Bi-Metal Phosphide NiCoP: An Enhanced Catalyst for the Reduction of 4-Nitrophenol
Abstract
:1. Introduction
2. Experimental
2.1. Catalyst Synthesis
2.2. Characterization
2.3. Catalyze Measurements
3. Results and Discussion
3.1. Characterization of Samples
3.2. Catalytic Activity
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Tian, C.X.; Xiang, X.; Wu, J.W.; Li, B.; Cai, C.; Khan, B.; Chen, H.; Yuan, Y.G.; Zu, X.T. Facile Synthesis of MoS2/CuS Nanosheet Composites as an Efficient and Ultrafast Adsorbent for Water-Soluble Dyes. J. Chem. Eng. Data 2018, 63, 3966–3974. [Google Scholar] [CrossRef]
- Li, X.; Wu, K.; Ye, Y.; Wei, X. Gas-assisted growth of boron-doped nickel nanotube arrays: Rapid synthesis, growth mechanisms, tunable magnetic properties, and super-efficient reduction of 4-nitrophenol. Nanoscale 2013, 5, 3648–3653. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Wu, D.; Cheng, D. Porous Co2P nanowires as high efficient bifunctional catalysts for 4-nitrophenol reduction and sodium borohydride hydrolysis. J. Colloid Interface Sci. 2017, 507, 429–436. [Google Scholar] [CrossRef]
- Politano, A.; Gianluca, D.P.; Fontananova, E.; Sanna, V.; Cupolillo, A.; Curcio, E. Overcoming temperature polarization in membrane distillation by thermoplasmonic effects activated by Ag nanofillers in polymeric membranes. Desalination 2019, 451, 192–199. [Google Scholar] [CrossRef]
- Politano, A.; Argurio, P.; Di Profio, G.; Sanna, V.; Cupolillo, A.; Chakraborty, S.; Arafat, H.A.; Curcio, E. Photothermal Membrane Distillation for Seawater Desalination. Adv. Mater. 2017, 29, 1603504. [Google Scholar] [CrossRef]
- Gugliuzza, A.; Politano, A.; Drioli, E. The advent of graphene and other two-dimensional materials in membrane science and technology. Curr. Opin. Chem. Eng. 2017, 16, 78–85. [Google Scholar] [CrossRef]
- Politano, A.; Cupolillo, A.; Di Profio, G.; Arafat, H.A.; Chiarello, G.; Curcio, E. When plasmonics meets membrane technology. J. Phys.-Condens. Matter 2016, 28, 363003. [Google Scholar] [CrossRef]
- Tian, F.Y.; Hou, D.; Zhang, W.M.; Qiao, X.Q.; Li, D.S. Synthesis of a Ni2P/Ni12P5 bi-phase nanocomposite for the efficient catalytic reduction of 4-nitrophenol based on the unique n-n heterojunction effects. Dalton Trans. 2017, 46, 14107–14113. [Google Scholar] [CrossRef]
- Seo, Y.S.; Ahn, E.-Y.; Park, J.; Kim, T.Y.; Hong, J.E.; Kim, K.; Park, Y.; Park, Y. Catalytic reduction of 4-nitrophenol with gold nanoparticles synthesized by caffeic acid. Nanoscale Res. Lett. 2017, 12, 7. [Google Scholar] [CrossRef]
- Nitti, A.; Signorile, M.; Boiocchi, M.; Bianchi, G.; Po, R.; Pasini, D. Conjugated Thiophene-Fused Isatin Dyes through Intramolecular Direct Arylation. J. Org. Chem. 2016, 81, 11035–11042. [Google Scholar] [CrossRef]
- Song, J.M.; Zhang, S.S.; Yu, S.H. Multifunctional Co0.85Se-Fe3O4 nanocomposites: Controlled synthesis and their enhanced performances for efficient hydrogenation of p-nitrophenol and adsorbents. Small 2014, 10, 717–724. [Google Scholar] [CrossRef] [PubMed]
- Jhimli, P.G.; Bhardwaj, Y.K.; Lalit, V. Chemically clean synthesis and characterization of graphene oxide-poly(acrylic acid–sodium styrene sulfonate) composite thermostable elastic gel encapsulating copper nanoparticles for efficient catalytic reduction of 4-nitrophenol. J. Appl. Polym. Sci. 2017, 135, 46200. [Google Scholar]
