Functional Properties of Poly(Trimethylene Terephthalate)-Block-Poly(Caprolactone) Based Nanocomposites Containing Graphene Oxide (GO) and Reduced Graphene Oxide (rGO)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Polymer Matrix
2.1.2. Nanofillers: Graphene Oxide (GO) and Reduced Graphene Oxide (rGO)
2.2. Characterization Methods
2.3. Preparation Procedure
2.3.1. Synthesis of Polymer Nanocomposites
2.3.2. Samples Preparation
3. Results and Discussion
3.1. Dispersion of Graphene Oxide and Reduced Graphene Oxide in the Polymer Matrix
3.2. Physico-Chemical Properties of PTT-Block-PCL-T Nanocomposites
3.3. Thermal Properties (DSC and TGA)
3.4. The Thermal and Electrical Conductivity of the Samples
3.5. Tensile Properties of PTT-block-PCL-T Nanocomposites
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Henning Storz, K.-D.V. Bio-based plastics: Status, challenges, and trends. Appl. Agric. For. Res. 2013, 63, 321–332. [Google Scholar]
- Paszkiewicz, S.; Janowska, I.; Pawlikowska, D.; Szymczyk, A.; Irska, I.; Lisiecki, S.; Stanik, R.; Gude, M.; Piesowicz, E. New functional nanocomposites based on poly(Trimethylene 2,5-furanoate) and few layer graphene prepared by in situ polymerization. Express Polym. Lett. 2018, 12, 530–542. [Google Scholar] [CrossRef]
- Muñoz-Guerra, S.; Lavilla, C.; Japu, C.; Martínez De Ilarduya, A. Renewable terephthalate polyesters from carbohydrate-based bicyclic monomers. Green Chem. 2014, 16, 1716–1739. [Google Scholar] [CrossRef]
- Li, S.; Ernst Worrell, M.P. Present and future development in plastics from biomass. Biofuels Bioprod. Biorefining 2010, 4, 25–40. [Google Scholar]
- Chivrac, F.; Pollet, E.; Avérous, L. Progress in nano-biocomposites based on polysaccharides and nanoclays. Mater. Sci. Eng. R Rep. 2009, 67, 1–17. [Google Scholar] [CrossRef]
- Bordes, P.; Pollet, E.; Avérous, L. Nano-biocomposites: Biodegradable polyester/nanoclay systems. Prog. Polym. Sci. 2009, 34, 125–155. [Google Scholar] [CrossRef]
- Klemm, D.; Heublein, B.; Fink, H.P.; Bohn, A. Cellulose: Fascinating biopolymer and sustainable raw material. Angew. Chemie Int. Ed. 2005, 44, 3358–3393. [Google Scholar] [CrossRef]
- Huang, X.; Qi, X.; Boey, F.; Zhang, H. Graphene-based composites. Chem. Soc. Rev. 2012, 41, 666–686. [Google Scholar] [CrossRef]
- Mittal, V.; Kim, S.; Neuhofer, S.; Paulik, C. Polyethylene/graphene nanocomposites: Effect of molecular weight on mechanical, thermal, rheological and morphological properties. Colloid Polym. Sci. 2016, 294, 691–704. [Google Scholar] [CrossRef]
- Stankovich, S.; Dikin, D.A.; Dommett, G.H.B.; Kohlhaas, K.A.; Zimmney, E.J.; Stach, E.A.; Piner, R.D.; Nguyen, S.B.T.; Ruoff, R.S. Graphene-based composite materials. Nature 2006, 442, 282–286. [Google Scholar] [CrossRef]
- Obrzut, J.; Migler, K.B. Optical and Conductivity Properties from Liquid Phase Exfoliation of Natural Graphene. In Graphene and Emerging Materials for Post-CMOS Applications; The Electrochemical Society: Pennington, NJ, USA, 2009; Volume 19, pp. 69–73. [Google Scholar]
