Recent Progress on Transition Metal Nitrides Nanoparticles as Heterogeneous Catalysts
Abstract
:1. Introduction
- (a)
- Ligand effect: Nitrides have a different electronic structure compared to the parent metal. This is due to the charge transfer from the metal to the non-metal, hybridization of the metal d-states with the non-metal sp-states, and expansion of the metal–metal lattice spacing. These changes in the electronic structure, modify the chemical reactivity of the parent metal so that the strenght of adsorption of reactants and products is similar to noble metals, this improving the selectivity of the reactions.
- (b)
- Ensemble effect: When nitrogen is located on the metal surface, it may decrease the number of available metal sites, also creating different adorption sites. This effect can be somehow tuned by changing the metal to nitrogen ratio.
2. Synthesis and Structural Properties
3. Transition Metal Nitrides as Catalyst
3.1. Hydrotreatment Reactions
3.2. Oxidation
3.3. Ammonia Synthesis and Decomposition
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Inagaki, M.; Toyoda, M.; Soneda, Y.; Morishita, T. Nitrogen-doped carbon materials. Carbon 2018, 132, 104–140. [Google Scholar] [CrossRef]
- Thandavarayan, H.W.; Wang, M.X. Review on Recent Progress in Nitrogen-Doped Graphene: Synthesis, Characterization, and Its Potential Applications. ACS Catal. 2012, 25781–25794. [Google Scholar]
- Nagai, M. Transition-metal nitrides for hydrotreating catalyst—Synthesis, surface properties, and reactivities. Appl. Catal. A Gen. 2007, 322, 178–190. [Google Scholar] [CrossRef]
- Dinh, K.N.; Liang, Q.; Du, C.F.; Zhao, J.; Tok, A.I.Y.; Mao, H.; Yan, Q. Nanostructured metallic transition metal carbides, nitrides, phosphides, and borides for energy storage and conversion. Nano Today 2019, 25, 99–121. [Google Scholar] [CrossRef]
- Volpe, L.; Boudart, M.J. Compounds of molybdenum and tungsten with high specific surface area: I. Nitrides. Solid State Chem. 1985, 59, 332–347. [Google Scholar] [CrossRef]
- Zhong, Y.; Xia, X.; Shi, F.; Zhan, J.; Tu, J.; Fan, H.J. Transition Metal Carbides and Nitrides in Energy Storage and Conversion. Adv. Sci. 2016, 3, 1500286. [Google Scholar] [CrossRef] [PubMed]
- Hargreaves, J.S.J.; McFarlane, A.R.; Laassiri, S. (Eds.) Alternative Catalytic Materials: Carbides, Nitrides, Phosphides and Amorphous Boron Alloys; Metal Nitride Catalysts Chapter 5; Royal Society of Chemistry: London, UK, 2018. [Google Scholar]
- Lee, J.S.; Ham, D.J. Metal Nitrides, Encyclopedia of Catalysis; Wiley: Hoboken, NJ, USA, 2010. [Google Scholar]
- Liu, W.; Zhang, L.; Liu, X.; Liu, X.; Yang, X.; Miao, S.; Wang, W.; Wang, A.; Zhang, T. Discriminating Catalytically Active FeNx Species of Atomically Dispersed Fe–N–C Catalyst for Selective Oxidation of the C–H Bond. J. Am. Chem. Soc. 2017, 139, 10790–10798. [Google Scholar] [CrossRef] [PubMed]