- Cao, M.; Feng, L.; Yang, P.; Wang, H.; Liang, X.; Chen, X. Fabrication of reduced graphene oxide decorated with gold and nickel for the catalytic reduction of 4-nitrophenol. J. Mater. Sci. 2017, 53, 4874–4883. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, Y.; Shen, J.; Huang, J.; Yang, X.; Li, C. CoP nanoparticles anchored on N,P-dual-doped graphene-like carbon as a catalyst for water splitting in non-acidic media. Nanoscale 2018, 10, 2603–2612. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Zhao, C. Electrodeposition of hierarchically structured three-dimensional nickel-iron electrodes for efficient oxygen evolution at high current densities. Nat. Commun. 2015, 6, 6616. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Jia, H.; Yang, Z.; Fan, Q.; Zhang, F. Confined hexahedral nickel nanoparticle catalyst for catalytic hydrogenation reaction. J. Mater. Sci. 2017, 53, 4884–4896. [Google Scholar] [CrossRef]
- Xiao, X.; Huang, D.; Fu, Y.; Wen, M.; Jiang, X.; Lv, X.; Li, M.; Gao, L.; Liu, S.; Wang, M.; et al. Engineering NiS/Ni2P Heterostructures for Efficient Electrocatalytic Water Splitting. ACS Appl. Mater. Interfaces 2018, 10, 4689–4696. [Google Scholar] [CrossRef]
- Beygi, H.; Sajjadi, S.A. Magnetic properties of crystalline nickel and low phosphorus amorphous Ni1-xPx nanoparticles. Mater. Chem. Phys. 2018, 204, 403–409. [Google Scholar] [CrossRef]
- Niemann, A.C.; Gooth, J.; Wu, S.-C.; Baessler, S.; Sergelius, P.; Huehne, R.; Rellinghaus, B.; Shekhar, C.; Suess, V.; Schmidt, M.; et al. Chiral magnetoresistance in the Weyl semimetal NbP. Sci. Rep. 2017, 7, 43394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Einaga, M.; Shimizu, K.; Hu, J.; Mao, Z.Q.; Politano, A. Resistivity of Weyl semimetals NbP and TaP under pressure. Phys. Status Solidi-Rapid Res. Lett. 2017, 11, 1700182. [Google Scholar] [CrossRef]
- Ding, L.; Shu, Y.; Wang, A.; Zheng, M.; Li, L.; Wang, X.; Zhang, T. Preparation and catalytic performances of ternary phosphides NiCoP for hydrazine decomposition. Appl. Catal. A Gen. 2010, 385, 232–237. [Google Scholar] [CrossRef]
- Oyama, S.T.; Gott, T.; Zhao, H.; Lee, Y.-K. Transition metal phosphide hydroprocessing catalysts: A review. Catal. Today 2009, 143, 94–107. [Google Scholar] [CrossRef]
- Verma, S.; Baig, R.B.N.; Nadagouda, M.N.; Varma, R.S. Visible light mediated upgrading of biomass to biofuel. Green Chem. 2016, 18, 1327–1331. [Google Scholar] [CrossRef]
- Stinner, C.; Prins, R.; Weber, T. Formation, Structure, and HDN Activity of Unsupported Molybdenum Phosphide. J. Catal. 2000, 191, 438–444. [Google Scholar] [CrossRef]
- Song, L.; Zhang, S.; Ma, Q. Synthesis of an iron phosphide catalyst based on sulfides and hydrodesulfurization property. Chem. Eng. J. 2015, 281, 281–285. [Google Scholar] [CrossRef]
- Abu, I.I.; Smith, K.J. HDN and HDS of model compounds and light gas oil derived from Athabasca bitumen using supported metal phosphide catalysts. Appl. Catal. A Gen. 2007, 328, 58–67. [Google Scholar] [CrossRef]
- Wei, J.; Ni, Y.; Xiang, N.; Zhang, Y.; Ma, X. Urchin-like NixPy hollow superstructures: Mild solvothermal synthesis and enhanced catalytic performance for the reduction of 4-nitrophenol. CrystEngComm 2014, 16, 2113–2118. [Google Scholar] [CrossRef]
- Lu, D.; Yuan, F.; Ni, Y.; Wan, M.; Cheng, X. Phase-control synthesis and catalytic property of magnetic Ni@NixPy core-shell microstructures. Mater. Res. Bull. 2018, 101, 215–222. [Google Scholar] [CrossRef]
- Lu, D.; Ni, Y.; Wu, H.; Wang, M.; Sheng, E. Preparation and catalytic properties of porous CoP nanoflakes via a low-temperature phosphidation route. Crystengcomm 2016, 18, 5580–5587. [Google Scholar] [CrossRef]
