Drug Exchange between Albumin Nanoparticles and Erythrocyte Membranes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Drugs
2.2. BSA Nanoparticles
2.3. Hemolytic Assays
2.3.1. Hemolytic Assay under Hypotonic Conditions
2.3.2. Hemolytic Assay at Physiological Conditions
3. Results and Discussion
3.1. Characterization of BSA-NPs
3.2. Loading Efficiency of CPZ and TDZ into BSA-NPs and Release Profiles
3.3. Effects of Drugs and BSA-NPs on Hemolysis in Hypotonic Conditions
3.4. Effects of Drugs and BSA-NPs on Hemolysis in Physiological Conditions
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
NPs | Nanoparticles |
BSA-NPs | Bovine serum albumin nanoparticles |
CPZ | Chlorpromazine |
TDZ | Thioridazine |
References
- Leung, M.H.; Kee, T.W. Effective stabilization of curcumin by association to plasma proteins: Human serum albumin and fibrinogen. Langmuir 2009, 25, 5773–5777. [Google Scholar] [CrossRef] [PubMed]
- Merlot, A.M.; Kalinowski, D.S.; Richardson, D.R. Unraveling the mysteries of serum albumin—More than just a serum protein. Front. Physiol. 2014, 5, 299. [Google Scholar] [CrossRef]
- Desai, N. Nanoparticle Albumin-Bound Anticancer Agents. In Non-Biological Complex Drugs; Crommelin, D.J., de Vlieger, J.S.B., Eds.; Springer International Publishing: Cham, Switzerland, 2015; Volume 20, pp. 335–354. [Google Scholar]
- Wan, X.; Zheng, X.; Pang, X.; Zhang, Z.; Zhang, Q. Incorporation of lapatinib into human serum albumin nanoparticles with enhanced anti-tumor effects in HER2-positive breast cancer. Colloids Surf. B Biointerfaces 2015, 136, 817–827. [Google Scholar] [CrossRef] [PubMed]
- Merodio, M.; Arnedo, A.; Renedo, M.J.; Irache, J.M. Ganciclovir-loaded albumin nanoparticles: Characterization and in vitro release properties. Eur. J. Pharm. Sci. 2001, 12, 251–259. [Google Scholar] [CrossRef]
- Elzoghby, A.O.; Samy, W.M.; Elgindy, N.A. Albumin-based nanoparticles as potential controlled release drug delivery systems. J. Controll. Release 2012, 157, 168–182. [Google Scholar] [CrossRef] [PubMed]
- Jun, J.Y.; Nguyen, H.H.; Paik, S.Y.R.; Chun, H.S.; Kang, B.C.; Ko, S. Preparation of size-controlled bovine serum albumin (BSA) nanoparticles by a modified desolvation method. Food Chem. 2011, 127, 1892–1898. [Google Scholar] [CrossRef]
- Paik, S.Y.R.; Nguyen, H.H.; Ryu, J.; Che, J.H.; Kang, T.S.; Lee, J.K.; Song, C.W.; Ko, S. Robust size control of bovine serum albumin (BSA) nanoparticles by intermittent addition of a desolvating agent and the particle formation mechanism. Food Chem. 2013, 141, 695–701. [Google Scholar] [CrossRef]
- Kayani, Z.; Firuzi, O.; Bordbar, A.K. Doughnut-shaped bovine serum albumin nanoparticles loaded with doxorubicin for overcoming multidrug-resistant in cancer cells. Int. J. Biol. Macromol. 2018, 107, 1835–1843. [Google Scholar] [CrossRef]
- Das, R.P.; Singh, B.G.; Kunwar, A.; Ramani, M.V.; Subbaraju, G.V.; Hassan, P.A.; Priyadarsini, K.I. Tuning the binding, release and cytotoxicity of hydrophobic drug by Bovine Serum Albumin nanoparticles: Influence of particle size. Colloids Surf. B Biointerfaces 2017, 158, 682–688. [Google Scholar] [CrossRef]
- Yi, X.; Lian, X.; Dong, J.; Wan, Z.; Xia, C.; Song, X.; Fu, Y.; Gong, T.; Zhang, Z. Co-delivery of pirarubicin and paclitaxel by human serum albumin nanoparticles to enhance antitumor effect and reduce systemic toxicity in breast cancers. Mol. Pharm. 2015, 12, 4085–4098. [Google Scholar] [CrossRef]
