Porous α-Fe2O3@C Nanowire Arrays as Flexible Supercapacitors Electrode Materials with Excellent Electrochemical Performances
Abstract
:1. Introduction
2. Experimental Details
2.1. Preparation of α-Fe2O3 Samples
2.2. Preparation of α-Fe2O3@C Composite
2.3. Preparation of MnO2 Nanosheets
2.4. Characterizations
2.5. Electrochemical Measurement
2.6. Assembly of α-Fe2O3@C Nanowire Arrays//MnO2 Nanosheets ASCs
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chi, K.; Zhang, Z.Y.; Lv, Q.Y.; Xie, C.Y.; Xiao, J.; Xiao, F.; Wang, S. Well-ordered Oxygen-deficient CoMoO4 and Fe2O3 nanoplate arrays on 3D graphene foam: Towards flexible asymmetric supercapacitor with enhanced capacitive properties. ACS Appl. Mater. Interfaces 2017, 9, 6044–6053. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Yao, S.Y. Flexible electrode materials based on WO3 nanotube bundles for high performance energy storage devices. Nano Energy 2017, 42, 143–150. [Google Scholar] [CrossRef]
- He, W.D.; Wang, C.G.; Li, H.Q.; Deng, X.L.; Xu, X.J.; Zhai, T.Y. Ultrathin and porous Ni3S2/CoNi2S4 3D-network structure for superhigh energy density asymmetric supercapacitors. Adv. Energy Mater. 2017, 7, 1700983. [Google Scholar] [CrossRef]
- Wu, X.; Han, Z.C.; Zheng, X.; Yao, S.Y.; Yang, X.; Zhai, T.Y. Core-shell structured Co3O4@NiCo2O4 electrodes grown on flexible carbon fibers with superior electrochemical properties. Nano Energy 2017, 31, 410–417. [Google Scholar] [CrossRef]
- Wang, C.G.; Zhou, E.; He, W.D.; Deng, X.L.; Huang, J.Z.; Ding, M.; Wei, X.Q.; Liu, X.J.; Xu, X.J. NiCo2O4-based supercapacitor nanomaterials. Nanomaterials 2017, 7, 41. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Hu, F.; Yao, S.Y.; Sun, Z.P.; Wu, X. Hierarchical NiCo2O4 nanowalls composed of ultrathin nanosheets as electrode materials for supercapacitor and Li ion battery applications. Mater. Res. Bullet. 2017, 93, 303–309. [Google Scholar] [CrossRef]
- Xiao, X.; Ding, T.P.; Yuan, L.Y.; Shen, Y.Q.; Zhong, Q.Z.; Zhang, X.H.; Cao, Y.Z.; Hu, B.; Zhai, T.; Gong, L.; et al. WO3−x/MoO3−x core/shell nanowires on carbon fabric as an anode for all-solid-state asymmetric supercapacitors. Adv. Energy Mater. 2012, 2, 1328–1332. [Google Scholar] [CrossRef]
- Wang, X.F.; Lu, X.H.; Liu, B.; Chen, D.; Tong, Y.X.; Shen, G.Z. Flexible energy-storage devices: Design consideration and recent progress. Adv. Mater. 2014, 26, 4763–4782. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Hu, F.; Yan, Q.Y.; Wu, X. Investigation on electrochemical behaviors of NiCo2O4 battery-type supercapacitor electrodes: The role of aqueous electrolyte. Inorg. Chem. Front. 2017, 4, 1642–1648. [Google Scholar] [CrossRef]
- Lu, X.H.; Yu, M.H.; Wang, G.M.; Zhai., T.; Xie, S.L.; Ling, Y.C.; Tong, Y.X.; Li, Y. H-TiO2@MnO2//H-TiO2@C core–shell nanowires for high performance and flexible asymmetric supercapacitors. Adv. Mater. 2013, 25, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Hu, L.F.; Yan, Y.; Che, R.C.; Chen, M.; Wu, L.M. One-step fabrication of ultrathin porous nickel hydroxide-manganese dioxide hybrid nanosheets for supercapacitor electrodes with excellent capacitive performance. Adv. Energy Mater. 2013, 3, 1636–1646. [Google Scholar] [CrossRef]
- Liu, C.; Jiang, W.; Hu, F.; Wu, X.; Xue, D.F. Mesoporous NiCo2O4 nanoneedle array as supercapacitor electrode materials with excellent cyclic stabilities. Inorg. Chem. Front. 2018, 5, 835–843. [Google Scholar] [CrossRef]
- Xiong, S.L.; Yuan, C.Z.; Zhang, X.G.; Xi, B.J.; Qian, Y.T. Controllable synthesis of mesoporous Co3O4 nanostructures with tunable morphology for application in supercapacitors. Chemistry 2009, 15, 5320–5326. [Google Scholar] [CrossRef] [PubMed]