- Yan, L.; Cao, L.; Dai, P.; Gu, X.; Liu, D.; Li, L.; Wang, Y.; Zhao, X. Metal-Organic Frameworks Derived Nanotube of Nickel-Cobalt Bimetal Phosphides as Highly Efficient Electrocatalysts for Overall Water Splitting. Adv. Funct. Mater. 2017, 27, 1703455. [Google Scholar] [CrossRef]
- Wang, X.; Li, X.; Liu, C.; Li, F.; Li, Y.; Zhao, J.; Liu, R.; Li, G. Metalloid Ni2P and its behavior for boosting the photocatalytic hydrogen evolution of CaIn2S4. Int. J. Hydrog. Energy 2018, 43, 219–228. [Google Scholar] [CrossRef]
- Xu, Y.; Tu, W.; Zhang, B.; Yin, S.; Huang, Y.; Kraft, M.; Xu, R. Nickel Nanoparticles Encapsulated in Few-Layer Nitrogen-Doped Graphene Derived from Metal-Organic Frameworks as Efficient Bifunctional Electrocatalysts for Overall Water Splitting. Adv. Mater. 2017, 29, 1605957. [Google Scholar] [CrossRef] [PubMed]
- Politano, A.; Cattelan, M.; Boukhvalov, D.W.; Campi, D.; Cupolillo, A.; Agnoli, S.; Apostol, N.G.; Lacovig, P.; Lizzit, S.; Farias, D.; et al. Unveiling the Mechanisms Leading to H-2 Production Promoted by Water Decomposition on Epitaxial Graphene at Room Temperature. Acs Nano 2016, 10, 4543–4549. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.; Yin, L.; He, P.; Liu, W.; Wu, Z.; Wang, H. Surface Chemistry in Cobalt Phosphide-Stabilized Lithium-Sulfur Batteries. JACS 2018, 140, 1455–1459. [Google Scholar] [CrossRef]
- Wu, H.; Chen, Z.; Zhang, J.; Wu, F.; Xiao, F.; Du, S.; He, C.; Wu, Y.; Ren, Z. Generalized Synthesis of Ultrathin Cobalt-Based Nanosheets from Metallophthalocyanine-Modulated Self-Assemblies for Complementary Water Electrolysis. Small 2018, 14, 1702896. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Zhang, B. Engineering transition metal phosphide nanomaterials as highly active electrocatalysts for water splitting. Dalton Trans. 2017, 46, 16770–16773. [Google Scholar] [CrossRef] [PubMed]
- Regmi, Y.N.; Roy, A.; King, L.A.; Cullen, D.A.; Meyer, H.M.; Goenaga, G.A.; Zawodzinski, T.A.; Labbé, N.; Chmely, S.C. Lattice Matched Carbide–Phosphide Composites with Superior Electrocatalytic Activity and Stability. Chem. Mater. 2017, 29, 9369–9377. [Google Scholar] [CrossRef]
- Xu, Y.Z.; Yuan, C.Z.; Liu, Z.W.; Chen, X.P. In situ synthesis of NiSe@CoP core–shell nanowire arrays on nickel foam as a highly efficient and robust electrode for electrochemical hydrogen generation in both alkaline and acidic media. Catal. Sci. Technol. 2018, 8, 128–133. [Google Scholar] [CrossRef]
- Bai, X.; Ren, Z.; Du, S.; Meng, H.; Wu, J.; Xue, Y.; Zhao, X.; Fu, H. In-situ structure reconstitution of NiCo2Px for enhanced electrochemical water oxidation. Sci. Bull. 2017, 62, 1510–1518. [Google Scholar] [CrossRef]
- Stinner, C.; Prins, R.; Weber, T. Binary and Ternary Transition-Metal Phosphides as HDN Catalysts. J. Catal. 2001, 202, 187–194. [Google Scholar] [CrossRef]
- Sun, F.; Wu, W.; Wu, Z.; Guo, J.; Wei, Z.; Yang, Y.; Jiang, Z.; Tian, F.; Li, C. Dibenzothiophene hydrodesulfurization activity and surface sites of silica-supported MoP, Ni2P, and NiMoP catalysts. J. Catal. 2004, 228, 298–310. [Google Scholar] [CrossRef]
- Wu, J.; Liu, W.; Xiang, X.; Sun, K.; Liu, F.; Cai, C.; Han, S.; Xie, Y.; Li, S.; Zu, X. From Ni(OH)2/Graphene composite to Ni@Graphene core-shell: A self-catalyzed epitaxial growth and enhanced activity for nitrophenol reduction. Carbon 2017, 117, 192–200. [Google Scholar] [CrossRef]
- Yuan, F.; Ni, Y.; Zhang, L.; Ma, X.; Hong, J. Rod-Like Co2P Nanostructures: Improved Synthesis, Catalytic Property and Application in the Removal of Heavy Metal. J. Clust. Sci. 2013, 24, 1067–1080. [Google Scholar] [CrossRef]