- Rounaghi, S.A.; Vanpoucke, D.E.P.; Esmaeili, E.; Scudino, S.; Eckert, J. Synthesis, characterization and thermodynamic stability of nanostructured ε-iron carbonitride powder prepared by a solid-state mechanochemical route. J. Alloys Compd. 2019, 778, 327–336. [Google Scholar] [CrossRef]
- Roldan, M.A.; López-Flores, V.; Alcala, M.D.; Ortega, A.; Real, C. Mechanochemical synthesis of vanadium nitride. J. Eur. Ceram. Soc. 2010, 30, 2099–2107. [Google Scholar] [CrossRef]
- Rasaki, S.A.; Zhang, B.; Thomas, K.A.T.; Yang, M. Synthesis and application of nano-structured metal nitrides and carbides: A review. Prog. Solid State Chem. 2018, 50, 1–15. [Google Scholar] [CrossRef]
- Markel, E.J.; Burdick, S.E.; Leaphart, M.E.; Roberts, K.L. Synthesis, Characterization, and Thiophene Desulfurization Activity of Unsupported γ-Mo2N Macrocrystalline Catalysts. J. Catal. 1999, 182, 136–147. [Google Scholar] [CrossRef]
- Wise, R.S.; Markel, E.J. Synthesis of High Surface Area Molybdenum Nitride in Mixtures of Nitrogen and Hydrogen. J. Catal. 1994, 145, 344–355. [Google Scholar] [CrossRef]
- Giordano, C.; Erpen, C.; Yao, W.; Milke, B.; Antonietti, M. Metal Nitride and Metal Carbide Nanoparticles by a Soft Urea Pathway. Chem. Mater. 2009, 21, 5136–5144. [Google Scholar] [CrossRef]
- Giordano, C.; Erpen, C.; Yao, W.; Antonietti, M. Synthesis of Mo and W Carbide and Nitride Nanoparticles via a Simple “Urea Glass” Route. Nano Lett. 2008, 8, 4659–4663. [Google Scholar] [CrossRef] [PubMed]
- Salamat, A.; Hector, A.L.; Kroll, P.; McMillan, P.F. Nitrogen-rich transition metal nitrides. Coord. Chem. Rev. 2013, 257, 2063. [Google Scholar] [CrossRef]
- Wang, T.; Yan, Z.; Michel, C.; Pera-Titus, M.; Sautet, P. Trends and Control in the Nitridation of Transition-Metal Surfaces. ACS Catal. 2018, 8, 63–68. [Google Scholar] [CrossRef]
- Crowhurst, J.C.; Goncharov, A.F.; Sadigh, B.; Evans, C.L.; Morrall, P.G.; Ferreira, J.L.; Nelson, A.J. Synthesis and characterization of the nitrides of platinum and iridium. Science 2006, 311, 1275–1278. [Google Scholar] [CrossRef] [PubMed]
- Crowhurst, J.C.; Goncharov, A.F.; Sadigh, B.; Zaug, J.M.; Aberg, D.; Meng, Y.; Prakapenka, V.B. Synthesis and characterization of nitrides of iridium and palladium. J. Mater. Res. 2008, 23, 1–5. [Google Scholar] [CrossRef]
- Hargreaves, J.S.J. Heterogeneous catalysis with metal nitrides Coordination. Chem. Rev. 2013, 257, 2015–2031. [Google Scholar]
- Álvarez, A.; Bansode, A.; Urakawa, A.; Bavykina, A.V.; Wezendonk, T.A.; Makkee, M.; Gascon, J.; Kapteijn, F. Challenges in the Greener Production of Formates/Formic Acid, Methanol, and DME by Heterogeneously Catalyzed CO2 Hydrogenation Processes. Chem. Rev. 2017, 117, 9804–9838. [Google Scholar] [CrossRef]
- Din, I.U.; Shaharun, M.S.; Alotaibi, M.A.; Alharthi, A.I.; Naeem, A. Recent developments on heterogeneous catalytic CO2 reduction to methanol. J. CO2 Utilizat. 2019, 34, 20–33. [Google Scholar] [CrossRef]