- Kim, B.; Lee, C.; Lee, E.S.; Shin, B.S.; Youn, Y.S. Paclitaxel and curcumin co-bound albumin nanoparticles having antitumor potential to pancreatic cancer. Asian J. Pharm. Sci. 2016, 11, 708–714. [Google Scholar] [CrossRef] [Green Version]
- Wilson, B.; Paladugu, L.; Priyadarshini, S.R.; Jenita, J.J.L. Development of albumin-based nanoparticles for the delivery of abacavir. Int. J. Biol. Macromol. 2015, 81, 763–767. [Google Scholar] [CrossRef]
- Mo, Y.; Barnett, M.E.; Takemoto, D.; Davidson, H.; Kompella, U.B. Human serum albumin nanoparticles for efficient delivery of Cu, Zn superoxide dismutase gene. Mol. Vis. 2007, 13, 746. [Google Scholar] [PubMed]
- Lopes, M.; Shrestha, N.; Correia, A.; Shahbazi, M.A.; Sarmento, B.; Hirvonen, J.; Veiga, F.; Seiça, R.; Ribeiro, A.; Santos, H.A. Dual chitosan/albumin-coated alginate/dextran sulfate nanoparticles for enhanced oral delivery of insulin. J. Controll. Release 2016, 232, 29–41. [Google Scholar] [CrossRef] [PubMed]
- Lambert, G.; Fattal, E.; Couvreur, P. Nanoparticulate systems for the delivery of antisense oligonucleotides. Adv. Drug Deliv. Rev. 2001, 47, 99–112. [Google Scholar] [CrossRef]
- Fonseca, D.P.; Khalil, N.M.; Mainardes, R.M. Bovine serum albumin-based nanoparticles containing resveratrol: Characterization and antioxidant activity. J. Drug Deliv. Sci. Technol. 2017, 39, 147–155. [Google Scholar] [CrossRef]
- Woitiski, C.B.; Neufeld, R.J.; Veiga, F.; Carvalho, R.A.; Figueiredo, I.V. Pharmacological effect of orally delivered insulin facilitated by multilayered stable nanoparticles. Eur. J. Pharm. Sci. 2010, 41, 556–563. [Google Scholar] [CrossRef] [PubMed]
- Luis de Redín, I.; Boiero, C.; Martínez-Ohárriz, M.C.; Agüeros, M.; Ramos, R.; Peñuelas, I.; Allemandi, D.; Llabot, J.M.; Irache, J.M. Human serum albumin nanoparticles for ocular delivery of bevacizumab. Int. J. Pharm. 2018, 541, 214–223. [Google Scholar] [CrossRef]
- Valéria Pinheiro Malheiros, S.; de Paula, E.; Correa Meirelles, N. Contribution of trifluoperazine/lipid ratio and drug ionization to hemolysis. Biochim. Biophys. Acta Biomembr. 1998, 1373, 332–340. [Google Scholar] [CrossRef]
- Malheiros, S.V.; Meirelles, N.C.; de Paula, E. Pathways involved in trifluoperazine-, dibucaine- and praziquantel-induced hemolysis. Biophys. Chem. 2000, 83, 89–100. [Google Scholar] [CrossRef]
- Malheiros, S.V.P.; Pinto, L.M.A.; Gottardo, L.; Yokaichiya, D.K.; Fraceto, L.F.; Meirelles, N.C.; De Paula, E. A new look at the hemolytic effect of local anesthetics, considering their real membrane/water partitioning at pH 7.4. Biophys. Chem. 2004, 110, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Lichtenberg, D. Characterization of the solubilization of lipid bilayers by surfactants. Biochim. Biophys. Acta Biomembr. 1985, 821, 470–478. [Google Scholar] [CrossRef]
- Liu, S.; Huang, H. Assessments of antioxidant effect of black tea extract and its rationals by erythrocyte haemolysis assay, plasma oxidation assay and cellular antioxidant activity (CAA) assay. J. Funct. Foods 2015, 18, 1095–1105. [Google Scholar] [CrossRef]