- Ghosh, S.K.; Mandal, M.; Kundu, S.; Nath, S.; Pal, T. Bimetallic Pt-Ni nanoparticles can catalyze reduction of aromatic nitro compounds by sodium borohydride in aqueous solution. Appl. Catal. A Gen. 2004, 268, 61–66. [Google Scholar] [CrossRef]
- Houshen, L.; Yijing, L.; Shengqing, W. Water-soluble Au nanocages for enzyme-free H2O2 sensor and 4-nitrophenol reduction. CrystEngComm 2015, 17, 2368–2375. [Google Scholar]
- Huang, X.; Qi, X.; Boey, F.; Zhang, H. Graphene-based composites. Chem. Soc. Rev. 2012, 41, 666–686. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Zhang, R.; Wei, L.; Zhang, F.; Chen, Q. Synthesis of FeCo nanocrystals encapsulated in nitrogen-doped graphene layers for use as highly efficient catalysts for reduction reactions. Nanoscale 2015, 7, 450–454. [Google Scholar] [CrossRef]
- Zhang, J.; Hou, C.; Huang, H.; Zhang, L.; Jiang, Z.; Chen, G.; Jia, Y.; Kuang, Q.; Xie, Z.; Zheng, L. Surfactant-concentration-dependent shape evolution of Au-Pd alloy nanocrystals from rhombic dodecahedron to trisoctahedron and hexoctahedron. Small 2013, 9, 538–544. [Google Scholar] [CrossRef]
- Zhu, X.Y.; Lv, Z.S.; Feng, J.J.; Yuan, P.X.; Zhang, L.; Chen, J.R.; Wang, A.J. Controlled fabrication of well-dispersed AgPd nanoclusters supported on reduced graphene oxide with highly enhanced catalytic properties towards 4-nitrophenol reduction. J. Colloid Interface Sci. 2018, 516, 355–363. [Google Scholar] [CrossRef]
- Yan, Z.; Fu, L.; Zuo, X.; Yang, H. Green assembly of stable and uniform silver nanoparticles on 2D silica nanosheets for catalytic reduction of 4-nitrophenol. Appl. Catal. B 2018, 226, 23–30. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, X.; Yu, S.; Wen, T.; Zhu, X.; Yang, F.; Sun, X.; Wang, X.; Hu, W. Ternary NiCo2Px Nanowires as pH-Universal Electrocatalysts for Highly Efficient Hydrogen Evolution Reaction. Adv. Mater. 2017, 29, 1605502. [Google Scholar] [CrossRef] [PubMed]
Catalyst | Ni/Co Ratios | |||
---|---|---|---|---|
CoP | 0 | 163.8 | 81.9 | This work |
NiCoP/CoP | 0.5 | 259.8 | 129.9 | This work |
NiCoP | 1 | 677.4 | 338.7 | This work |
NiCoP/Ni2P | 2 | 312.6 | 156.3 | This work |
Co2P | - | 0.09 | 0.45 | [3] |
CoP | - | 34 | 34 | [29] |
Ni2P/Ni12P5 | - | 50.04 | 1.0 | [8] |
Ni@NixPy | - | 38 | 1.58 | [28] |
NixPy | - | 57 | 8.54 | [27] |
FeCo | - | 49.68 | 24.84 | [47] |
Co0.85Se-Fe3O4 | - | - | 1.18 | [11] |
AuPd | - | - | 106.56 | [48] |
AgPdNCs/rGO | - | 3.65 | 98.55 | [49] |
AgNPs/SiNSs | - | 481.14 | 24.06 | [50] |
Ni/rGO@Au | - | 52.38 | 14.90 | [13] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, L.; Xiang, X.; Wu, J.; Cai, C.; Ao, D.; Luo, J.; Tian, C.; Zu, X. Bi-Metal Phosphide NiCoP: An Enhanced Catalyst for the Reduction of 4-Nitrophenol. Nanomaterials 2019, 9, 112. https://doi.org/10.3390/nano9010112
Sun L, Xiang X, Wu J, Cai C, Ao D, Luo J, Tian C, Zu X. Bi-Metal Phosphide NiCoP: An Enhanced Catalyst for the Reduction of 4-Nitrophenol. Nanomaterials. 2019; 9(1):112. https://doi.org/10.3390/nano9010112
Chicago/Turabian StyleSun, Lijie, Xia Xiang, Juwei Wu, Chao Cai, Dongyi Ao, Jinling Luo, Chengxiang Tian, and Xiaotao Zu. 2019. "Bi-Metal Phosphide NiCoP: An Enhanced Catalyst for the Reduction of 4-Nitrophenol" Nanomaterials 9, no. 1: 112. https://doi.org/10.3390/nano9010112
APA StyleSun, L., Xiang, X., Wu, J., Cai, C., Ao, D., Luo, J., Tian, C., & Zu, X. (2019). Bi-Metal Phosphide NiCoP: An Enhanced Catalyst for the Reduction of 4-Nitrophenol. Nanomaterials, 9(1), 112. https://doi.org/10.3390/nano9010112