- Zaman, S.F.; Pasupulety, N.; Al-Zahrania, A.A.; Daousa, M.A.; Al-Shahrania, S.S.; Driss, H.; Petrova, L.A.; Smith, K.J. Carbon monoxide hydrogenation on potassium promoted Mo2N catalysts. Appl. Catal. A Gener. 2017, 532, 133–145. [Google Scholar] [CrossRef]
- Zaman, S.F.; Pasupulety, N.; Al-Zahrani, A.A.; Daous, M.A.; Driss, H.; Al-Shahrani, S.S.; Petrov, L. Influence of alkali metal (Li and Cs) addition to Mo2N catalyst for CO hydrogenation to hydrocarbons and oxygenates. Can. J. Chem. Eng. 2018, 96, 1770–1779. [Google Scholar] [CrossRef]
- Rönscha, S.; Schneidera, J.; Matthischke, S.; Schlütera, M.; Götz, M.; Lefebvre, J.; Prabhakaran, P.; Bajohr, S. Review on methanation—From fundamentals to current projects. Fuel 2016, 166, 276–296. [Google Scholar] [CrossRef]
- Wang, S.; Ge, H.; Sun, S.; Zhang, J.; Liu, F.; Wen, X.; Yu, X.; Wang, L.; Zhang, Y.; Xu, H.; et al. A New Molybdenum Nitride Catalyst with Rhombohedral MoS2 Structure for Hydrogenation Applications. J. Am. Chem. Soc. 2015, 137, 4815–4822. [Google Scholar] [CrossRef] [PubMed]
- Leybo, D.V.; Kosova, N.I.; Chuprunov, K.O.; Kuznetsov, D.V.; Kurzina, I.A. Bimetallic Ni-Mo Nitride as the Carbon Dioxide Hydrogenation Catalyst. Adv. Mater. Res. 2014, 872, 3–9. [Google Scholar] [CrossRef]
- Razzaq, R.; Li, C.; Usman, M.; Suzuki, K.; Zhan, S. A highly active and stable Co4N/γ-Al2O3 catalyst for CO and CO2 methanation to produce synthetic natural gas (SNG). Chem. Eng. J. 2015, 262, 1090–1098. [Google Scholar] [CrossRef]
- Jahangiri, H.; Bennett, J.; Mahjoubi, P.; Wilson, K.; Gua, S. A review of advanced catalyst development for Fischer–Tropsch synthesis of hydrocarbons from biomass derived syn-gas. Catal. Sci. Technol. 2014, 4, 2210–2229. [Google Scholar] [CrossRef]
- Yang, Z.; Guo, S.; Pan, X.; Wang, J.; Bao, X. A review of advanced catalyst development for Fischer–Tropsch synthesis of hydrocarbons from biomass derived syn-gas, FeN nanoparticles confined in carbon nanotubes for CO hydrogenation. Energy Environ. Sci. 2011, 4, 4500. [Google Scholar] [CrossRef]
- Ordomsky, V.V.; Carvalho, A.; Legras, B.; Paul, S.; Khodakov, A.Y. Effects of co-feeding with nitrogen-containing compounds on the performance of supported cobalt and iron catalysts in Fischer–Tropsch synthesis. Catal. Today 2016, 275, 84–93. [Google Scholar] [CrossRef]
- Zaman, S.F. DFT study of CO Adsorption and Dissociation over γ-Mo2N(111) Plane. Bull. Chem. Commun. 2015, 47, 125–132. [Google Scholar]
- Aramouni, N.A.K.; Touma, J.G.; Tarboush, B.A.; Zeaiter, J.; Ahmad, M.N. Catalyst design for dry reforming of methane: Analysis review. Renew. Sustain. Energy Rev. 2018, 82, 2570–2585. [Google Scholar] [CrossRef]
- Du, X.; France, L.J.; Kuznetsov, V.L.; Xiao, T.; Edwards, P.P.; AlMegren, H.; Bagabas, A. Dry reforming of methane over ZrO2-supported Co–Mo carbide catalyst. Appl. Petrochem. Res. 2014, 4, 137–144. [Google Scholar] [CrossRef]
