A Green Approach for Preparing High-Loaded Sepiolite/Polymer Biocomposites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Sep/NR Biocomposites by LCT
2.3. Morphological and Chemical Characterization of Colloidal Dispersion of SepX and NRL
2.4. Thermal, Spectroscopic and Morphological Characterization of SepX/NR Biocomposites
2.5. Rheological and Mechanical Characterization of SepX/NR Biocomposites
3. Results and Discussion
3.1. Characterization of SepX and NRL Colloidal Dispersions
3.2. Thermal, Spectroscopic and Morphological Characterization of Sep/NR Biocomposites
3.3. Proposed Flocculation Mechanisms
3.4. Dynamic-Mechanical Properties of SepX/NR Biocomposites
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sheldon, R.A. Green chemistry and resource efficiency: Towards a green economy. Green Chem. 2016, 18, 3180–3183. [Google Scholar] [CrossRef]
- Di Credico, B.; Bellobono, I.R.; D’Arienzo, M.; Fumagalli, D.; Redaelli, M.; Scotti, R.; Morazzoni, F.; Morazzoni, F.; Credico, B.; Di Bellobono, I.R.; et al. Efficacy of the Reactive Oxygen Species Generated by Immobilized TiO2 in the Photocatalytic Degradation of Diclofenac. Int. J. Photoenergy 2015, 2015, 13. [Google Scholar] [CrossRef]
- Isayev, A.I. Recycling of natural and synthetic isoprene rubbers. In Chemistry, Manufacture and Applications of Natural Rubber; Kohjiya, S., Ikeda, Y., Eds.; Woodhead Publishing: Cambridge, UK, 2014; pp. 395–435. ISBN 978-0-85709-683-8. [Google Scholar]
- Sakdapipanich, J.T.; Rojruthai, P. Natural Rubber: Biosynthesis, Structure, Properties and Application. In Natural Rubber Materials, Volume 1: Blends and IPNs; Royal Society of Chemistry: Cambridge, UK, 2014; Volume 1, pp. 28–52. ISBN 9781849737647. [Google Scholar]
- Davies, B. Natural rubber—Its engineering characteristics. Mater. Des. 1986, 7, 68–74. [Google Scholar] [CrossRef]
- Sarkawi, S.S.; Dierkes, W.K.; Noordermeer, J.W.M. Elucidation of filler-to-filler and filler-to-rubber interactions in silica-reinforced natural rubber by TEM Network Visualization. Eur. Polym. J. 2014, 54, 118–127. [Google Scholar] [CrossRef]
- Tadiello, L.; Giannini, L.; Hanel, T.; Di Credico, B.; D’Arienzo, M.; Morazzoni, F.; Tagliaro, I.; Scotti, R. Elastomeric Compositions Comprising Silicate Fibers with Needle-Shaped Morphology of Nanometric Size and Tires for Vehicles That Comprise Them. WO 2018/116125 Al, 28 June 2018. [Google Scholar]
- Wahba, L.; D’Arienzo, M.; Dirè, S.; Donetti, R.; Hanel, T.; Morazzoni, F.; Niederberger, M.; Santo, N.; Tadiello, L.; Scotti, R. A novel non-aqueous sol–gel route for the in situ synthesis of high loaded silica–rubber nanocomposites. Soft Matter 2014, 10, 2234–2244. [Google Scholar] [CrossRef] [PubMed]
- Joseph, R. Practical Guide to Latex Technology; John Wiley & Sons: Hoboken, NJ, USA, 2011; ISBN 9781847355669. [Google Scholar]
- Lightsey, J.W.; Kneiling, D.J.; Long, J.M. Silica wet masterbatch: A new process for pre-dispersion of silica in emulsion polymers. Rubber World 1998, 218, 35–40. [Google Scholar]
- Tan, J.; Wang, X.; Luo, Y.; Jia, D. Rubber/clay nanocomposites by combined latex compounding and melt mixing: A masterbatch process. Mater. Des. 2012, 34, 825–831. [Google Scholar] [CrossRef]
- Bandyopadhyay, A.; Maiti, M.; Bhowmick, A.K. Synthesis, characterisation and properties of clay and silica based rubber nanocomposites. Mater. Sci. Technol. 2006, 22, 818–828. [Google Scholar] [CrossRef]