- Chee, W.K.; Lim, H.N.; Huang, N.M.; Harrison, I. Nanocomposites of graphene/polymers: A review. RSC Adv. 2015, 5, 68014–68051. [Google Scholar] [CrossRef]
- Gao, W. Graphene Oxide Reduction Recipes, Spectroscopy, and Applications; Gao, W., Ed.; Springer International Publishing: Berlin, Germany, 2015; ISBN 978-3-319-15500-5. [Google Scholar]
- Brodie, B.C. Sur le poids atomique du graphite. Ann. Chim. Phys. 1960, 59, 466–472. [Google Scholar]
- Staudenmaier, L. Verfahren zur Darstellung der Graphitsäure. Ber. Dtsch. Chem. Ges. 1899, 32, 1394–1399. [Google Scholar] [CrossRef]
- Hummers, W.S.; Offeman, R.E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958, 80, 1339. [Google Scholar] [CrossRef]
- Marcano, D.C.; Kosynkin, D.V.; Berlin, J.M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L.B.; Lu, W.; Tour, J.M. Improved synthesis of graphene oxide. ACS Nano 2010, 4, 4806–4814. [Google Scholar] [CrossRef] [PubMed]
- Loh, K.P.; Bao, Q.; Eda, G.; Chhowalla, M. Graphene oxide as a chemically tunable platform for optical applications. Nat. Chem. 2010, 2, 1015–1024. [Google Scholar] [CrossRef]
- Stankovich, S.; Dikin, D.A.; Piner, R.D.; Kohlhaas, K.A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S.T.; Ruoff, R.S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon N. Y. 2007, 45, 1558–1565. [Google Scholar] [CrossRef]
- Yoo, B.M.; Shin, H.J.; Yoon, H.W.; Park, H.B. Graphene and graphene oxide and their uses in barrier polymers. J. Appl. Polym. Sci. 2014, 131. [Google Scholar] [CrossRef]
- Gómez-Navarro, C.; Burghard, M.; Kern, K. Elastic properties of chemically derived single graphene sheets. Nano Lett. 2008, 8, 2045–2049. [Google Scholar] [CrossRef]
- Suk, J.W.; Piner, R.D.; An, J.; Ruoff, R.S. Mechanical properties of monolayer graphene oxide. ACS Nano 2010, 4, 6557–6564. [Google Scholar] [CrossRef]
- Chen, W.; Yan, L.; Bangal, P.R. Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves. Carbon N. Y. 2010, 48, 1146–1152. [Google Scholar] [CrossRef]
- Ping, J.; Wang, Y.; Fan, K.; Wu, J.; Ying, Y. Direct electrochemical reduction of graphene oxide on ionic liquid doped screen-printed electrode and its electrochemical biosensing application. Biosens. Bioelectron. 2011, 28, 204–209. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.; Wang, J.; Engelhard, M.; Wang, C.; Lin, Y. Facile and controllable electrochemical reduction of graphene oxide and its applications. J. Mater. Chem. 2010, 20, 743–748. [Google Scholar] [CrossRef]
- Chua, C.K.; Pumera, M. Chemical reduction of graphene oxide: A synthetic chemistry viewpoint. Chem. Soc. Rev. 2014, 43, 291–312. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Navarro, C.; Weitz, R.T.; Bittner, A.M.; Scolari, M.; Mews, A.; Burghard, M.; Kern, K. Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett. 2007, 7, 3499–3503. [Google Scholar] [CrossRef] [PubMed]