- Fu, X.; Su, H.; Yin, W.; Huang, Y.; Gu, X. Bimetallic molybdenum nitride Co3Mo3N: a new promising catalyst for CO2 reforming of methane. Catal. Sci. Technol. 2017, 7, 1671–1678. [Google Scholar] [CrossRef]
- Monnier, J.; Sulimma, H.; Dalai, A.; Caravaggio, G. Hydrodeoxygenation of oleic acid and canola oil over alumina-supported metal nitrides. Appl. Catal. A 2010, 382, 176. [Google Scholar] [CrossRef]
- Nguyen, H.S.H.; Mäki-Arvela, P.; Akhmetzyanova, U.; Tišler, Z.; Hachemi, I.; Rudnäs, A.; Smeds, A.; Eränen, K.; Aho, A.; Kumar, N.; et al. Direct hydrodeoxygenation of algal lipids extracted from Chlorellaalga. J. Chem. Technol. Biotechnol. 2017, 92, 741–748. [Google Scholar] [CrossRef]
- Liu, X.; Xu, L.; Xu, G.; Jia, W.; Ma, Y.; Zhang, Y. Selective Hydrodeoxygenation of Lignin-Derived Phenols to Cyclohexanols or Cyclohexanes over Magnetic CoNx@NC Catalysts under Mild Conditions. ACS Catal. 2016, 6, 7611–7620. [Google Scholar] [CrossRef]
- Cheng, T.; Yu, H.; Peng, F.; Wang, H.; Zhang, B.; Su, D. Identifying active sites of CoNC/CNT from pyrolysis of molecularly defined complexes for oxidative esterification and hydrogenation reactions. Catal. Sci. Technol. 2016, 6, 1007. [Google Scholar] [CrossRef]
- Boullosa-Eiras, S.; Lødeng, R.; Bergem, H.; Stöcker, M.; Hannevold, L.; Blekkana, E.A. Catalytic hydrodeoxygenation (HDO) of phenol over supported molybdenum carbide, nitride, phosphide and oxide catalysts. Catal. Today 2014, 223, 44–53. [Google Scholar] [CrossRef]
- Junga, A.; Jessa, A.; Schubert, T.; Schütz, W. Performance of carbon nanomaterial (nanotubes and nanofibres) supported platinum and palladium catalysts for the hydrogenation of cinnamaldehyde and of 1-octyne. Appl. Catal. A Gen. 2009, 362, 95–105. [Google Scholar] [CrossRef]
- Dongil, A.B.; Bachiller-Baeza, B.; Guerrero-Ruiz, A.; Rodríguez-Ramos, I. Chemoselective hydrogenation of cinnamaldehyde: A comparison of the immobilization of Ru–phosphine complex on graphite oxide and on graphitic surfaces. J. Catal. 2011, 282, 299–309. [Google Scholar] [CrossRef]
- Wang, D.; Zhu, Y.; Tian, C.; Wang, L.; Zhou, W.; Dong, Y.; Han, Q.; Liu, Y.; Yuana, F.; Fu, H. Synergistic effect of Mo2N and Pt for promoted selective hydrogenation of cinnamaldehyde over Pt–Mo2N/SBA-15. Catal. Sci. Technol. 2016, 6, 2403. [Google Scholar] [CrossRef]
- Wyvratt, B.M.; Gaudet, J.R.; Pardue, B.; Marton, A.; Rudić, S.; Mader, E.A.; Cundari, T.R.; Mayer, J.M.; Thompson, L.T. Reactivity of Hydrogen on and in Nanostructured Molybdenum Nitride: Crotonaldehyde Hydrogenation. ACS Catal. 2016, 6, 5797–5806. [Google Scholar] [CrossRef]
- Cárdenas-Lizana, F.; Lamey, D.; Kiwi-Minsker, L.; Keane, M.A. Molybdenum nitrides: a study of synthesis variables and catalytic performance in acetylene hydrogenation. J. Mater. Sci. 2018, 53, 6707–6718. [Google Scholar] [CrossRef]
- Jaf, Z.N.; Altarawneh, M.; Miran, H.A.; Jianga, Z.T.; Dlugogorski, B.Z. Mechanisms governing selective hydrogenation of acetylene over γ-Mo2N surfaces. Catal. Sci. Technol. 2017, 7, 943. [Google Scholar] [CrossRef]