- Galimberti, M. Rubber-Clay Nanocomposites: Science, Technology, and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Wilson, I. Applied Clay Mineralogy. Occurrences, processing and application of kaolins, bentonite, palygorskite-sepiolite, and common clays. In Developments in Clay Science Volume 2; Murray, H.H., Ed.; Elsevier Science: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Bokobza, L.; Leroy, E.; Lalanne, V. Effect of filling mixtures of sepiolite and a surface modified fumed silica on the mechanical and swelling behavior of a styrene-butadiene rubber. Eur. Polym. J. 2009, 45, 996–1001. [Google Scholar] [CrossRef]
- Bhattacharya, M.; Maiti, M.; Bhowmick, A.K. Influence of Different Nanofillers and their Dispersion Methods on the Properties of Natural Rubber Nanocomposites. Rubber Chem. Technol. 2008, 81, 782–808. [Google Scholar] [CrossRef]
- Di Credico, B.; Cobani, E.; Callone, E.; Conzatti, L.; Cristofori, D.; D’Arienzo, M.; Dirè, S.; Giannini, L.; Hanel, T.; Scotti, R.; et al. Size-controlled self-assembly of anisotropic sepiolite fibers in rubber nanocomposites. Appl. Clay Sci. 2018, 152, 51–64. [Google Scholar] [CrossRef]
- Di Credico, B.; Redaelli, M.; Bellardita, M.; Calamante, M.; Cepek, C.; Cobani, E.; D’Arienzo, M.; Evangelisti, C.; Marelli, M.; Moret, M.; et al. Step-by-Step Growth of HKUST-1 on Functionalized TiO2 Surface: An Efficient Material for CO2 Capture and Solar Photoreduction. Catalysts 2018, 8, 353. [Google Scholar] [CrossRef]
- Varamesh, A.; Abdollahi, M.; Khanli, H.H. Structure and properties of NR/BR blend/clay nanocomposites prepared by the latex method. Polym. Sci. Ser. A 2013, 55, 115–120. [Google Scholar] [CrossRef]
- Varghese, S.; Karger-Kocsis, J. Natural rubber-based nanocomposites by latex compounding with layered silicates. Polymer 2003, 44, 4921–4927. [Google Scholar] [CrossRef]
- Othman, N.; Muttalib, S.N.A.; Ismail, N.I. The Effect of Surface Modification on the Properties of Palygorskite Filled Natural Rubber Nanocomposite. Macromol. Symp. 2017, 371, 35–43. [Google Scholar] [CrossRef]
- Ruamcharoen, J.; Chotisuwan, S.; Ruamcharoen, P. Tensile Properties and Morphology of Natural Rubber- Kaolinite Organoclay Composites. Adv. Mater. Res. 2012, 489, 701–705. [Google Scholar] [CrossRef]
- Çelik, M.S.; Özdemir, B.; Turan, M.; Koyuncu, I.; Atesok, G.; Sarikaya, H.Z. Removal of ammonia by natural clay minerals using fixed and fluidised bed column reactors. Water Sci. Technol. Water Supply 1998, 1, 81–88. [Google Scholar] [CrossRef]
- Toki, S.; Burger, C.; Hsiao, B.S.; Amnuaypornsri, S.; Sakdapipanich, J.; Tanaka, Y. Multi-Scaled Microstructures in Natural Rubber Characterized by Synchrotron X-Ray Scattering and Optical Microscopy. J. Polym. Sci. Part B Polym. Phys. 2008, 46, 2456–2464. [Google Scholar] [CrossRef]
- Dékány, I.; Turi, L.; Fonseca, A.; Nagy, J.B. The structure of acid treated sepiolites: Small-angle X-ray scattering and multi MAS-NMR investigations. Appl. Clay Sci. 1999, 14, 141–160. [Google Scholar] [CrossRef]
- Swapna, V.P.; Stephen, R.; Greeshma, T.; Sharan Dev, C.; Sreekala, M.S. Mechanical and swelling behavior of green nanocomposites of natural rubber latex and tubular shaped halloysite nano clay. Polym. Compos. 2016, 37, 602–611. [Google Scholar] [CrossRef]
- Sansatsadeekul, J.; Sakdapipanich, J.; Rojruthai, P. Characterization of associated proteins and phospholipids in natural rubber latex. J. Biosci. Bioeng. 2011, 111, 628–634. [Google Scholar] [CrossRef] [PubMed]
- Nawamawat, K.; Sakdapipanich, J.T.; Ho, C.C.; Ma, Y.; Song, J.; Vancso, J.G. Surface nanostructure of Hevea brasiliensis natural rubber latex particles. Colloids Surf. A Physicochem. Eng. Asp. 2011, 390, 157–166. [Google Scholar] [CrossRef]
