Investigation into the Potential Migration of Nanoparticles from Laponite-Polymer Nanocomposites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Transmission Electron Microscopy (TEM)
2.3. Preparation of Laponite Reference Dispersions
2.4. AF4 and MALLS Measurements
2.5. Migration Test
3. Results
3.1. TEM Measurements
3.2. Characterization and Quantification of Laponite in Dispersion
3.3. Migration Test Results
3.4. Validation of Experiments
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Brigatti, M.F.; Galan, E.; Theng, B.K.G. Structures and mineralogy of clay minerals. In Handbook of Clayscience; Bergaya, F., Theng, B.K.G., Lagaly, G., Eds.; Elsevier Ltd.: New York, NY, USA, 2006; pp. 19–86. ISBN 9780080441832. [Google Scholar]
- Jatav, S.; Joshi, Y.M. Chemical stability of laponite in aqueous media. Appl. Clay Sci. 2014, 97–98, 72–77. [Google Scholar] [CrossRef]
- Alexandre, M.; Philippe, D. Polymer layered silicate nanocomposites: Preparation, properties and uses of a new class of materials. Mater. Sci. Eng. R 2000, 28, 1–63. [Google Scholar] [CrossRef]
- Azeredo, H. Nanocomposites for food packaging applications. Food Res. Int. 2009, 42, 1240–1253. [Google Scholar] [CrossRef]
- Kaneko, M.L.Q.A.; Romero, R.B.; de Paiva, R.E.F.; Felisberti, M.I.; Gonçalves, M.C.; Yoshida, I.V.P. Improvement of toughness in polypropylene nanocomposite with the addition of organoclay/silicone copolymer masterbatch. Polym. Compos. 2013, 34, 194–203. [Google Scholar] [CrossRef]
- Kiliaris, P.; Papaspyrides, C.D. Polymer/layered silicate (clay) nanocomposites: An overview of flame retardancy. Prog. Polym. Sci. 2010, 35, 902–958. [Google Scholar] [CrossRef]
- Kuorwel, K.K.; Cran, M.J.; Orbell, J.D.; Buddhadasa, S.; Bigger, S.W. Review of mechanical properties, migration, and potential applications in active food packaging systems containing nanoclays and nanosilver. Compr. Rev. Food Sci. Food Saf. 2015, 14, 411–430. [Google Scholar] [CrossRef]
- Paul, D.R.; Robeson, L.M. Polymer nanotechnology: Nanocomposites. Polymer 2008, 49, 3187–3204. [Google Scholar] [CrossRef]
- Pavlidou, S.; Papaspyrides, C.D. A review on polymer–layered silicate nanocomposites. Prog. Polym. Sci. 2008, 33, 1119–1198. [Google Scholar] [CrossRef]
- Pereira de Abreu, D.A.; Paseiro Losadaa, P.; Angulob, I.; Cruza, J.M. Development of new polyolefin films with nanoclays for application in food packaging. Eur. Polym. J. 2007, 43, 2229–2243. [Google Scholar] [CrossRef]
- Sinha Ray, S.; Okamoto, M. Polymer/layered silicate nanocomposites: A review from preparation to processing. Prog. Polym. Sci. 2003, 28, 1539–1641. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, D.; Zhao, Q.; Fang, Y. Effects of different kinds of clay and different vinyl acetate content on the morphology and properties of EVA/clay nanocomposites. Polymer 2003, 44, 7953–7961. [Google Scholar] [CrossRef]
- Bumbudsanpharoke, N.; Ko, S. Nano-food packaging: An overview of market, migration research, and safety regulations. J. Food Sci. 2015, 80, 910–923. [Google Scholar] [CrossRef] [PubMed]
- Agubra, V.A.; Owuor, P.S.; Hosur, M.V. Influence of nanoclay dispersion methods on the mechanical behavior of e-glass/epoxy nanocomposites. Nanomaterials 2013, 3, 550–563. [Google Scholar] [CrossRef] [PubMed]
- Cavallaro, G.; Danilushkina, A.; Evtugyn, V.; Lazzara, G.; Milioto, S.; Parisi, F.; Rozhina, E.; Fakhrullin, R. Halloysite nanotubes: Controlled access and release by smart gates. Nanomaterials 2017, 7, 199. [Google Scholar] [CrossRef] [PubMed]
- Cavallaro, G.; Lazzara, G.; Milioto, S. Sustainable nanocomposites based on halloysite nanotubes and pectin/polyethylene glycol blend. Polym. Degrad. Stab. 2013, 98, 2529–2536. [Google Scholar] [CrossRef] [Green Version]
