Effect of Zr Doping on the Magnetic and Phase Transition Properties of VO2 Powder
Abstract
:1. Introduction
2. Experimental Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Morin, F.J. Oxides which show a metal-to -insulator transition at the Neel temperature. Phys. Rev. Lett. 1959, 3, 34–36. [Google Scholar] [CrossRef]
- Kang, L.; Gao, Y.; Luo, H.; Chen, Z.; Du, J.; Zhang, Z. Nanoporous thermochromic VO2 films with low optical constants, enhanced luminous transmittance and thermochromic properties. ACS Appl. Mater. Interfaces 2011, 3, 135–138. [Google Scholar] [CrossRef]
- Babulanam, S.M.; Eriksson, T.S.; Niklasson, G.A.; Granqvist, C.G. T hermochromic VO2 films for energy-efficient windows. Solar Energy Mater. 1987, 6, 347–363. [Google Scholar] [CrossRef]
- Wu, B.; Zimmers, A.; Aubin, H.; Ghosh, R.; Liu, Y.; Lopez, R. Electric-field-driven phase transition in vanadium dioxide. Phys. Rev. B 2011, 84, 241410. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Z.; Chen, S.; Ren, H.; Li, B.; Yan, W.; Zhang, G.; Jiang, J.; Zou, C. Electric-field control of Li-doping induced phase transition in VO2 film with crystal facet-dependence. Nano Energy 2018, 51, 300–307. [Google Scholar] [CrossRef]
- Sohn, J.I.; Joo, H.J.; Kim, K.S.; Yang, H.W.; Jang, A.R.; Ahn, D.; Lee, H.H.; Cha, S.N.; Kang, D.J.; Kim, J.M. Stress-induced domain dynamics and phase transitions in epitaxially grown VO2 nanowires. Nanotechnology 2012, 23, 205707. [Google Scholar] [CrossRef] [PubMed]
- Dai, L.; Chen, S.; Liu, J.; Gao, Y.; Zhou, J.; Chen, Z.; Cao, C.; Luo, H.; Kanehira, M. F-doped VO2 nanoparticles for thermochromic energy-saving foils with modified color and enhanced solar-heat shielding ability. Phys. Chem. Chem. Chem. 2013, 5, 11723–11729. [Google Scholar] [CrossRef]
- Wu, C.; Feng, F.; Feng, J.; Dai, J.; Peng, L.; Zhao, J.; Yang, J.; Si, C.; Wu, Z.; Xie, Y. Hydrogen-incorporation stabilization of metallic VO2 (R) phase to room temperature, displaying promising low-temperature thermoelectric effect. J. Am. Chem. Soc. 2011, 133, 13798–13801. [Google Scholar] [CrossRef]
- Khan, G.R.; Kandasami, A.; Bhat, B.A. Augmentation of thermoelectric performance of VO2 thin films irradiated by 200 MeV Ag9+-ions. Radiat. Phys. Chem. 2016, 123, 55–62. [Google Scholar] [CrossRef]
- Kim, J.; Ko, C.; Frenzel, A.; Ramanathan, S.; Hoffman, J.E. Nanoscale imaging and control of resistance switching in at room temperature. Appl. Phys. Lett. 2010, 96, 213106. [Google Scholar] [CrossRef]
- Rupp, J.A.J.; Querre, M.; Kindsmuller, A.; Besland, M.P.; Janod, E.; Dittmann, R.; Waser, R.; Wouters, D.J. Different threshold and bipolar resistive switching mechanisms in reactively sputtered amorphous undoped and Cr-doped vanadium oxide thin films. J. Appl. Phys. 2018, 123, 044502. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Lin, C.; Chen, P.; Chang, T.; Shih, C.; Tseng, Y.; Zheng, H.; Chen, Y.; Chang, Y.; Lin, C.; et al. The demonstration of increased selectivity during experimental measurement in filament-type vanadium oxide-based selector. IEEE Trans. Electron. Devices 2018, 65, 4622–4627. [Google Scholar] [CrossRef]
- Guo, H.; Khan, M.I.; Cheng, C.; Fan, W.; Dames, C.; Wu, J.; Minor, A.M. Vanadium dioxide nanowire-based microthermometer for quantitative evaluation of electron beam heating. Nat. Commun. 2015, 5, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Shi, R.; Wang, J.; Cai, X.; Zhang, L.; Chen, P.; Liu, S.; Zhang, L.; Ouyang, W.; Wang, N.; Cheng, C. Axial modulation of metal-insulator phase transition of VO2 nanowires by graded doping engineering for optically readable thermometers. J. Phys. Chem. C 2017, 121, 24877–24885. [Google Scholar] [CrossRef]
- Zhang, J.; He, H.; Yie, Y.; Pan, B. Giant reduction of the phase transition temperature for beryllium doped VO2. Phys. Chem. Chem. Phys. 2013, 15, 4687–4690. [Google Scholar] [CrossRef]