- Moon, I.K.; Lee, J.; Ruoff, R.S.; Lee, H. Reduced graphene oxide by chemical graphitization. Nat. Commun. 2010, 1. [Google Scholar] [CrossRef]
- Ramanathan, T.; Abdala, A.A.; Stankovich, S.; Dikin, D.A.; Herrera-Alonso, M.; Piner, R.D.; Adamson, D.H.; Schniepp, H.C.; Chen, X.; Ruoff, R.S.; et al. Functionalized graphene sheets for polymer nanocomposites. Nat. Nanotechnol. 2008, 3, 327–331. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Z.; Wang, X.; Wang, L.; Cai, Y.; Hong, K.; Sun, L.; Lu, G.; Zhao, D.; Li, Z. Styrene–butadiene–styrene copolymer-compatibilized interfacial-modified graphene oxide with mechanical and electrical properties. J. Therm. Compos. Mater. 2015, 30, 1228–1241. [Google Scholar] [CrossRef]
- Paszkiewicz, S.; Szymczyk, A.; Spitalsky, Z.; Mosnacek, J.; Kwiatkowski, K.; Roslaniec, Z. Structure and properties of nanocomposites based on PTT–block-PTMO copolymer and graphene oxide by in situ polymerization. Europ. Polym. J. 2014, 50, 69–77. [Google Scholar] [CrossRef]
- Paszkiewicz, S.; Pawelec, I.; Szymczyk, A.; Roslaniec, Z. Thermoplastic elastomers containing 2D nanofillers: Montmorillonite, graphene nanoplatelets and oxidized graphene platelets. Pol. J. Chem. Technol. 2015, 17, 74–81. [Google Scholar] [CrossRef]
- Paszkiewicz, S.; Szymczyk, A.; Irska, I.; Pawlikowska, D.; Piesowicz, E. Synthesis, structure and physical properties of poly(trimethylene terephthalate)-block-poly(caprolactone) copolymers. J. Appl. Polym. Sci. 2019, 136, 47341. [Google Scholar] [CrossRef]
- Shen, J.; Hu, Y.; Shi, M.; Lu, X.; Qin, C.; Li, C.; Ye, M. Fast and facile preparation of graphene oxide and reduced graphene oxide nanoplatelets. Chem. Mater. 2009, 21, 3514–3520. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, H.L.; Zhang, Q.; Peng, J.; Li, J.; Zhai, M.; Yu, Z.Z. Facile synthesis of well-dispersed graphene by γ-ray induced reduction of graphene oxide. J. Mater. Chem. 2012, 22, 13064–13069. [Google Scholar] [CrossRef]
- Yoo, E.; Kim, J.; Hosono, E.; Zhou, H.; Kudo, T.; Honma, I. Large Reversible Li Storage of Graphene Nanosheet Families for Use in Rechargeable Lithium Ion Batteries. Nano Lett. 2008, 8, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Paszkiewicz, S.; Kwiatkowska, M.; Roslaniec, Z.; Szymczyk, A.; Jotko, M.; Lisiecki, S. The influence of different shaped nanofillers (1D, 2D) on barrier and mechanical properties of polymer hybrid nanocomposites based on PET prepared by in situ polymerization. Polym. Compos. 2016, 37, 1949–1959. [Google Scholar] [CrossRef]
- Pyda, M.; Boller, A.; Grebowicz, J.; Chuah, H.; Lebedev, B.V.; Wunderlich, B. Heat Capacity of Poly (trimethylene terephthalate). J. Polym. Sci. Part B Polym. Phys. 1998, 36, 2499–2511. [Google Scholar] [CrossRef]
- Szymczyk, A.; Roslaniec, Z.; Zenker, M.; Rueda, D.R.; Nogales, A.; Ezquerra, T.A. Preparation and characterization of nanocomposites based on COOH functionalized multi-walled carbon nanotubes and on poly ( trimethylene terephthalate ). Express Polym. Lett. 2011, 5, 977–995. [Google Scholar] [CrossRef]