- Cárdenas-Lizana, F.; de Pedro, Z.M.; Gómez-Quero, S.; Keane, M.A. Gas phase hydrogenation of nitroarenes: A comparison of the catalytic action of titania supported gold and silver. J. Mol. Catal. A Chem. 2010, 326, 48–54. [Google Scholar] [CrossRef]
- Dongil, A.B.; Rivera-Cárcamo, C.; Pastor-Pérez, L.; Sepúlveda-Escribano, A.; Reyes, P. Ir supported over carbon materials for the selective hydrogenation of nitrocompounds. Catal. Today 2015, 249, 72–78. [Google Scholar] [CrossRef]
- Dongil, A.B.; Pastor-Pérez, L.; Fierro, J.L.G.; Escalona, N.; Sepúlveda-Escribano, A. Synthesis of palladium nanoparticles over graphite oxide and carbon nanotubes by reduction in ethylene glycol and their catalytic performance on the chemoselective hydrogenation of para-chloronitrobenzene. Appl. Catal. A Gen. 2016, 513, 89–97. [Google Scholar] [CrossRef] [Green Version]
- Perret, N.; Cárdenas-Lizana, F.; Lamey, D.; Laporte, V.; Kiwi-Minsker, L.; Keane, M.A. Effect of Crystallographic Phase (β vs. γ) and Surface Area on Gas Phase Nitroarene Hydrogenation over Mo2N and Au/Mo2N. Top. Catal. 2012, 55, 955–968. [Google Scholar] [CrossRef]
- Cheng, X.; Wang, D.; Liu, J.; Kang, X.; Yan, H.; Wu, A.; Gu, Y.; Tian, C.; Fu, H. Ultra-small Mo2N on SBA-15 as a highly efficient promoter of low-loading Pd for catalytic hydrogenation. Nanoscale 2018, 10, 22348. [Google Scholar] [CrossRef]
- Wei, X.; Zhang, Z.; Zhou, M.; Zhang, A.; Wu, W.D.; Wu, Z. Solid-state nanocasting synthesis of ordered mesoporous CoNx–carbon catalysts for highly efficient hydrogenation of nitro compounds. Nanoscale 2018, 10, 16839–16847. [Google Scholar] [CrossRef]
- Jaf, Z.N.; Altarawneh, M.; Miran, H.A.; Almatarneh, M.H.; Jiang, Z.-T.; Dlugogorski, B.Z. Catalytic Hydrogenation of p-Chloronitrobenzene to p-Chloroaniline Mediated by γ-Mo2N. ACS Omega 2018, 3, 14380–14391. [Google Scholar] [CrossRef]
- Song, J.; Huang, Z.-F.; Pan, L.; Li, K.; Zhang, X.; Wang, L.; Zou, J.-J. Review on selective hydrogenation of nitroarene by catalytic, photocatalytic and electrocatalytic reactions. Appl. Catal. B Environ. 2018, 227, 386–408. [Google Scholar] [CrossRef]
- Davies, C.; Miedziak, P.J.; Brett, G.L.; Hutchings, G.J. Vinyl chloride monomer production catalysed by gold: A review 2016. Chin. J. Catal. 2016, 37, 1600–1607. [Google Scholar] [CrossRef]
- Dai, B.; Chen, K.; Wang, Y.; Kang, L.; Zhu, M. Boron and Nitrogen Doping in Graphene for the Catalysis of Acetylene Hydrochlorination. ACS Catal. 2015, 5, 2541–2547. [Google Scholar] [CrossRef]
- Dai, H.; Zhu, M.; Zhang, H.; Yu, F.; Wang, C.; Dai, B. Activated carbon supported VN, Mo2N, and W2N as catalysts for acetylene hydrochlorination. J. Ind. Eng. Chem. 2017, 50, 72–78. [Google Scholar] [CrossRef]
- Dai, H.; Zhu, M.; Zhang, H.; Yu, F.; Wang, C.; Dai, B. Activated Carbon Supported Mo-Ti-N Binary Transition Metal Nitride as Catalyst for Acetylene Hydrochlorination. Catalysts 2017, 7, 200. [Google Scholar] [CrossRef]
