Hydrogen Production by Formic Acid Decomposition over Ca Promoted Ni/SiO2 Catalysts: Effect of the Calcium Content
Abstract
:1. Introduction
2. Materials and Methods
2.1. Catalysts Preparation
2.2. Sample Characterization
2.3. Catalytic Test
3. Results
3.1. Catalysts Characterization
3.2. Catalytic Performance in Fixed-Bed Reactor
3.3. Study of the Adsorbed Species Under Reaction Conditions: Temperature Programmed Surface Reaction and FTIR Experiments
3.4. Characterization of Used Catalysts
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jia, L.; Bulusheva, D.A.; Beloshapkin, S.; Ross, J.R.H. Hydrogen production from formic acid vapour over a Pd/C catalyst promoted by potassium salts: Evidence for participation of buffer-like solution in the pores of the catalyst. Appl. Catal. B Environ. 2014, 160–161, 35–43. [Google Scholar] [CrossRef]
- Wang, Z.L.; Yan, J.M.; Wang, H.L.; Ping, Y.; Jiang, Q. Pd/C synthesized with citric acid: An efficient catalyst for hydrogen generation from formic acid/sodium formate. Sci. Rep. 2012, 2, 598. [Google Scholar] [CrossRef] [PubMed]
- Solymosi, F.; Koós, Á.; Liliom, N.; Ugrai, I. Production of CO-free H2 from Formic Acid. A Comparative Study of the Catalytic Behaviour of Pt Metals on a Carbon Support. J. Catal. 2011, 279, 213–219. [Google Scholar] [CrossRef]
- Iglesia, E.; Boudart, M. Decomposition of formic acid on copper, nickel, and copper-nickel alloys: III. Catalytic decomposition on nickel and copper-nickel alloys. J. Catal. 1983, 81, 224–238. [Google Scholar] [CrossRef]
- Thyssen, V.V.; Maia, T.A.; Assaf, E.M. Ni supported on La2O3-SiO2 used to catalyse glycerol steam reforming. Fuel 2013, 105, 358–363. [Google Scholar] [CrossRef]
- Thyssen, V.V.; Assaf, E.M. Ni/La2O3-SiO2 catalysts applied to glycerol steam reforming reaction: Effect of the preparation method and reaction temperature. J. Braz. Chem. Soc. 2014, 25, 2455–2465. [Google Scholar] [CrossRef]
- Thyssen, V.V.; Maia, T.A.; Assaf, E.M. Cu and Ni catalysts supported on g-Al2O3 and SiO2 assessed in glycerol steam reforming reaction. J. Braz. Chem. Soc. 2015, 26, 22–31. [Google Scholar] [CrossRef]
- Thyssen, V.V.; Georgetti, F.; Assaf, E.M. Influence of MgO content as an additive on the performance of Ni/MgO-SiO2 catalysts for the steam reforming of glycerol. Int. J. Hydrogen Energy 2017, 42, 16979–16990. [Google Scholar] [CrossRef]
- Meng, G.; Lu, G. The effect of impregnation strategy on structural characters and CO2 methanation properties over MgO modified Ni/SiO2 catalysts. Catal. Commun. 2014, 54, 55–60. [Google Scholar] [CrossRef]
- Gluhoi, A.C.; Bogdanchikova, N.; Nieuwenhuys, B.E. Alkali (earth)-doped Au/Al2O3 catalysts for the total oxidation of propene. J. Catal. 2005, 232, 96–101. [Google Scholar] [CrossRef]
- Yang, D.; Li, J.; Wen, M.; Song, C. Enhanced activity of Ca-doped Cu/ZrO2 for nitrogen oxides reduction with propylene in the presence of excess oxygen. Catal. Today 2008, 139, 2–7. [Google Scholar] [CrossRef]
- Xu, L.; Song, H.; Chou, L. One-Pot Synthesis of Ordered Mesoporous NiO–CaO–Al2O3 Composite Oxides for Catalyzing CO2 Reforming of CH4. ACS Catal. 2012, 2, 1331–1342. [Google Scholar] [CrossRef]
- Park, J.; McFarland, E. A highly dispersed Pd–Mg/SiO2 catalyst active for methanation of CO2. J. Catal. 2009, 266, 92–97. [Google Scholar] [CrossRef]
- Kim, H.Y.; Lee, H.M.; Park, J. Bifunctional Mechanism of CO2 Methanation on Pd-MgO/SiO2 Catalyst: Independent Roles of MgO and Pd on CO2 Methanation. J. Phys. Chem. C 2010, 114, 7128–7131. [Google Scholar] [CrossRef]
- Xu, L.; Song, H.; Chou, L. Ordered mesoporous MgO–Al2O3 composite oxides supported Ni based catalysts for CO2 reforming of CH4: Effects of basic modifier and mesopore structure. Int. J. Hydrogen Energy 2013, 38, 7307–7325. [Google Scholar] [CrossRef]
- Larsen, G.; Haller, G. Metal-support effects in Pt/L-zeolite catalysts. Catal. Lett. 1989, 3, 103–110. [Google Scholar] [CrossRef]
- Panagiotopoulou, P.; Kondarides, D.I. Effects of promotion of TiO2 with alkaline earth metals on the chemisorptive properties and water–gas shift activity of supported platinum catalysts. Appl. Catal. B Environ. 2011, 101, 738–746. [Google Scholar] [CrossRef]