- Paszkiewicz, S.; Szymczyk, A.; Špitalský, Z.; Soccio, M.; Mosnáček, J.; Ezquerra, T.A.; Rosłaniec, Z. Electrical conductivity of poly(ethylene terephthalate)/expanded graphite nanocomposites prepared by in situ polymerization. J. Polym. Sci. Part B Polym. Phys. 2012, 50, 1645–1652. [Google Scholar] [CrossRef]
- Paszkiewicz, S.; Szymczyk, A.; Janowska, I.; Jedrzejewski, R.; Linares, A.; Ezquerra, T.A.; Wagner, H.D.; Tenne, R.; Rosłaniec, Z. Comparative study on the properties of poly(trimethylene terephthalate) -based nanocomposites containing multi-walled carbon (MWCNT) and tungsten disulfide (INT-WS2) nanotubes. Polym. Adv. Technol. 2017, 28, 645–657. [Google Scholar] [CrossRef]
- Xing, L.; Wang, Y.; Wang, S.; Zhang, Y.; Mao, S.; Wang, G.; Liu, J.; Huang, L.; Li, H.; Belfiore, L.; et al. Effects of Modified Graphene Oxide on Thermal and Crystallization Properties of PET. Polymers 2018, 10, 613. [Google Scholar] [CrossRef]
- de Melo, C.C.N.; Beatrice, C.A.G.; Pessan, L.A.; de Oliveira, A.D.; Machado, F.M. Analysis of nonisothermal crystallization kinetics of graphene oxide—Reinforced polyamide 6 nanocomposites. Thermochim. Acta 2018, 667, 111–121. [Google Scholar] [CrossRef]
- Bai, Y.; Cai, H.; Qiu, X.; Fang, X.; Zheng, J. Effects of graphene reduction degree on thermal oxidative stability of reduced graphene oxide/silicone rubber nanocomposites. High Perform. Polym. 2015, 27, 997–1006. [Google Scholar] [CrossRef]
- Paszkiewicz, S.; Szymczyk, A.; Pawlikowska, D.; Subocz, J.; Zenker, M.; Masztak, R. Electrically and thermally conductive low density polyethylene-based nanocomposites reinforced by MWCNT or hybrid MWCNT/graphene nanoplatelets with improved thermo-oxidative stability. Nanomaterials 2018, 8, 264. [Google Scholar] [CrossRef] [PubMed]
- Paszkiewicz, S.; Szymczyk, A. Graphene-Based Nanomaterials and Their Polymer Nanocomposites. In Nanomaterials and Polymer Nanocomposites; Elsevier: Amsterdam, The Netherlands, 2019; pp. 177–216. ISBN 9780128146156. [Google Scholar]
- Paszkiewicz, S.; Szymczyk, A.; Sui, X.M.; Wagner, H.D.; Linares, A.; Ezquerra, T.A.; Rosłaniec, Z. Synergetic effect of single-walled carbon nanotubes (SWCNT) and graphene nanoplatelets (GNP) in electrically conductive PTT-block-PTMO hybrid nanocomposites prepared by in situ polymerization. Compos. Sci. Technol. 2015, 118, 72–77. [Google Scholar] [CrossRef]
- Dresselhaus, M.S.; Jorio, A.; Hofmann, M.; Dresselhaus, G.; Saito, R. Perspectives on carbon nanotubes and graphene. Raman spectroscopy. Nano Lett. 2010, 10, 751–758. [Google Scholar] [CrossRef]
- Wang, Y.; Shan, J.W.; Weng, G.J. Percolation threshold and electrical conductivity of graphene-based nanocomposites with filler agglomeration and interfacial tunneling. J. Appl. Phys. 2015, 118, 065101. [Google Scholar] [CrossRef]