- Ferrández-Rives, M.; Beltrán-Osuna, Á.A.; Gómez-Tejedor, J.A.; Gómez-Tejedor, J.L. Electrospun PVA/Bentonite Nanocomposites Mats for Drug Delivery. Materials 2017, 10, 1448. [Google Scholar] [Green Version]
- Lazzara, G.; Cavallaroa, G.; Panchalb, A.; Fakhrullinc, R.; Stavitskayad, A.; Vinokurovd, V.; Lvovbd, Y. An assembly of organic-inorganic composites using halloysite clay nanotubes. Curr. Opin. Colloid Interface Sci. 2018, 35, 42–50. [Google Scholar] [CrossRef]
- Makaremi, M.; Pasbakhsh, P.; Cavallaro, G.; Lazzara, G.; Kit Aw, Y.; Mae Lee, S.; Milioto, S. Effect of morphology and size of halloysite nanotubes on functional pectin bionanocomposites for food packaging applications. ACS Appl. Mater. Interfaces 2017, 9, 17476–17488. [Google Scholar] [CrossRef] [PubMed]
- Nikolaidis, A.; Achilias, D. Thermal degradation kinetics and viscoelastic behavior of poly(methyl methacrylate)/organomodified montmorillonite nanocomposites prepared via in situ bulk radical polymerization. Polymers 2018, 10, 491. [Google Scholar] [CrossRef]
- Yoo, J.T.; Lee, S.B.; Lee, C.K.; Hwang, S.W.; Kim, C.R.; Fujigaya, T.; Nakashima, N.; Shim, J.K. Graphene oxide and laponite composite films with high oxygen-barrier properties. Nanoscale 2014, 6, 10824–10830. [Google Scholar] [CrossRef] [PubMed]
- Cavallaro, G.; Lazzara, G.; Milioto, S. Aqueous phase/nanoparticles interface: Hydroxypropyl cellulose adsorption and desorption triggered by temperature and inorganic salts. Soft Matter 2012, 8, 3627. [Google Scholar] [CrossRef] [Green Version]
- Cavallaro, G.; Lazzara, G.; Milioto, S. Dispersions of Nanoclays of Different Shapes into Aqueous and Solid Biopolymeric Matrices. Extended Physicochemical Study. Langmuir 2011, 27, 1158–1167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Union. Commission recommendation of 18 October 2011 on the definition of nanomaterial (2011/696/EU). Off. J. Eur. Union 2011, 275, 38–40. [Google Scholar]
- Duncan, T.V.; Pillai, K. Release of Engineered Nanomaterials from Polymer Nanocomposites: Diffusion, Dissolution, and Desorption. ACS Appl. Mater. Interfaces 2015, 7, 2–19. [Google Scholar] [CrossRef] [PubMed]
- Störmer, A.; Bott, J.; Kemmer, D.; Franz, R. Critical review of the migration potential of nanoparticles in food contact plastics. Trends Food Sci. Technol. 2017, 63, 39–50. [Google Scholar] [CrossRef]
- Franz, R.; Welle, F. Mathematic modelling of migration of nanoparticles from food contact polymers. In The Use of Nanomaterials in Food Contact Materials—Design, Application, Safety; Veraart, R., Ed.; Stech Publications Inc.: Lancaster, PA, USA, 2017. [Google Scholar]
- European Union. Commission regulation (EU) No. 10/2011 of 14 January 2011 on plastic materials and articles intended to come into contact with food. Off. J. Eur. Union 2011, L, 12/1. [Google Scholar]
- European Union. Commission Regulation (EU) No. 1282/2011 of 28 November 2011 Amending and Correcting Commission Regulation (EU) No. 10/2011 on plastic materials and articles intended to come into contact with food. Off. J. Eur. Union 2011, L, 328/22. [Google Scholar]
- European Union. Commission Regulation (EU) No. 1183/2012 of 30 November 2012 amending and correcting Regulation (EU) No. 10/2011 on plastic materials and articles intended to come into contact with food. Off. J. Eur. Union 2012, L, 338/11. [Google Scholar]
- European Union. Commission Regulation (EU) 2017/752 of 28 April 2017 amending and correcting Regulation (EU) No. 10/2011 on plastic materials and articles intended to come into contact with food. Off. J. Eur. Union 2017, L, 113/17. [Google Scholar]