- Jujjuri, S.; Cárdenas-Lizana, F.; Keane, M.A. Synthesis of group VI carbides and nitrides: Application in catalytic hydrodechlorination. J. Mater. Sci. 2014, 49, 5406–5417. [Google Scholar] [CrossRef]
- Mohammad Al Soubaihi, R.; Saoud, K.M.; Dutta, J. Critical Review of Low-Temperature CO Oxidation and Hysteresis Phenomenon on Heterogeneous Catalysts. Catalysts 2018, 8, 660. [Google Scholar] [CrossRef]
- Yao, Z.; Zhang, X.; Peng, F.; Yu, H.; Wang, H.; Yang, J. Novel highly efficient alumina-supported cobalt nitride catalyst for preferential CO oxidation at high temperatures. Int. J. Hydrogen Energy 2011, 36, 1955–1959. [Google Scholar] [CrossRef]
- Davis, S.E.; Ide, M.S.; Davis, R.J. Selective oxidation of alcohols and aldehydes over supported metal nanoparticles. Green Chem. 2013, 15, 17–45. [Google Scholar] [CrossRef]
- Deng, D.H.; Chen, X.Q.; Yu, L.; Wu, X.; Liu, Q.F.; Liu, Y.X.; Yang, H.; Tian, H.F.; Hu, Y.F.; Du, P.P.; et al. A single iron site confined in a graphene matrix for the catalytic oxidation of benzene at room temperature. Sci. Adv. 2015, 1, e1500462. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Nagamatsu, S.; Du, J.; Tong, C.; Fang, H.; Deng, D.; Liu, X.; Asakura, K.; Yuan, Y. A study of FeNx/C catalysts for the selective oxidation of unsaturated alcohols by molecular oxygen. J. Catal. 2018, 367, 16–26. [Google Scholar] [CrossRef]
- Ammonia—A Renewable Fuel Made from Sun, Air, and Water—Could Power the Globe without Carbon. Available online: https://www.sciencemag.org/news/2018/07/ammonia-renewable-fuel-made-sun-air-and-water-could-power-globe-without-carbon (accessed on 12 July 2018).
- Hargreaves, J.S.J. Nitrides as ammonia synthesis catalysts and as potential nitrogen transfer reagents. Appl. Petrochem. Res. 2014, 4, 3–10. [Google Scholar] [CrossRef] [Green Version]
- Jacobsen, C.J.H. Novel class of ammonia synthesis catalysts. Chem. Commun. 2000, 1057–1058. [Google Scholar] [CrossRef]
- Jacobsen, C.J.H.; Dahl, S.; Clausen, B.S.; Bahn, S.; Logadottir, A.; Norskov, J.K. Catalyst design by interpolation in the periodic table: Bimetallic ammonia synthesis catalysts. J. Am. Chem. Soc. 2001, 123, 8404–8405. [Google Scholar] [CrossRef]
- Kojima, R.; Aika, K. Molybdenum nitride and carbide catalysts for ammonia synthesis. Appl. Catal. A Gener. 2001, 219, 141–147. [Google Scholar] [CrossRef]
- Mckay, D.; Hargreaves, J.S.J.; Rico, J.L.; Rivera, J.L.; Sun, X.L. The influence of phase and morphology of molybdenum nitrides on ammonia synthesis activity and reduction characteristics. J. Solid State Chem. 2008, 181, 325–333. [Google Scholar] [CrossRef]
- Liu, N.; Nie, L.; Xue, N.; Dong, H.; Peng, L.; Guo, X.; Ding, W. Catalytic Ammonia Synthesis over Mo Nitride/ZSM-5. ChemCatChem 2010, 2, 167–174. [Google Scholar] [CrossRef]
