Effect of Tb-doped Concentration Variation on the Electrical and Dielectric Properties of CaF2 Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Matsuura, D. Red, green, and blue upconversion luminescence of trivalent-rare-earth ion-doped Y2O3 nanocrystals. Appl. Phys. Lett. 2001, 81, 4526–4528. [Google Scholar] [CrossRef]
- Wei, Z.G.; Sun, L.D.; Liao, C.S.; Yan, C.H. Fluorescence intensity and color purity improvement in nanosized YBO3:Eu. Appl. Phys. Lett. 2002, 80, 1447–1449. [Google Scholar] [CrossRef]
- Barber, D.B.; Pollock, C.R.; Beecroft, L.L.; Ober, C.K. Amplification by optical composites. Opt. Lett. 1997, 22, 1247–1249. [Google Scholar] [CrossRef] [PubMed]
- Lucca, A.; Jacquemet, M.; Druon, F.; Balembois, F.; Georges, P.; Camy, P.; Doualan, J.L.; Moncorgé, R. High-power tunable diode-pumped Yb3+:CaF2 laser. Opt. Lett. 2004, 29, 1879–1881. [Google Scholar] [CrossRef] [PubMed]
- Kawano, K.; Arai, K.; Yamada, H.; Hashimoto, N.; Nakata, R. Application of rare-earth complexes for photovoltaic precursors. Sol. Energ. Mat. Sol. C 1997, 48, 35–41. [Google Scholar] [CrossRef]
- Rothschild, M.; Bloomstein, T.M.; Curtin, J.E.; Downs, D.K.; Fedynyshyn, T.H.; Hardy, D.E.; Kunz, R.R.; Liberman, V.; Sedlacek, J.H.C.; Uttaro, R.S. 157 nm: Deepest deep-ultraviolet yet. J. Vac. Sci. Technol. B 1999, 17, 3262–3266. [Google Scholar] [CrossRef]
- Fujihara, S.; Kadota, Y.; Kimura, T. Role of organic additives in the sol-gel synthesis of porous CaF2 anti-reflective coatings. J. Sol–Gel Sci. Technol 2002, 24, 147–154. [Google Scholar] [CrossRef]
- McKeever, S.W.S.; Brown, M.D.; Abbundi, R.J.; Chan, H.; Mathur, V.K. Characterization of optically active sites in CaF2:Ce, Mn from optical spectra. J. Appl. Phys. 1986, 60, 2505–2510. [Google Scholar] [CrossRef]
- Fukuda, Y. Thermoluminescence in sintered CaF2:Tb. J. Radiat. Res. 2002, 43, S67–S69. [Google Scholar] [CrossRef] [PubMed]
- Pote, S.S.; Joshi, C.P.; Moharil, S.V.; Muthal, P.L.; Dhopte, S.M. Luminescence of Ce3+ in Ca0.65La0.35F2.35 host. J. Lumin. 2010, 130, 666–668. [Google Scholar] [CrossRef]
- Pote, S.S.; Joshi, C.P.; Moharil, S.V.; Muthal, P.L.; Dhopte, S.M. Luminescence in Ca1−xYxF2+x. Physica B 2011, 406, 1308–1311. [Google Scholar] [CrossRef]
- Bensalah, A.; Mortier, M.; Patriarche, G.; Gredin, P.; Vivien, D. Synthesis and optical characterizations of undoped and rare-earth-doped CaF2 nanoparticles. J. Solid State Chem. 2006, 179, 2636–2644. [Google Scholar] [CrossRef]
- Hong, B.C.; Kawano, K. Syntheses of euactivated alkaline earth fluoride MF2(M = Ca, Sr) nanoparticles. Jpn. J. Appl. Phys. 2007, 46, 6319–6323. [Google Scholar] [CrossRef]
- Song, L.; Xue, L. Efficient fluorescence of dissolved CaF2:Tb3+ and CaF2:Ce3+, Tb3+ nanoparticles through surface coating sensitization. Appl. Surf. Sci. 2012, 258, 3497–3501. [Google Scholar] [CrossRef]
- Wang, G.; Peng, Q.; Li, Y. Upconversion luminescence of monodisperse CaF2:Yb3+/Er3+ nanocrystals. J. Am. Chem. Soc. 2009, 131, 14200–14201. [Google Scholar] [CrossRef] [PubMed]
- Zhi, G.L.; Song, J.H.; Mei, B.C.; Zhou, W.B. Synthesis and characterization of Er3+ doped CaF2 nanoparticles. J. Alloy Compd. 2011, 509, 9133–9137. [Google Scholar] [CrossRef]
- Zheleznov, D.S.; Starobor, A.V.; Palashov, O.V. Characterization of the terbium-doped calcium fluoride single crystal. Optical Materials 2015, 46, 526–529. [Google Scholar] [CrossRef]
- Guo, C.; Gao, F.; Liang, L.; Choi, B.C.; Jeong, J.H. Synthesis, characterization and luminescent properties of novel red emitting phosphor Li3Ba2Ln3(MoO4)8:Eu3+(Ln = La, Gd and Y) for white light-emitting diodes. J. Alloy Compd. 2009, 479, 607–612. [Google Scholar] [CrossRef]