- Andersson, M.; Wittgren, B.; Wahlund, K.-G. Accuracy in multiangle Light Scattering Measurements for Molar Mass and Radius Estimations. Model Calculations and Experiments. Anal. Chem. 2003, 75, 4279–4291. [Google Scholar] [CrossRef] [PubMed]
- Podzimek, S. Light Scattering, Size Exclusion Chromatography and Asymmetric Flow Field Flow Fractionation: Powerful Tools for the Characterization of Polymers, Proteins and Nanoparticles; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2011. [Google Scholar]
- Kalathi, J.T.; Yamamoto, U.; Schweizer, K.S.; Grest, G.S.; Kumar, S.K. Nanoparticle diffusion in polymer nanocomposites. Phys. Rev. Lett. 2014, 112, 108301. [Google Scholar] [CrossRef] [PubMed]
- Möller, K.; Gevert, T. An FTIR solid-state analysis of the diffusion of hindered phenols in low-density polyethylene (LDPE): The effect of molecular size on the diffusion coefficient. J. Appl. Polym. Sci. 1994, 51, 895–903. [Google Scholar] [CrossRef]
- Bott, J.; Störmer, A.; Franz, R. A model study into the migration potential of nanoparticles from plastics nanocomposites for food contact. Food Packag. Shelf Life 2014, 2, 73–80. [Google Scholar] [CrossRef]
- Farhoodi, M.; Mousavi, S.M.; Sotudeh-Gharebagh, R.; Emam-Djomeh, Z.; Oromiehie, A. Migration of aluminum and silicon from PET/Clay nanocomposite bottles into acidic food simulant. Packag. Technol. Sci. 2013, 27, 161–168. [Google Scholar] [CrossRef]
- Schmidt, B.; Katiyar, V.; Plackett, D.; Larsen, E.H.; Gerds, N.; Bender Koch, C.; Petersen, J.H. Migration of nanosized layered double hydroxide platelets from polylactide nanocomposite films. Food Addit. Contam. 2011, 28, 956–966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glover, R.D.; Miller, J.M.; Hutchison, J.E. Generation of metal nanoparticles from silver and copper objects: Nanoparticle dynamics on surfaces and potential sources of nanoparticles in the environment. ACS Nano 2011, 5, 8950–8957. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, B.; Petersen, J.H.; Bender Koch, C.; Plackett, D.; Johansen, N.R.; Katiyar, V.; Larsen, E.H. Combining asymmetrical flow field-flow fractionation with light-scattering and inductively coupled plasma mass spectrometric detection for characterization of nanoclay used in biopolymer nanocomposites. Food Addit. Contam. 2009, 26, 1619–1627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Concentration of Standard (ng/mL) | Mass (ng) | Total Area by MALLS (mV*min) |
---|---|---|
0 | 0 | 16.7 |
250 | 500 | 50.2 |
500 | 1000 | 105.0 |
1000 | 2000 | 183.7 |
1500 | 3000 | 300.1 |
2000 | 4000 | 446.9 |
2500 | 5000 | 686.3 |
MALLS Area “Fresh” (mV*min) | MALLS Area “Stored” (mV*min) | Recovery Rate | Direct LOD | LOD Method |
---|---|---|---|---|
182.9/184.3/183.9 183.7 (average) | 192.3/197.0/189.7 193.0 (average) | 105.1% | 500 ng | 476 ng |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bott, J.; Franz, R. Investigation into the Potential Migration of Nanoparticles from Laponite-Polymer Nanocomposites. Nanomaterials 2018, 8, 723. https://doi.org/10.3390/nano8090723
Bott J, Franz R. Investigation into the Potential Migration of Nanoparticles from Laponite-Polymer Nanocomposites. Nanomaterials. 2018; 8(9):723. https://doi.org/10.3390/nano8090723
Chicago/Turabian StyleBott, Johannes, and Roland Franz. 2018. "Investigation into the Potential Migration of Nanoparticles from Laponite-Polymer Nanocomposites" Nanomaterials 8, no. 9: 723. https://doi.org/10.3390/nano8090723
APA StyleBott, J., & Franz, R. (2018). Investigation into the Potential Migration of Nanoparticles from Laponite-Polymer Nanocomposites. Nanomaterials, 8(9), 723. https://doi.org/10.3390/nano8090723