- Zeinalipour-Yazdi, C.D.; Hargreaves, J.S.J.; Catlow, C.A. Low-T Mechanisms of Ammonia Synthesis on Co3Mo3N. Phys. Chem. C 2018, 122, 6078–6082. [Google Scholar] [CrossRef]
- Moszyński, D.; Adamski, P.; Nadziejko, M.; Komorowska, A.; Sarnecki, A. Cobalt molybdenum nitrides co-promoted by chromium and potassium as catalysts for ammonia synthesis. Chem. Pap. 2018, 72, 425–430. [Google Scholar] [CrossRef]
- Lamba, K.E.; Dolana, M.D.; Kennedy, D.F. Ammonia for hydrogen storage; A review of catalytic ammonia decomposition and hydrogen separation and purification. Int. J. Hydrogen Energy 2019, 44, 3580–3593. [Google Scholar] [CrossRef]
- Srifa, A.; Okura, K.; Okanishi, T.; Muroyama, H.; Matsuia, T.; Eguch, K. COx-free hydrogen production via ammonia decomposition over molybdenum nitride-based catalysts. Catal. Sci. Technol. 2016, 6, 7495. [Google Scholar] [CrossRef]
- Podila, S.; Zaman, S.F.; Driss, H.; Al-Zahrani, A.A.; Daous, M.A.; Petrov, L.A. High performance of bulk Mo2N and Co3Mo3N catalysts for hydrogen production from ammonia: Role of citric acid to Mo molar ratio in preparation of high surface area nitride. Int. J. Hydrogen Energy 2017, 42, 8006–8020. [Google Scholar] [CrossRef]
- Zaman, S.F.; Jolaoso, L.A.; Podila, S.; Al-Zahrani, A.A.; Alhamed, Y.A.; Driss, H.; Daous, M.M.; Petrov, L. Ammonia decomposition over citric acid chelated γ-Mo2N and Ni2Mo3N catalysts. Int. J. Hydrogen Energy 2018, 43, 17252–17258. [Google Scholar] [CrossRef]
- Jolaoso, L.A.; Zaman, S.F.; Podila, S.; Driss, H.; Al-Zahrani, A.A.; Daous, M.A.; Petrov, L. Ammonia decomposition over citric acid induced γ-Mo2N and Co3Mo3N catalysts. Int. J. Hydrogen Energy 2017, 43, 4839–4844. [Google Scholar] [CrossRef]
- Zhao, Z.H.; Zou, H.B.; Lin, W.M. Effect of Supports on the Properties of Co-Mo Nitride Catalysts for Ammonia Decomposition 1271. Adv. Mater. Res. 2012, 391–392, 1215–1219. [Google Scholar]
- Zhang, H.; Gong, Q.; Ren, S.; Ali Arshid, M.; Chu, W.; Chen, C. Implication of iron nitride species to enhance the catalytic activity and stability of carbon nanotubes supported Fe catalysts for carbon-free hydrogen production via low-temperature ammonia decomposition. Catal. Sci. Technol. 2018, 8, 907–915. [Google Scholar] [CrossRef]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dongil, A.B. Recent Progress on Transition Metal Nitrides Nanoparticles as Heterogeneous Catalysts. Nanomaterials 2019, 9, 1111. https://doi.org/10.3390/nano9081111
Dongil AB. Recent Progress on Transition Metal Nitrides Nanoparticles as Heterogeneous Catalysts. Nanomaterials. 2019; 9(8):1111. https://doi.org/10.3390/nano9081111
Chicago/Turabian StyleDongil, A.B. 2019. "Recent Progress on Transition Metal Nitrides Nanoparticles as Heterogeneous Catalysts" Nanomaterials 9, no. 8: 1111. https://doi.org/10.3390/nano9081111
APA StyleDongil, A. B. (2019). Recent Progress on Transition Metal Nitrides Nanoparticles as Heterogeneous Catalysts. Nanomaterials, 9(8), 1111. https://doi.org/10.3390/nano9081111