- Paszkiewicz, S.; Szymczyk, A.; Pilawka, R.; Przybyszewski, B.; Czulak, A.; RosŁaniec, Z. Improved Thermal Conductivity of Poly(trimethylene terephthalate-block-poly(tetramethylene oxide) Based Nanocomposites Containing Hybrid Single-Walled Carbon Nanotubes/Graphene Nanoplatelets Fillers. Adv. Polym. Technol. 2017, 36, 236–242. [Google Scholar] [CrossRef]
GO | Peak BE (eV) | Concentration at. (%) | Concentration Mass (%) | rGO | Peak BE (eV) | Concentration at. (%) | Concentration Mass (%) |
---|---|---|---|---|---|---|---|
C 1s | 284.5 | 71.4 | 64.9 | C 1s | 284.5 | 89.2 | 85.8 |
O 1s | 530.5 | 28.1 | 34 | O 1s | 532 | 10.5 | 13.5 |
S 2p | 166 | 0.5 | 1.2 | N 1s | 399.5 | 0.3 | 0.7 |
Bond Type | GO | Peak BE (eV) | Concentration at. (%) | rGO | Peak BE (eV) | Concentration at. (%) |
---|---|---|---|---|---|---|
C=C sp2 | C 1s A | 284.5 | 46.1 | C 1s A | 284.5 | 77 |
C–O–C, C–OH | C 1s B | 286.6 | 47.7 | C 1s B | 286.2 | 9.2 |
C=O | C 1s C | 287.4 | 5.2 | |||
O=C–O– | C 1s C | 288.4 | 6.2 | C 1s D | 289.4 | 4.2 |
π–π * | C 1s E | 290.7 | 4.4 |
Element | GO | rGO |
---|---|---|
Carbon | 40%–42% | 80%–85% |
Oxygen | 49%–52% | 15%–18% |
Sulphur | 1%–3% | <2% |
Nitrogen | <0.3% | <0.3% |
Hydrogen | 2.5%–3% | <2% |
Sample | η (dl/g) | d (g/cm3) | TB (°C) | CWA (%) | HWA (%) |
---|---|---|---|---|---|
PTT-block-PCL-T | 0.864 | 1.2932 | 195 | 0.52 | 0.17 |
PTT-block-PCL-T/0.1GO | 0.851 | 1.2964 | 198 | 0.50 | 0.15 |
PTT-block-PCL-T/0.5GO | 0.848 | 1.2941 | 196 | 0.50 | 0.14 |
PTT-block-PCL-T/1.0GO | 0.636 | 1.3042 | 201 | 0.52 | 0.14 |
PTT-block-PCL-T/0.1rGO | 0.785 | 1.2939 | 199 | 0.51 | 0.16 |
PTT-block-PCL-T/0.5rGO | 0.729 | 1.3061 | 205 | 0.46 | 0.14 |
PTT-block-PCL-T/1.0rGO | 0.559 | 1.3027 | 201 | 0.44 | 0.13 |
Sample | Tg (°C) | ΔCp (J/g∙°C) | Tc (°C) | ΔHc (J/g) | Tm (°C) | ΔHm (J/g) | Xc (%) |
---|---|---|---|---|---|---|---|
PTT-block-PCL-T* | 17 | 0.22 | 90 | 20 | 181 | 29.5 | 14.4 |
PTT-block-PCL-T/0.1GO | 18 | 0.24 | 128 | 40.5 | 186 | 41.9 | 28.7 |
PTT-block-PCL-T/0.5GO | 15 | 0.21 | 121 | 40.1 | 182 | 41.8 | 28.6 |
PTT-block-PCL-T/1.0GO | 16 | 0.21 | 148 | 49.5 | 176/190 | 50.6 | 34.6 |
PTT-block-PCL-T/0.1rGO | 16 | 0.21 | 116 | 39.8 | 185 | 35.1 | 24.0 |
PTT-block-PCL-T/0.5rGO | 21 | 0.25 | 120 | 42.6 | 194 | 45.3 | 31.0 |
PTT-block-PCL-T/1.0rGO | 15 | 0.21 | 129 | 47.4 | 187 | 46.6 | 31.9 |
Sample | T5%(°C) | T10% (°C) | T50% (°C) | TDTG1(°C) | Ea, (R) (kJ/mol) | TDTG2 (°C) |
---|---|---|---|---|---|---|
Measurement in an oxidizing atmosphere | ||||||
PTT-block-PCL-T | 367 | 379 | 404 | 402 | 81.97 (0.9983) | 506 |
PTT-block-PCL-T/0.1GO | 363 | 376 | 405 | 404 | 81.62 (0.9988) | 495 |
PTT-block-PCL-T/0.5GO | 367 | 378 | 404 | 403 | 86.65 (0.9990) | 502 |
PTT-block-PCL-T/1.0GO | 363 | 378 | 403 | 403 | 83.18 (0.9979) | 479 |
PTT-block-PCL-T/0.1rGO | 365 | 377 | 404 | 404 | 82.29 (0.9985) | 488 |
PTT-block-PCL-T/0.5rGO | 368 | 380 | 403 | 402 | 86.53 (0.9990) | 491 |
PTT-block-PCL-T/1.0rGO | 367 | 380 | 403 | 402 | 81.85 (0.9981) | 491 |