- Liu, X.; Wang, S.; Chen, F.; Yu, L.; Chen, X. Tuning phase transition temperature of VO2 thin films by annealing atmosphere. J. Phys. D. Appl. Phys. 2015, 48, 265104. [Google Scholar] [CrossRef]
- Li, S.Y.; Niklasson, G.A.; Granqvist, C.G. Thermochromic fenestration with VO2-based materials: Three challenges and how they can be met. Thin Solid Films 2012, 520, 3823–3828. [Google Scholar] [CrossRef]
- Zou, J.; Shi, H.; Su, X.; Feng, Q.; Liang, S. A simple method to prepare V1−xWxO2 (x = 0, 0.01, 0.02, 0.03, 0.04, and 0.05) controllable phase transition temperature powder. J. Alloy. Compd. 2017, 708, 706–712. [Google Scholar] [CrossRef]
- Khan, G.R.; Asokan, K. Ahmad, Bilal, Room temperature tunability of Mo-doped VO2 nanofilms across semiconductor to metal phase transition. Thin Solid Films 2017, 625, 155–162. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, R.; Chen, X.; Fu, Q.; Li, C.; Yuan, S.; Zhao, X.; Tao, H. Nb doping effect in VO2 studied by investigations of magnetic behavior. Ceram. Int. 2018, 44, 8623–8627. [Google Scholar] [CrossRef]
- Tan, X.; Liu, W.; Long, R.; Zhang, X.; Yao, T.; Liu, Q.; Sun, Z.; Cao, Y.; Wei, S. Symmetry-controlled structural phase transition temperature in chromium-doped vanadium dioxide. J. Phys. Chem. C 2016, 120, 28163–28168. [Google Scholar] [CrossRef]
- Yanase, I.; Mori, Y.; Kobayashi, H. Hydrothermal synthesis and thermal change in IR reflectance of Al/W co-doped VO2 powder. Mater. Res. Bull. 2018, 100, 243–248. [Google Scholar] [CrossRef]
- Niu, C. Al-doped VO2 (B) nanobelts as cathode material with enhanced electrochemical properties for lithium-ion batteries. Funct. Mater. Lett. 2018, 11, 1850068. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, Z.; Wu, X.; Wei, X.; Jiang, Y. Preparation and phase transition Properties of nanostructured zirconium-doped vanadium oxide films by reactive magnetron sputtering. Thin Solid Films 2014, 568, 63–69. [Google Scholar] [CrossRef]
- Shen, N.; Chen, S.; Chen, Z.; Liu, X.; Cao, C.; Dong, B.; Luo, H.; Liu, J.; Gao, Y. The synthesis and performance of Zr-doped and W–Zr-codoped VO2 nanoparticles and derived flexible foils. J. Mater. Chem. A 2014, 2, 15087. [Google Scholar] [CrossRef]
- Li, Y.; Liu, J.; Wang, D.; Dang, Y. Effects of zirconium ions doping on the structural and thermochromic properties of VO2 thin films. J. Electron. Mater. 2017, 46, 6466–6472. [Google Scholar] [CrossRef]
- Lu, W.; Zhao, G.; Song, B.; Li, J.; Zhang, X.; Han, G. Preparation and thermochromic properties of sol-gel-derived Zr-doped VO2 films. Surf. Coat. Tech. 2017, 320, 311–314. [Google Scholar] [CrossRef]
- Hu, Y.; Shi, Q.; Huang, W.; Zhu, H.; Yue, F.; Xiao, Y.; Liang, S.; Lu, T. Preparation and phase transition properties of Ti-doped VO2 films by sol-gel process. J. Sol-Gel Sci. Technol. 2016, 78, 19–25. [Google Scholar] [CrossRef]
- Wagner, C.D.; Riggs, W.M.; Davis, L.E.; Moulder, J.F.; Muilenberg, G.E. Standard ESCA spectra of the elements and line energy information. In Handbook of X-ray Photoelectron Spectroscop; Muilenberg, G.E., Ed.; Perkin-Eimer Corporation: Eden Prairie, MN, USA, 1979; Chapter II; p. 101. [Google Scholar]
- Wagner, C.D.; Riggs, W.M.; Davis, L.E.; Moulder, J.F.; Muilenberg, G.E. Standard ESCA spectra of the elements and line energy information. In Handbook of X-ray Photoelectron Spectroscopy; Muilenberg, G.E., Ed.; Perkin-Eimer Corporation: Eden Prairie, MN, USA, 1979; Chapter II; p. 70. [Google Scholar]
- Xu, J.; Wang, H.; Zhou, Z.; Zou, Z. Ferromagnetic properties of N-doped and undoped TiO2 rutile single-crystal wafers with addition of tungsten trioxide. Materials 2018, 11, 1934. [Google Scholar] [CrossRef]