- Cheng, F.Y.; Su, C.H.; Yang, Y.S.; Yeh, C.S.; Tsai, C.Y.; Wu, C.L.; Wu, M.T.; Shieh, D.B. Characterization of aqueous dispersions of Fe3O4 nanoparticles and their biomedical applications. Biomaterials 2005, 26, 729–738. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Cheng, Y.C.; Yu, C.H.; Chan, S.W.; Cheung, M.K.; Yu, P.H.F. In vitro cytotoxicity, hemolysis assay, and biodegradation behavior of biodegradable poly(3-hydroxybutyrate)-poly(ethylene glycol)-poly(3-hydroxybutyrate) nanoparticles as potential drug carriers. J. Biomed. Mater. Res. Part A 2008, 87A, 290–298. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Zhang, L.; Zhang, J.; Zhou, J.; He, Q.; Zeng, S.; Cui, X.; Shi, J. Hollow mesoporous carbon spheres—An excellent bilirubin adsorbent. Chem. Commun. 2009, 6071–6073. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Sun, X.; Zhang, G.; Trewyn, B.G.; Slowing, I.I.; Lin, V.S.Y. Interaction of mesoporous silica nanoparticles with human red blood cell membranes: size and surface effects. ACS Nano 2011, 5, 1366–1375. [Google Scholar] [CrossRef]
- Evans, B.C.; Nelson, C.E.; Yu, S.S.; Beavers, K.R.; Kim, A.J.; Li, H.; Nelson, H.M.; Giorgio, T.D.; Duvall, C.L. Ex vivo red blood cell hemolysis assay for the evaluation of pH-responsive endosomolytic agents for cytosolic delivery of biomacromolecular drugs. J. Vis. Exp. 2013, e50166. [Google Scholar] [CrossRef]
- Hu, C.M.J.; Fang, R.H.; Luk, B.T.; Zhang, L. Nanoparticle-detained toxins for safe and effective vaccination. Nat. Nanotechnol. 2013, 8, 933. [Google Scholar] [CrossRef]
- Pham, C.T.N.; Thomas, D.G.; Beiser, J.; Mitchell, L.M.; Huang, J.L.; Senpan, A.; Hu, G.; Gordon, M.; Baker, N.A.; Pan, D.; et al. Application of a hemolysis assay for analysis of complement activation by perfluorocarbon nanoparticles. Nanomed. Nanotechnol. Biol. Med. 2014, 10, 651–660. [Google Scholar] [CrossRef] [Green Version]
- Brähler, M.; Georgieva, R.; Buske, N.; Müller, A.; Müller, S.; Pinkernelle, J.; Teichgräber, U.; Voigt, A.; Bäumler, H. Magnetite-loaded carrier erythrocytes as contrast agents for magnetic resonance imaging. Nano Lett. 2006, 6, 2505–2509. [Google Scholar] [CrossRef] [PubMed]
- Delcea, M.; Sternberg, N.; Yashchenok, A.M.; Georgieva, R.; Bäumler, H.; Möhwald, H.; Skirtach, A.G. Nanoplasmonics for Dual-Molecule Release through Nanopores in the Membrane of Red Blood Cells. ACS Nano 2012, 6, 4169–4180. [Google Scholar] [CrossRef] [PubMed]
- Sternberg, N.; Georgieva, R.; Duft, K.; Bäumler, H. Surface-modified loaded human red blood cells for targeting and delivery of drugs. J. Microencapsul. 2012, 29, 9–20. [Google Scholar] [CrossRef] [PubMed]
- Kuroda, Y.; Kitamura, K. Intra- and intermolecular proton-proton nuclear Overhauser effect studies on the interactions of chlorpromazine with lecithin vesicles. J. Am. Chem. Soc. 1984, 106, 1–6. [Google Scholar] [CrossRef]
- Bretscher, M.S. Asymmetrical Lipid Bilayer Structure for Biological Membranes. Nature 1972, 236, 11–12. [Google Scholar] [CrossRef]
- Sheetz, M.P.; Singer, S.J. Biological Membranes as Bilayer Couples. A Molecular Mechanism of Drug-Erythrocyte Interactions. Proc. Natl. Acad. Sci. USA 1974, 71, 4457–4461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elferink, J.G. Fluorescence studies of membrane interactions of chlorpromazine and chlorimipramine. Biochem. Pharmacol. 1977, 26, 511–515. [Google Scholar] [CrossRef]
- Minetti, M.; Di Stasi, A.M.M. Involvement of erythrocyte skeletal proteins in the modulation of membrane fluidity by phenothiazines. Biochemistry 1987, 26, 8133–8137. [Google Scholar] [CrossRef]
- Enomoto, A.; Takakuwa, Y.; Manno, S.; Tanaka, A.; Mohandas, N. Regulation of erythrocyte ghost membrane mechanical stability by chlorpromazine. Biochim. Biophys. Acta Biomembr. 2001, 1512, 285–290. [Google Scholar] [CrossRef] [Green Version]