- Xing, L.; Dong, Y.D.; Hu, F.; Wu, X.; Ahmad., U. Co3O4 nanowire@NiO nanosheet arrays for high performance asymmetric supercapacitors. Dalton Trans. 2018, 47, 5687–5694. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Wu, X. NiCo2S4 nanotube arrays grown on flexible carbon fibers as battery-type electrodes for asymmetric supercapacitors. Mater. Res. Bullet. 2018, 103, 55–62. [Google Scholar] [CrossRef]
- Wang, D.W.; Wang, Q.H.; Wang, T.M. Controlled synthesis of mesoporous hematite nanostructures and their application as electrochemical capacitor electrodes. Nanotechnology 2011, 22, 135604. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.P.; Hu, F.; Ahmad, U.; Wu, X. NiCo2O4 nanowires based flexible electrode materials for asymmetric supercapacitors. New J. Chem. 2018, 42, 7399–7406. [Google Scholar] [CrossRef]
- Han, S.; Hu, L.; Liang, Z.; Wageh, S.; Al-Ghamdi, A.A.; Chen, Y.; Fang, X. One-step hydrothermal synthesis of 2D hexagonal nanoplates of α-Fe2O3/graphene composites with enhanced photocatalytic activity. Adv. Funct. Mater. 2014, 24, 5719–5727. [Google Scholar] [CrossRef]
- Zhang, S.W.; Yin, B.S.; Jiang, H.; Qu, F.Y.; Umar, A.; Wu, X. Hybrid ZnO/ZnS nanoforests as the electrode materials for high performance supercapacitor application. Dalton Trans. 2015, 44, 2509–2514. [Google Scholar] [CrossRef] [PubMed]
- Tian, W.; Wang, X.; Zhi, C.; Zhai, T.; Liu, D.; Zhang, C.; Golberg, D.; Bando, Y. Ni(OH)2 Nanosheet@Fe2O3 nanowire hybrid composite arrays for high-performance supercapacitor electrodes. Nano Energy 2013, 2, 754–763. [Google Scholar] [CrossRef]
- Zheng, X.; Han, Z.C.; Yao, S.Y.; Xiao, H.H.; Chai, F.; Qu, F.Y.; Wu, X. Spinous α-Fe2O3 hierarchical nanostructures anchored on Ni foam for supercapacitors electrodes and visible light driven photocatalysts. Dalton Trans. 2016, 45, 7094–7103. [Google Scholar] [CrossRef] [PubMed]
- Fu, C.; Mahadevegowda, A.; Grant, P.S. Production of hollow and porous Fe2O3 from industrial mill scale and its potential for large-scale electrochemical energy storage applications. J. Mater. Chem. A 2016, 4, 2597–2604. [Google Scholar] [CrossRef]
- Jiao, Y.; Liu, Y.; Yin, B.S.; Zhang, S.W.; Qu, F.Y.; Wu, X. High rate supercapacitor electrodes based α-Fe2O3 nanosheet networks anchored on a nickel foam. Sci. Adv. Mater. 2015, 7, 1395–1399. [Google Scholar] [CrossRef]
- Liu, L.; Lang, J.; Zhang, P.; Hu, B.; Yan, X. Facile synthesis of Fe2O3 Nano-Dots@Nitrogen-doped graphene for supercapacitor electrode with ultralong cycle life in KOH electrolyte. ACS Appl. Mater. Interfaces 2016, 8, 9335–9344. [Google Scholar] [CrossRef] [PubMed]
- Unal, O.; Khodadust, R.; Durmusoglu, E.G.; Erdem, E.; Yagci, M.B.; Ow-Yang, C.W.; Yurtsever, E.; Acar, H.Y. Discovery of an exceptionally strong luminescence of polyethyleneimine-superparamagnetic iron oxide nanoparticles. Macromol. Chem. Phys. 2018, 219, 1700563. [Google Scholar] [CrossRef]
- Sun, S.; Zhai, T.; Liang, C.L.; Savilov, S.V.; Xia, H. Boosted crystalline/amorphous Fe2O3-δ core/shell heterostructure for flexible solid-state pseudocapacitors in large scale. Nano Energy 2018, 45, 390–397. [Google Scholar] [CrossRef]
- Jiao, Y.; Liu, Y.; Yin, B.S.; Zhang, S.W.; Qu, F.Y.; Wu, X. Hybrid α-Fe2O3@NiO heterostructures for flexible and high performance supercapacitor electrodes and high efficient visible light driven photocatalysts. Nano Energy 2014, 10, 90–98. [Google Scholar] [CrossRef]
- Liu, J.; Zhou, W.; Lai, L.; Yang, H.; Hua Lim, S.; Zhen, Y.; Yu, T.; Shen, Z.; Lin, J. Three dimensionals α-Fe2O3/Polypyrrole (Ppy) nanoarray as anode for micro lithium ion batteries. Nano Energy 2013, 2, 726–732. [Google Scholar] [CrossRef]