- Borowiecki, T.; Denis, A.; Rawski, M.; Gołębiowski, A.; Stołecki, K.; Dmytrzyk, J.; Kotarba, A. Studies of potassium-promoted nickel catalysts for methane steam reforming: Effect of surface potassium location. Appl. Surf. Sci. 2014, 300, 191–200. [Google Scholar] [CrossRef]
- Alipour, Z.; Rezaei, M.; Meshkani, F. Effect of alkaline earth promoters (MgO, CaO, and BaO) on the activity and coke formation of Ni catalysts supported on nanocrystalline Al2O3 in dry reforming of methane. J. Ind. Eng. Chem. 2014, 20, 2858–2863. [Google Scholar] [CrossRef]
- Múnera, J.; Faroldi, B.; Frutis, E.; Lombardo, E.; Cornaglia, L.; Carrazán, S.G. Supported Rh nanoparticles on CaO-SiO2 binary systems for the reforming of methane by carbon dioxide in membrane reactors. Appl. Catal. A Gen. 2014, 474, 114–124. [Google Scholar] [CrossRef]
- Le, T.A.; Kang, J.K.; Park, E.D. Active Ni/SiO2 catalysts with high Ni content for benzene hydrogenation and CO methanation. Appl. Catal. A Gen. 2019, 581, 67–73. [Google Scholar] [CrossRef]
- Mutch, G.; Anderson, J.; Vega-Maza, D. Surface and bulk carbonate formation in calcium oxide during CO2 capture. Appl. Energy 2017, 202, 365–376. [Google Scholar] [CrossRef]
- Faroldi, B.M.; Lombardo, E.A.; Cornaglia, L.M. Surface properties and catalytic behavior of Ru supported on composite La2O3–SiO2 oxides. Appl. Catal. A Gen. 2009, 369, 15–26. [Google Scholar] [CrossRef]
- Faroldi, B.; Múnera, J.; Falivene, J.; Rodriguez-Ramos, I.; Gutiérrez García, A.; Tejedor Fernández, L.; Carrazán, S.G.; Cornaglia, L. Well-dispersed Rh nanoparticles with high activity for the dry reforming of methane. Int. J. Hydrogen Energy 2017, 42, 16127–16138. [Google Scholar] [CrossRef]
- Biesinger, M.C.; Payne, B.P.; Grosvenor, A.P.; Lau, L.W.M.; Gerson, A.R.; Smart, R.S.C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 2011, 257, 2717–2730. [Google Scholar] [CrossRef]
- Thyssen, V.V.; Nogueira, F.G.E.; Assaf, E.M. Study of the influence of nickel content and reaction temperature on glycerol steam reforming with Ni/La2O3-SiO2 catalysts. Int. J. Res. Eng. Sci. 2017, 5, 54–62. [Google Scholar]
- Liu, D.; Lau, R.; Borgna, A.; Yang, Y. Carbon dioxide reforming of methane to synthesis gas over Ni-MCM-41 catalysts. Appl. Catal. A 2009, 358, 110–118. [Google Scholar] [CrossRef]
- Jia, L.; Bulusheva, D.A.; Ross, J.R.H. Formic Acid Decomposition over Palladium Based Catalysts Doped by Potassium Carbonate. Catal. Today 2016, 259, 453–459. [Google Scholar] [CrossRef]
- Anderson, J.; Rochester, C. Infrared Studies of Probe Molecules adsorbed on Calcium Oxide. J. Chem. Soc. Faraday Trans. I 1986, 82, 1911–1922. [Google Scholar] [CrossRef]
Catalyst | Ca/Ni Ratio | T50% | S50% | T100% | S100% | H2/CO2 Ratio |
---|---|---|---|---|---|---|
Ni/SiO2 | - | 148 | 91 | 180 | 87 | 1.01 |
Ni/Ca(3.4)-SiO2 | 1 | 153 | 93 | 180 | 91 | 1.08 |
Ni/Ca(6.8)-SiO2 | 2 | 153 | 93 | 180 | 90 | 1.04 |
Ni/Ca(19.3)-SiO2 | 5.6 | 145 | 92 | 160 | 92 | 0.95 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faroldi, B.; Paviotti, M.A.; Camino-Manjarrés, M.; González-Carrazán, S.; López-Olmos, C.; Rodríguez-Ramos, I. Hydrogen Production by Formic Acid Decomposition over Ca Promoted Ni/SiO2 Catalysts: Effect of the Calcium Content. Nanomaterials 2019, 9, 1516. https://doi.org/10.3390/nano9111516
Faroldi B, Paviotti MA, Camino-Manjarrés M, González-Carrazán S, López-Olmos C, Rodríguez-Ramos I. Hydrogen Production by Formic Acid Decomposition over Ca Promoted Ni/SiO2 Catalysts: Effect of the Calcium Content. Nanomaterials. 2019; 9(11):1516. https://doi.org/10.3390/nano9111516
Chicago/Turabian StyleFaroldi, B., M. A. Paviotti, M. Camino-Manjarrés, S. González-Carrazán, C. López-Olmos, and I. Rodríguez-Ramos. 2019. "Hydrogen Production by Formic Acid Decomposition over Ca Promoted Ni/SiO2 Catalysts: Effect of the Calcium Content" Nanomaterials 9, no. 11: 1516. https://doi.org/10.3390/nano9111516
APA StyleFaroldi, B., Paviotti, M. A., Camino-Manjarrés, M., González-Carrazán, S., López-Olmos, C., & Rodríguez-Ramos, I. (2019). Hydrogen Production by Formic Acid Decomposition over Ca Promoted Ni/SiO2 Catalysts: Effect of the Calcium Content. Nanomaterials, 9(11), 1516. https://doi.org/10.3390/nano9111516