- De Oliveira, G.; Menut, P.; Bonfils, F.; Vaysse, L.; Hemar, Y.; Sanchez, C. Colloids and Surfaces A: Physicochemical and Engineering Aspects Acid-induced aggregation and gelation of natural rubber latex particles. Colloids Surf. A Physicochem. Eng. Asp. 2015, 482, 9–17. [Google Scholar] [CrossRef]
- Hauser, E.A. The Colloid Science of Important Clay Minerals. Clays Clay Miner. 1954, 3, 442–472. [Google Scholar] [CrossRef]
- Doğan, M.; Türkyilmaz, A.; Alkan, M.; Demirbaş, Ö. Adsorption of copper (II) ions onto sepiolite and electrokinetic properties. Desalination 2009, 238, 257–270. [Google Scholar] [CrossRef]
- Alkan, M.; Tekin, G.; Namli, H. FTIR and zeta potential measurements of sepiolite treated with some organosilanes. Microporous Mesoporous Mater. 2005, 84, 75–83. [Google Scholar] [CrossRef]
- Del Hoyo, C.; Dorado, C.; Rodríguez-Cruz, M.S.; Sánchez-Martín, M.J. Physico-chemical study of selected surfactant-clay mineral systems. J. Therm. Anal. Calorim. 2008, 94, 227–234. [Google Scholar] [CrossRef]
- Yebra-Rodriguez, A.; Martin-Ramos, J.D.; Del Rey, F.; Viseras, C.; Lopez-Galindo, A. Effect of acid treatment on the structure of sepiolite. Clay Miner. 2003, 38, 353–360. [Google Scholar] [CrossRef] [Green Version]
- Di Credico, B.; De Biani, F.F.; Gonsalvi, L.; Guerri, A.; Ienco, A.; Laschi, F.; Peruzzini, M.; Reginato, G.; Rossin, A.; Zanello, P. Cyclopentadienyl ruthenium(II) complexes with bridging alkynylphosphine ligands: Synthesis and electrochemical studies. Chem. A Eur. J. 2009, 15, 11985–11998. [Google Scholar] [CrossRef]
- Lu, F.J.; Hsu, S.L. A Vibrational Spectroscopic Analysis of the Structure of Natural Rubber. Rubber Chem. Technol. 1987, 60, 647–658. [Google Scholar] [CrossRef]
- Alkan, M.; Benlikaya, R. Poly(vinyl alcohol) nanocomposites with sepiolite and heat-treated sepiolites. J. Appl. Polym. Sci. 2009, 112, 3764–3774. [Google Scholar] [CrossRef]
- Susanna, A.; Armelao, L.; Callone, E.; Dirè, S.; D’Arienzo, M.; Di Credico, B.; Giannini, L.; Hanel, T.; Morazzoni, F.; Scotti, R. ZnO nanoparticles anchored to silica filler. A curing accelerator for isoprene rubber composites. Chem. Eng. J. 2015, 275, 245–252. [Google Scholar] [CrossRef]
- Peng, Z.; Kong, L.X.; Li, S.D.; Chen, Y.; Huang, M.F. Self-assembled natural rubber/silica nanocomposites: Its preparation and characterization. Compos. Sci. Technol. 2007, 67, 3130–3139. [Google Scholar] [CrossRef]
- Sarkawi, S.S.; Dierkes, W.K.; Noordermeer, J.W.M. The influence of non-rubber constituents on performance of silica reinforced natural rubber compounds. Eur. Polym. J. 2013, 49, 3199–3209. [Google Scholar] [CrossRef]
- Valadares, L.F.; Leite, C.A.P.; Galembeck, F. Preparation of natural rubber-montmorillonite nanocomposite in aqueous medium: Evidence for polymer-platelet adhesion. Polymer 2006, 47, 672–678. [Google Scholar] [CrossRef]
- Che, J.; Burger, C.; Toki, S.; Rong, L.; Hsiao, B.S.; Amnuaypornsri, S.; Sakdapipanich, J. Crystal and crystallites structure of natural rubber and peroxide-vulcanized natural rubber by a two-dimensional wide-angle X-ray diffraction simulation method. II. Strain-induced crystallization versus temperature-induced crystallization. Macromolecules 2013, 46, 9712–9721. [Google Scholar] [CrossRef]
- Karino, T.; Ikeda, Y.; Yasuda, Y.; Kohjiya, S.; Shibayama, M. Nonuniformity in natural rubber as revealed by small-angle neutron scattering, small-angle X-ray scattering, and atomic force microscopy. Biomacromolecules 2007, 8, 693–699. [Google Scholar] [CrossRef] [PubMed]
- Sorensen, C.M.; Cai, J.; Lu, N. Test of Static Structure Factors for Describing Light Scattering from Fractal Soot Aggregates. Langmuir 1992, 8, 2064–2069. [Google Scholar] [CrossRef]