Measurement in an inert atmosphere | ||||||
PTT-block-PCL-T | 367 | 381 | 407 | 405 | 77.38 (0.9999) | - |
PTT-block-PCL-T/0.1GO | 369 | 379 | 403 | 402 | 82.96 (0.9999) | - |
PTT-block-PCL-T/0.5GO | 381 | 373 | 404 | 403 | 78.49 (0.9999) | - |
PTT-block-PCL-T/1.0GO | 365 | 377 | 404 | 404 | 79.10 (1.0000) | - |
PTT-block-PCL-T/0.1rGO | 369 | 379 | 404 | 404 | 79.99 (0.9998) | - |
PTT-block-PCL-T/0.5rGO | 372 | 381 | 405 | 404 | 79.10 (0.9999) | - |
PTT-block-PCL-T/1.0rGO | 359 | 375 | 403 | 403 | 80.23 (0.9998) | - |
Sample | Hardness (Sh D) | E (MPa) | σm (MPa) | σb (MPa) | εb (%) |
---|---|---|---|---|---|
PTT-block-PCL-T | 59 ± 3 | 528.54 ± 36.78 | 29.65 ± 0.43 | 26.69 ± 0.39 | 26.91 ± 2.92 |
PTT-block-PCL-T/0.1GO | 60 ± 4 | 1633.67 ± 152.43 | 11.19 ± 1.47 | 7.49 ± 0.65 | 0.71 ± 0.04 |
PTT-block-PCL-T/0.5GO | 64 ± 6 | 601.57 ± 65.21 | 29.32 ± 0.37 | 26.67 ± 0.33 | 33.13 ± 2.05 |
PTT-block-PCL-T/1.0GO | 66 ± 2 | 419.96 ± 33.52 | 31.26 ± 2.46 | 27.71 ± 2.51 | 30.87 ± 0.66 |
PTT-block-PCL-T/0.1rGO | 62 ± 3 | 1650.19 ± 122.34 | 32.89 ± 0.95 | 29.58 ± 0.85 | 16.99 ± 2.44 |
PTT-block-PCL-T/0.5rGO | 61 ± 3 | 915.03 ± 45.73 | 26.98 ± 4.32 | 21.12 ± 2.51 | 2.66 ± 0.49 |
PTT-block-PCL-T/1.0rGO | 62 ± 6 | 434.18 ± 23.78 | 27.19 ± 3.98 | 20,17 ± 0.48 | 5.13 ± 0.73 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paszkiewicz, S.; Pawlikowska, D.; Kurcz, M.; Szymczyk, A.; Irska, I.; Stanik, R.; Gude, M.; Linares, A.; Ezquerra, T.A.; Lipińska, L.; et al. Functional Properties of Poly(Trimethylene Terephthalate)-Block-Poly(Caprolactone) Based Nanocomposites Containing Graphene Oxide (GO) and Reduced Graphene Oxide (rGO). Nanomaterials 2019, 9, 1459. https://doi.org/10.3390/nano9101459
Paszkiewicz S, Pawlikowska D, Kurcz M, Szymczyk A, Irska I, Stanik R, Gude M, Linares A, Ezquerra TA, Lipińska L, et al. Functional Properties of Poly(Trimethylene Terephthalate)-Block-Poly(Caprolactone) Based Nanocomposites Containing Graphene Oxide (GO) and Reduced Graphene Oxide (rGO). Nanomaterials. 2019; 9(10):1459. https://doi.org/10.3390/nano9101459
Chicago/Turabian StylePaszkiewicz, Sandra, Daria Pawlikowska, Magdalena Kurcz, Anna Szymczyk, Izabela Irska, Rafał Stanik, Maik Gude, Amelia Linares, Tiberio A. Ezquerra, Ludwika Lipińska, and et al. 2019. "Functional Properties of Poly(Trimethylene Terephthalate)-Block-Poly(Caprolactone) Based Nanocomposites Containing Graphene Oxide (GO) and Reduced Graphene Oxide (rGO)" Nanomaterials 9, no. 10: 1459. https://doi.org/10.3390/nano9101459
APA StylePaszkiewicz, S., Pawlikowska, D., Kurcz, M., Szymczyk, A., Irska, I., Stanik, R., Gude, M., Linares, A., Ezquerra, T. A., Lipińska, L., Woluntarski, M., Zubkiewicz, A., & Piesowicz, E. (2019). Functional Properties of Poly(Trimethylene Terephthalate)-Block-Poly(Caprolactone) Based Nanocomposites Containing Graphene Oxide (GO) and Reduced Graphene Oxide (rGO). Nanomaterials, 9(10), 1459. https://doi.org/10.3390/nano9101459