Enhancing Photoluminescence Quenching in Donor–Acceptor PCE11:PPCBMB Films through the Optimization of Film Microstructure
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cui, Y.; Yao, H.; Zhang, J.; Zhang, T.; Wang, Y.; Hong, L.; Xian, K.; Xu, B.; Zhang, S.; Peng, J.; et al. Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages. Nat. Commun. 2019, 10, 2515. [Google Scholar] [CrossRef] [PubMed]
- Köhler, A.; Santos, D.A.D.; Beljonne, D.; Shuai, Z.; Brédas, J.-L.; Holmes, A.B.; Kraus, A.; Müllen, K.; Friend, R.H. Charge separation in localized and delocalized electronic states in polymeric semiconductors. Nature 1998, 392, 903–906. [Google Scholar] [CrossRef]
- Mikhnenko, O.V.; Azimi, H.; Scharber, M.; Morana, M.; Blom, P.W.M.; Loi, M.A. Exciton diffusion length in narrow bandgap polymers. Energy Environ. Sci. 2012, 5, 6960–6965. [Google Scholar] [CrossRef] [Green Version]
- Hwang, I.; Schole, G.D. Electronic energy transfer and quantum-coherence in p-conjugated polymers. Chem. Mater. 2011, 23, 610–620. [Google Scholar] [CrossRef]
- Clarke, T.M.; Peet, J.; Nattestad, A.; Drolet, N.; Dennler, G.; Lungenschmied, C.; Leclerc, M.; Mozer, A.J. Charge carrier mobility, bimolecular recombination and trappingin polycarbazole copolymer:fullerene (PCDTBT:PCBM) bulk heterojunction solar cells. Org. Electron. 2012, 13, 2639–2646. [Google Scholar] [CrossRef]
- Bolinger, J.C.; Traub, M.C.; Adachi, T.; Barbara, P.F. Ultralong-range polaron-induced quenching of excitons in isolated conjugated polymers. Science 2011, 331, 565–567. [Google Scholar] [CrossRef]
- Como, E.D.; Borys, N.J.; Strohriegl, P.; Walter, M.J.; Lupton, J.M. Formation of a defect-free p-electron system in single b-phase polyfluorene chains. J. Am. Chem. Soc. 2011, 133, 3690–3692. [Google Scholar] [CrossRef]
- Lee, P.W.; Li, W.-C.; Chen, B.-J.; Yang, C.-W.; Chang, C.-C.; Botiz, I.; Reiter, G.; Chen, Y.T.; Lin, T.L.; Tang, J.; et al. Massive Enhancement of Photoluminescence through Nanofilm Dewetting. ACS Nano 2013, 7, 6658–6666. [Google Scholar] [CrossRef]
- Chen, W.; Nikiforov, M.P.; Darling, S.B. Morphology characterization in organic and hybrid solar cells. Energy Environ. Sci. 2012, 5, 8045–8074. [Google Scholar] [CrossRef]
- Qin, R.; Yang, J.; Li, P.; Wu, Q.; Zhou, Y.; Luo, H.; Chang, F. Structure property relationship for carbazole and benzothiadiazole based conjugated polymers. Sol. Energy Mater. Sol. Cells 2016, 145, 412–417. [Google Scholar] [CrossRef]
- Botiz, I.; Schaller, R.D.; Verduzco, R.; Darling, S.B. Optoelectronic Properties and Charge Transfer in Donor_Acceptor All-Conjugated Diblock Copolymers. J. Phys. Chem. C 2011, 115, 9260–9266. [Google Scholar] [CrossRef]
- Hu, H.; Jiang, K.; Yang, G.; Liu, J.; Li, Z.; Lin, H.; Liu, Y.; Zhao, J.; Zhang, J.; Huang, F.; et al. Terthiophene-Based D–A Polymer with an Asymmetric Arrangement of Alkyl Chains That Enables Efficient Polymer Solar Cells. J. Am. Chem. Soc. 2015, 137, 14149–14157. [Google Scholar] [CrossRef] [PubMed]
- Botiz, I.; Astilean, S.; Stingelin, N. Altering the emission properties of conjugated polymers. Polym. Int. 2016, 65, 157–163. [Google Scholar] [CrossRef]
- Zhang, Y.; Parnell, A.J.; Pontecchiani, F.; Cooper, J.F.K.; Thompson, R.L.; Jones, R.A.L.; King, S.M.; Lidzey, D.G.; Bernardo, G. Understanding and controlling morphology evolution via DIO plasticization in PffBT4T-2OD/PC71BM devices. Sci. Rep. 2017, 7, 44269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, L.; Chen, Y.; Chen, S.; Dong, T.; Deng, W.; Lv, L.; Yang, S.; Yan, H.; Huang, H. Achieving high performance non-fullerene organic solar cells through tuning the numbers of electron deficient building blocks of molecular acceptors. J. Power Sources 2016, 324, 538–546. [Google Scholar] [CrossRef]