- Silva, D.; Cortez, C.M.; Louro, S.R. Quenching of the intrinsic fluorescence of bovine serum albumin by chlorpromazine and hemin. Braz. J. Med. Biol. Res. 2004, 37, 963–968. [Google Scholar] [CrossRef]
- Hendrich, A.B.; Lichacz, K.; Burek, A.; Michalak, K. Thioridazine induces erythrocyte stomatocytosis due to interactions with negatively charged lipids. Cell. Mol. Biol. Lett. 2002, 7, 1081–1086. [Google Scholar] [PubMed]
- Binford, J.S.; Palm, W.H. Absorption of surfactants by membranes: Erythrocytes versus synthetic vesicles. Biophys. J. 1994, 66, 2024–2028. [Google Scholar] [CrossRef]
- Xie, L.; Tong, W.; Yu, D.; Xu, J.; Li, J.; Gao, C. Bovine serum albumin nanoparticles modified with multilayers and aptamers for pH-responsive and targeted anti-cancer drug delivery. J. Mater. Chem. 2012, 22, 6053–6060. [Google Scholar] [CrossRef]
- Xie, L.; Tong, W.; Xu, J.; Gao, C. Multilayers and poly (allylamine hydrochloride)-graft-poly (ethylene glycol) modified bovine serum albumin nanoparticles: improved stability and pH-responsive drug delivery. Chin. J. Polym. Sci. 2012, 30, 719–726. [Google Scholar] [CrossRef]
- Kandagal, P.; Shaikh, S.; Manjunatha, D.; Seetharamappa, J.; Nagaralli, B. Spectroscopic studies on the binding of bioactive phenothiazine compounds to human serum albumin. J. Photochem. Photobiol. A Chem. 2007, 189, 121–127. [Google Scholar] [CrossRef]
- Zsila, F.; Iwao, Y. The drug binding site of human α1-acid glycoprotein: Insight from induced circular dichroism and electronic absorption spectra. Biochim. Biophys. Acta Gen. Subj. 2007, 1770, 797–809. [Google Scholar] [CrossRef] [PubMed]
- Kitamura, K.; Imayoshi, N.; Goto, T.; Shiro, H.; Mano, T.; Nakai, Y. Second derivative spectrophotometric determination of partition coefficients of chlorpromazine and promazine between lecithin bilayer vesicles and water. Anal. Chim. Acta 1995, 304, 101–106. [Google Scholar] [CrossRef]
- Van Kampen, E.; Zijlstra, W. Spectrophotometry of hemoglobin and hemoglobin derivatives. In Advances in Clinical Chemistry; Elsevier: Amsterdam, The Netherlands, 1983; Volume 23, pp. 199–257. [Google Scholar]
- Tacheva, B.; Zheleva, A.; Georgieva, R.; Tong, W.; Gao, C.; Karabaliev, M. Interactions of BSA-nanoparticles with some electroactive drugs. Trakia J. Sci. 2014, 12, 84–88. [Google Scholar]
Suspension Medium | Mean Diameter (nm) | Zeta-Potential (mV) |
---|---|---|
water | 250 (0.273) | |
PBS | 213 (0.295) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tacheva, B.; Paarvanova, B.; Ivanov, I.T.; Tenchov, B.; Georgieva, R.; Karabaliev, M. Drug Exchange between Albumin Nanoparticles and Erythrocyte Membranes. Nanomaterials 2019, 9, 47. https://doi.org/10.3390/nano9010047
Tacheva B, Paarvanova B, Ivanov IT, Tenchov B, Georgieva R, Karabaliev M. Drug Exchange between Albumin Nanoparticles and Erythrocyte Membranes. Nanomaterials. 2019; 9(1):47. https://doi.org/10.3390/nano9010047
Chicago/Turabian StyleTacheva, Bilyana, Boyana Paarvanova, Ivan T. Ivanov, Boris Tenchov, Radostina Georgieva, and Miroslav Karabaliev. 2019. "Drug Exchange between Albumin Nanoparticles and Erythrocyte Membranes" Nanomaterials 9, no. 1: 47. https://doi.org/10.3390/nano9010047
APA StyleTacheva, B., Paarvanova, B., Ivanov, I. T., Tenchov, B., Georgieva, R., & Karabaliev, M. (2019). Drug Exchange between Albumin Nanoparticles and Erythrocyte Membranes. Nanomaterials, 9(1), 47. https://doi.org/10.3390/nano9010047