- Debye, P.; Anderson, H.R.; Brumberger, H. Scattering by an inhomogeneous solid. II. the correlation function and its application. J. Appl. Phys. 1957, 28, 679–683. [Google Scholar] [CrossRef]
- Winans, R.E.; Seifert, S.; Carrado, K.A. In Situ SAXS Studies of the Structural Changes of Sepiolite Clay and Sepiolite - Carbon Composites with Temperature. Chem. Mater. 2002, 14, 739–742. [Google Scholar] [CrossRef]
- Russel, W.B.; Saville, D.A.; Schowalter, W.R. Colloidal Dispersions; Cambridge University Press: Cambridge, UK, 1989. [Google Scholar]
- Hunter, R.J. Foundations of Colloid Science; Oxford University Press: Oxford, UK, 2001. [Google Scholar]
- Lee, C.S.; Robinson, J.; Chong, M.F. A review on application of flocculants in wastewater treatment. Process Saf. Environ. Prot. 2014, 92, 489–508. [Google Scholar] [CrossRef]
- Vrij, A. Polymers at interfaces and the interactions in colloidal dispersions. Pure Appl. Chem. 1976, 48, 471–483. [Google Scholar] [CrossRef]
- Asakura, S.; Oosawa, F. Interaction between particles suspended in solutions of macromolecules. J. Polym. Sci. Part A Polym. Chem. 1958, 48, 471. [Google Scholar] [CrossRef]
- Yasarawan, N.; Duijneveldt, J.S. Van Arrested phase separation of colloidal rod—Sphere mixtures. Soft Matter 2010, 6, 353–362. [Google Scholar] [CrossRef]
- Vliegenthart, G.A.; Van Blaaderen, A.; Lekkerkerker, H.N.W. Phase transitions, aggregation and crystallization in mixed suspensions of colloidal spheres and rods. Faraday Discuss. 1999, 112, 173–182. [Google Scholar] [CrossRef]
- Koenderink, G.H.; Vliegenthart, G.A.; Kluijtmans, S.G.J.M.; Van Blaaderen, A.; Philipse, A.P.; Lekkerkerker, H.N.W. Depletion-Induced Crystallization in Colloidal Rod−Sphere Mixtures. Langmuir 1999, 15, 4693–4696. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.-J. The Role of Filler Networking in Dynamic Properties of Filled Rubber. Rubber Chem. Technol. 1999, 72, 430–448. [Google Scholar] [CrossRef] [Green Version]
- Xu, T.; Jia, Z.; Li, J.; Luo, Y.; Jia, D.; Peng, Z. Study on the dispersion of carbon black/silica in SBR/BR composites and its properties by adding epoxidized natural rubber as a compatilizer. Polym. Compos. 2018, 39, 377–385. [Google Scholar] [CrossRef]
Length (nm) | Cross-Section (nm) | AR | |
---|---|---|---|
SepB5 | 1398 (±567) | 67 (±15) | 21 (±10) |
SepS9 | 1781 (±1004) | 80 (±21) | 22 (±11) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Credico, B.; Tagliaro, I.; Cobani, E.; Conzatti, L.; D’Arienzo, M.; Giannini, L.; Mascotto, S.; Scotti, R.; Stagnaro, P.; Tadiello, L. A Green Approach for Preparing High-Loaded Sepiolite/Polymer Biocomposites. Nanomaterials 2019, 9, 46. https://doi.org/10.3390/nano9010046
Di Credico B, Tagliaro I, Cobani E, Conzatti L, D’Arienzo M, Giannini L, Mascotto S, Scotti R, Stagnaro P, Tadiello L. A Green Approach for Preparing High-Loaded Sepiolite/Polymer Biocomposites. Nanomaterials. 2019; 9(1):46. https://doi.org/10.3390/nano9010046
Chicago/Turabian StyleDi Credico, Barbara, Irene Tagliaro, Elkid Cobani, Lucia Conzatti, Massimiliano D’Arienzo, Luca Giannini, Simone Mascotto, Roberto Scotti, Paola Stagnaro, and Luciano Tadiello. 2019. "A Green Approach for Preparing High-Loaded Sepiolite/Polymer Biocomposites" Nanomaterials 9, no. 1: 46. https://doi.org/10.3390/nano9010046
APA StyleDi Credico, B., Tagliaro, I., Cobani, E., Conzatti, L., D’Arienzo, M., Giannini, L., Mascotto, S., Scotti, R., Stagnaro, P., & Tadiello, L. (2019). A Green Approach for Preparing High-Loaded Sepiolite/Polymer Biocomposites. Nanomaterials, 9(1), 46. https://doi.org/10.3390/nano9010046