- Zhou, L.; Wei, J.; Wu, J.; Gong, F.; Yi, L.; Huang, J. Potential red-emitting phosphor for white LED solid-state lighting. J. Alloy Compd. 2009, 476, 390–392. [Google Scholar] [CrossRef]
- Lin, Z.; Liang, X.; Ou, Y.; Fan, C.; Yuan, S.; Zeng, H.; Chen, G. Full color photoluminescence of Tb3+/Sm3+ codoped oxyfluoride aluminosilicate glasses and glass ceramics for white light emitting diodes. J. Alloy Compd. 2010, 496, L33–L37. [Google Scholar] [CrossRef]
- Liang, X.; Yang, Y.; Zhu, C.; Yuan, S.; Chen, G.; Pring, A.; Xia, F. Luminescence properties of Tb3+–Sm3+ codoped glasses for white light emitting diodes. Appl. Phys. Lett. 2007, 91, 091104. [Google Scholar] [CrossRef]
- Zhao, F.; Gao, S. Pyrolysis of single molecular precursor for monodisperse lanthanide sulfide/oxysulfide nanocrystals. J. Mater. Chem. 2008, 18, 949–953. [Google Scholar] [CrossRef]
- Chen, M.; Kim, J.; Liu, J.P.; Fan, H.; Sun, S. Synthesis of FePt nanocubes and their oriented self-assembly. J. Am. Chem. Soc. 2006, 128, 7132–7133. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.S.; Hao, J.; Wang, Q.S.; Jin, Y.X.; Li, F.F.; Liu, B.; Li, Q.J.; Liu, B.B.; Cui, Q.L. Pressure induced structural transition in CaF2 nanocrystals. Phys. Status Solidi B 2011, 248, 1115–1118. [Google Scholar] [CrossRef]
- Hu, T.; Cui, X.; Wang, J.; Zhong, X.; Chen, Y.; Zhang, J.; Li, X.; Yang, J.; Gao, C. The electrical properties of Tb-doped CaF2 nanoparticles under high pressure. Crystals 2018, 8, 98. [Google Scholar] [CrossRef]
- Wang, J.; Yang, J.; Hu, T.; Chen, X.; Lang, J.; Wu, X.; Zhang, J.; Zhao, H.; Yang, J.; Cui, Q. Structural Phase Transition and Compressibility of CaF2 Nanocrystals under High Pressure. Crystals 2018, 8, 199. [Google Scholar] [CrossRef]
- Wang, Q.L.; Liu, C.L.; Gao, Y.; Ma, Y.Z.; Han, Y.H.; Gao, C.X. Mixed conduction and grain boundary effect in lithium niobate under high pressure. Appl. Phys. Lett. 2015, 106, 132902. [Google Scholar] [CrossRef]
- Ho, C.; Raistrick, I.D.; Huggins, R.A. Application of AC techniques to the study of lithium diffusion in tungsten trioxide thin films. J. Electrochem. Soc. 1980, 127, 343–350. [Google Scholar] [CrossRef]
- Ali, A.A. Optical properties of Sm3+-doped CaF2 bismuth borate glasses. J. Lumin. 2009, 129, 1314–1319. [Google Scholar] [CrossRef]
- Peláiz Barranco, A.; Calderón Piñar, F.; Pérez Martínezy, O.; De Los Santos Guerra, J.; González Carmenate, I. AC behaviour and conductive mechanisms of 2·5 mol% La2O3 doped PbZr0.53Ti0.47O3 ferroelectric ceramics. J. Eur. Ceram. Soc. 1999, 19, 2677–2683. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, X.; Hu, T.; Wang, J.; Zhong, X.; Chen, Y.; Zhang, J.; Li, X.; Yang, J.; Gao, C. Effect of Tb-doped Concentration Variation on the Electrical and Dielectric Properties of CaF2 Nanoparticles. Nanomaterials 2018, 8, 532. https://doi.org/10.3390/nano8070532
Cui X, Hu T, Wang J, Zhong X, Chen Y, Zhang J, Li X, Yang J, Gao C. Effect of Tb-doped Concentration Variation on the Electrical and Dielectric Properties of CaF2 Nanoparticles. Nanomaterials. 2018; 8(7):532. https://doi.org/10.3390/nano8070532
Chicago/Turabian StyleCui, Xiaoyan, Tingjing Hu, Jingshu Wang, Xin Zhong, Yinzhu Chen, Junkai Zhang, Xuefei Li, Jinghai Yang, and Chunxiao Gao. 2018. "Effect of Tb-doped Concentration Variation on the Electrical and Dielectric Properties of CaF2 Nanoparticles" Nanomaterials 8, no. 7: 532. https://doi.org/10.3390/nano8070532
APA StyleCui, X., Hu, T., Wang, J., Zhong, X., Chen, Y., Zhang, J., Li, X., Yang, J., & Gao, C. (2018). Effect of Tb-doped Concentration Variation on the Electrical and Dielectric Properties of CaF2 Nanoparticles. Nanomaterials, 8(7), 532. https://doi.org/10.3390/nano8070532