J.C.; Ou, Z.Y. Direct-write PVDF nonwoven fiber fabric energy harvesters via the hollow cylindrical near-field electrospinning process. Smart Mater. Struc. 2014, 23, 025003. [Google Scholar] [CrossRef]
- Yu, L.; Wang, S.; Li, Y.; Chen, D.; Liang, C.; Lei, T.; Sun, D.; Zhao, Y.; Wang, L. Piezoelectric performance of aligned PVDF nanofibers fabricated by electrospinning and mechanical spinning. In Proceedings of the 13th IEEE International Conference on Nanotechnology, Beijing, China, 5–8 August 2013; pp. 962–966. [Google Scholar]
- Issa, A.A.; Al-Maadeed, M.A.; Luyt, A.S.; Ponnamma, D.; Hassan, M.K. Physico-mechanical, dielectric, and piezoelectricpProperties of PVDF electrospun mats containing silver nanoparticles. J. Carbon Res. 2017, 3, 30. [Google Scholar] [CrossRef]
- Bowen, C.R.; Kim, H.A.; Weaver, P.M.; Dunn, S. Piezoelectric and ferroelectric materials and structures for energy harvesting applications. Energy Environ. Sci. 2014, 7, 25–44. [Google Scholar] [CrossRef] [Green Version]
- Mandal, D.; Yoon, S.; Kim, K.J. Origin of Piezoelectricity in an Electrospun Poly(vinylidene fluoride-trifluoroethylene) Nanofiber Web-Based Nanogenerator and Nano-Pressure Sensor. Macromol. Rapid Commun. 2011, 32, 831–837. [Google Scholar] [CrossRef] [PubMed]
Sample | F(β) (%) | d33 (pC/N) |
---|---|---|
Randomly oriented electrospun PVDF | 79 ± 3 | 16.8 ± 1.4 |
Aligned electrospun PVDF | 88 ± 1 | 27.4 ± 1.5 |
Aligned electrospun PVDF/CNT | 89 ± 2 | 31.3 ± 2.1 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, C.-M.; Chou, M.-H.; Zeng, W.-Y. Piezoelectric Response of Aligned Electrospun Polyvinylidene Fluoride/Carbon Nanotube Nanofibrous Membranes. Nanomaterials 2018, 8, 420. https://doi.org/10.3390/nano8060420
Wu C-M, Chou M-H, Zeng W-Y. Piezoelectric Response of Aligned Electrospun Polyvinylidene Fluoride/Carbon Nanotube Nanofibrous Membranes. Nanomaterials. 2018; 8(6):420. https://doi.org/10.3390/nano8060420
Chicago/Turabian StyleWu, Chang-Mou, Min-Hui Chou, and Wun-Yuan Zeng. 2018. "Piezoelectric Response of Aligned Electrospun Polyvinylidene Fluoride/Carbon Nanotube Nanofibrous Membranes" Nanomaterials 8, no. 6: 420. https://doi.org/10.3390/nano8060420
APA StyleWu, C. -M., Chou, M. -H., & Zeng, W. -Y. (2018). Piezoelectric Response of Aligned Electrospun Polyvinylidene Fluoride/Carbon Nanotube Nanofibrous Membranes. Nanomaterials, 8(6), 420. https://doi.org/10.3390/nano8060420