- Zheng, X.; Han, Z.C.; Chai, F.; Qu, F.Y.; Xia, H.; Wu, X. Flexible heterostructured supercapacitor electrodes based α-Fe2O3 nanosheets with excellent electrochemical performances. Dalton Trans. 2016, 45, 12862–12870. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Hui, K.S.; Hui, K.N.; Xia, Q.X.; Fu, J.J.; Cho, Y.R. Facile Synthesis of NiAl layered double hydroxide nanoplates for high-performance asymmetric supercapacitor. J. Alloys Compd. 2017, 721, 803–812. [Google Scholar] [CrossRef]
- Park, C.Y.; Hwang, J.; Hwang, Y.T.; Song, C.; Ahn, S.; Kim, H.S.; Ahn, H. Intense pulsed white light assisted fabrication of Co-CoOx core-shell nanoflakes on graphite felt for flexible hybrid supercapacitors. Electrochim. Acta 2017, 246, 757–765. [Google Scholar] [CrossRef]
- Lu, X.H.; Zeng, Y.X.; Yu, M.H.; Zhai, T.; Liang, C.L.; Xie, S.L.; Balogun, M.S.; Tong, Y.X. Oxygen-deficient hematite nanorods as high-performance and novel negative electrodes for flexible asymmetric supercapacitors. Adv. Funct. Mater. 2014, 26, 3148–3155. [Google Scholar] [CrossRef] [PubMed]
- Patil, D.S.; Pawar, S.A.; Shin, J.C. Silver decorated PEDOT: PSS wrapped MnO2 nanowires for electrochemical supercapacitor applications. J. Ind. Eng. Chem. 2018, 62, 166–175. [Google Scholar] [CrossRef]
- Jin, W.H.; Cao, G.T.; Sun, J.Y. Hybrid supercapacitor based on MnO2 and columned FeOOH using Li2SO4 electrolyte solution. J. Power Sources 2008, 175, 686–691. [Google Scholar] [CrossRef]
- Cottineau, T.; Toupin, M.; Delahaye, T.; Brousse, T.; Belanger, D. Nanostructured transition metal oxides for aqueous hybrid electrochemical supercapacitors. Appl. Phys. A 2006, 82, 599–606. [Google Scholar] [CrossRef]
- Gund, G.S.; Dubal, D.P.; Chodankar, N.R.; Cho, J.Y.; Gomez-Romero, P.; Park, C.; Lokhande, C.D. Low-cost flexible supercapacitors with high-energy density based on banostructured MnO2 and Fe2O3 thin films directly fabricated onto stainless steel. Sci. Rep. 2015, 5, 12454. [Google Scholar] [CrossRef] [PubMed]
- Guan, C.; Liu, J.L.; Wang, Y.D.; Mao, L.; Fan, Z.X.; Shen, Z.X.; Zhang, H.; Wang, J. Iron oxide-decorated carbon for supercapacitor anodes with ultrahigh energy density and outstanding cycling stability. ACS Nano. 2015, 9, 5198–5207. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.Y.; Xiao, F.; Qian, L.H.; Xiao, J.W.; Wang, S.; Liu, Y.Q. Facile synthesis of 3D MnO2–graphene and Carbon nanotube–graphene composite networks for high-performance, flexible, all-solid-state asymmetric supercapacitors. Adv. Energy Mater. 2014, 4, 1400064. [Google Scholar] [CrossRef]
- Chen, Y.C.; Lin, Y.G.; Hsu, Y.K.; Yen, S.C.K.; Chen, H.; Chen, L.C. Novel iron oxyhydroxide lepidocrocite nanosheet as ultrahigh power density anode material for asymmetric supercapacitors. Small 2014, 10, 3803–3810. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, Y.; Xing, L.; Chen, K.; Wu, X. Porous α-Fe2O3@C Nanowire Arrays as Flexible Supercapacitors Electrode Materials with Excellent Electrochemical Performances. Nanomaterials 2018, 8, 487. https://doi.org/10.3390/nano8070487
Dong Y, Xing L, Chen K, Wu X. Porous α-Fe2O3@C Nanowire Arrays as Flexible Supercapacitors Electrode Materials with Excellent Electrochemical Performances. Nanomaterials. 2018; 8(7):487. https://doi.org/10.3390/nano8070487
Chicago/Turabian StyleDong, Yidi, Lei Xing, Kunfeng Chen, and Xiang Wu. 2018. "Porous α-Fe2O3@C Nanowire Arrays as Flexible Supercapacitors Electrode Materials with Excellent Electrochemical Performances" Nanomaterials 8, no. 7: 487. https://doi.org/10.3390/nano8070487
APA StyleDong, Y., Xing, L., Chen, K., & Wu, X. (2018). Porous α-Fe2O3@C Nanowire Arrays as Flexible Supercapacitors Electrode Materials with Excellent Electrochemical Performances. Nanomaterials, 8(7), 487. https://doi.org/10.3390/nano8070487