- Zhang, H.; Yu, H.; Chen, Z.; Luo, H.; Gao, Y. Thermal kinetic analysis of metal -insulator transition mechanism in W-doped VO2. J. Therm. Anal. Calorim. 2016, 126, 949–957. [Google Scholar] [CrossRef]
- Wagner, C.D.; Riggs, W.M.; Davis, L.E.; Moulder, J.F.; Muilenberg, G.E. Standard ESCA spectra of the elements and line energy information. In Handbook of X-ray Photoelectron Spectroscopy; Muilenberg, G.E., Ed.; Perkin-Eimer Corporation: Eden Prairie, MN, USA, 1979; Chapter II; p. 100. [Google Scholar]
- Zhang, R.; Yin, C.; Fu, Q.; Li, C.; Qian, G.; Chen, X.; Lu, C.; Yuan, S.; Zhao, X.; Tao, H. Metal-to-insulator transition and its effective manipulation studied from investigations in V1−xNbxO2 bulks. Ceram. Int. 2018, 44, 2809–2813. [Google Scholar] [CrossRef]
- Park, J.H.; Coy, J.M.; Kasirga, T.S.; Huang, C.; Fei, Z.; Hunter, S.; Cobden, D.H. Measurement of a solid-state triple point at the metal–insulator transition in VO2. Nature 2013, 500, 431–434. [Google Scholar] [CrossRef] [PubMed]
- Yin, C.; Zhang, R.; Qian, G.; Fu, Q.; Li, C.; Wang, M.; Zhu, C.; Wang, L.; Yuan, S.; Zhao, X.; et al. Unusual magnetic transition near metal-insulator transition and paramagnetic anomaly in VO2. Appl. Phys. Lett. 2017, 110, 172404. [Google Scholar] [CrossRef]
- Tomczak, J.M.; Biermann, S. Optical properties of correlated materials: Generalized Peierls approach and its application to VO2. Phys. Rev. B 2009, 80, 085117. [Google Scholar] [CrossRef]
- Kim, S.; Kim, K.; Kang, C.J.; Bin, B.I. Correlation-assisted phonon softening and the orbital-selective Peierls transition in VO2. Phys. Rev. B 2013, 87, 195106. [Google Scholar] [CrossRef]
- Biermann, S.; Poteryaev, A.; Lichtenstein, A.I.; Georges, A. Dynamical Singlets and Correlation-Assisted Peierls Transition in VO2. Phys. Rev. Lett. 2005, 94, 026404. [Google Scholar] [CrossRef] [PubMed]
- Krammer, A.; Magrez, A.; Vitale, W.A.; Mocny, P.; Jeanneret, P.; Guibert, E.; Whitlow, H.J.; Ionescu, A.M.; Schuler, A. Elevated transition temperature in Ge doped VO2 thin film. J. Appl. Phys. 2017, 122, 045304. [Google Scholar] [CrossRef]
Sample | 2θ-d011 (°) | d011 (nm) | Grain Size (nm) | a (Å) | b (Å) | c (Å) | β (°) | V = abcsin β (Å3) |
---|---|---|---|---|---|---|---|---|
un-doped | 27.910° | 3.1940 | 50.6 | 5.7435 | 4.5200 | 5.3472 | 122.4186 | 117.1826 |
1% Zr-doped | 27.890° | 3.1963 | 49.07 | 5.7604 | 4.5226 | 5.3658 | 122.6497 | 117.7008 |
2% Zr-doped | 27.877° | 3.1977 | 38.92 | 5.7578 | 4.5298 | 5.3615 | 122.6428 | 117.7497 |
4% Zr-doped | 27.868° | 3.1988 | 38.73 | 5.7607 | 4.5288 | 5.3659 | 122.6391 | 117.8845 |
Sample | Tcool (K) | Theat (K) | T = [Tcool + Theat]/2 (K) |
---|---|---|---|
un-doped | 315.06 | 357.08 | 336.07 |
1% Zr-doped | 327.29 | 357.8 | 342.55 |
2% Zr-doped | 327.8 | 358.8 | 343.30 |
4% Zr-doped | 328.22 | 359.3 | 343.76 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Wang, H.; Lu, Z.; Zhang, Z.; Zou, Z.; Yu, Z.; Cheng, M.; Liu, Y.; Xiong, R. Effect of Zr Doping on the Magnetic and Phase Transition Properties of VO2 Powder. Nanomaterials 2019, 9, 113. https://doi.org/10.3390/nano9010113
Xu J, Wang H, Lu Z, Zhang Z, Zou Z, Yu Z, Cheng M, Liu Y, Xiong R. Effect of Zr Doping on the Magnetic and Phase Transition Properties of VO2 Powder. Nanomaterials. 2019; 9(1):113. https://doi.org/10.3390/nano9010113
Chicago/Turabian StyleXu, Jing, Haiying Wang, Zhihong Lu, Zhenhua Zhang, Zhaorui Zou, Ziyang Yu, Ming Cheng, Yong Liu, and Rui Xiong. 2019. "Effect of Zr Doping on the Magnetic and Phase Transition Properties of VO2 Powder" Nanomaterials 9, no. 1: 113. https://doi.org/10.3390/nano9010113
APA StyleXu, J., Wang, H., Lu, Z., Zhang, Z., Zou, Z., Yu, Z., Cheng, M., Liu, Y., & Xiong, R. (2019). Effect of Zr Doping on the Magnetic and Phase Transition Properties of VO2 Powder. Nanomaterials, 9(1), 113. https://doi.org/10.3390/nano9010113