- Ma, W.; Yang, G.; Jiang, K.; Carpenter, J.H.; Wu, Y.; Meng, X.; McAfee, T.; Zhao, J.; Zhu, C.; Wang, C.; et al. Influence of Processing Parameters and Molecular Weight on the Morphology and Properties of High-Performance PffBT4T-2OD:PC71BM Organic Solar Cells. Adv. Energy Mater. 2015, 5, 1501400. [Google Scholar] [CrossRef]
- Botiz, I.; Freyberg, P.; Leordean, C.; Gabudean, A.-M.; Astilean, S.; Yang, A.C.-M.; Stingelin, N. Enhancing the Photoluminescence Emission of Conjugated MEH-PPV by Light Processing. ACS Appl. Mater. Interfaces 2014, 6, 4974–4979. [Google Scholar] [CrossRef]
- Rumer, J.W.; McCulloch, I. Organic photovoltaics: Crosslinking for optimal morphology and stability. Mater. Today 2015, 18, 425–435. [Google Scholar] [CrossRef] [Green Version]
- Kolesov, V.A.; Fuentes-Hernandez, C.; Chou, W.-F.; Aizawa, N.; Larrain, F.A.; Wang, M.; Perrotta, A.; Choi, S.; Graham, S.; Bazan, G.C.; et al. Solution-based electrical doping of semiconducting polymer films over a limited depth. Nat. Mater. 2016, 16, 474. [Google Scholar] [CrossRef]
- Cheng, P.; Yan, C.; Lau, T.-K.; Mai, J.; Lu, X.; Zhan, X. Molecular Lock: A Versatile Key to Enhance Efficiency and Stability of Organic Solar Cells. Adv. Mater. 2016, 28, 5822–5829. [Google Scholar] [CrossRef]
- Botiz, I.; Leordean, C.; Stingelin, N. Structural Control in Polymeric Semiconductors: Application to the Manipulation of Light-emitting Properties. In Semiconducting Polymers: Controlled Synthesis and Microstructure; The Royal Society of Chemistry: Cambridge, UK, 2017; pp. 187–218. [Google Scholar]
- Gagorik, A.G.; Mohin, J.W.; Kowalewski, T.; Hutchison, G.R. Monte Carlo Simulations of Charge Transport in 2D Organic Photovoltaics. J. Phys. Chem. Lett. 2012, 4, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Zhao, K.; Hu, H.; Spada, E.; Jagadamma, L.K.; Yan, B.; Abdelsamie, M.; Yang, Y.; Yu, L.; Munir, R.; Li, R.; et al. Highly efficient polymer solar cells with printed photoactive layer: Rational process transfer from spin-coating. J. Mater. Chem. A 2016, 4, 16036–16046. [Google Scholar] [CrossRef]
- Botiz, I.; Codescu, M.-A.; Farcau, C.; Leordean, C.; Astilean, S.; Silva, C.; Stingelin, N. Convective self-assembly of π-conjugated oligomers and polymers. J. Mater. Chem. C 2017, 5, 2513–2518. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, J.; Li, Z.; Mu, C.; Ma, W.; Hu, H.; Jiang, K.; Lin, H.; Ade, H.; Yan, H. Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells. Nat. Commun. 2014, 5, 5293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Scarratt, N.W.; Wang, T.; Lidzey, D.G. Fabricating high performance conventional and inverted polymer solar cells by spray coating in air. Vacuum 2017, 139, 154–158. [Google Scholar] [CrossRef]
- Zhao, F.; Li, Y.; Wang, Z.; Yang, Y.; Wang, Z.; He, G.; Zhang, J.; Jiang, L.; Wang, T.; Wei, Z.; et al. Combining Energy Transfer and Optimized Morphology for Highly Efficient Ternary Polymer Solar Cells. Adv. Energy Mater. 2017, 7, 1602552. [Google Scholar] [CrossRef]
- Stephen, M.; Ramanitra, H.H.; Santos Silva, H.; Dowland, S.; Begue, D.; Genevicius, K.; Arlauskas, K.; Juška, G.; Morse, G.E.; Distler, A.; et al. Sterically controlled azomethine ylide cycloaddition polymerization of phenyl-C61-butyric acid methyl ester. Chem. Commun. 2016, 52, 6107–6110. [Google Scholar] [CrossRef]
- Reiter, G.; Botiz, I.; Graveleau, L.; Grozev, N.; Albrecht, K.; Mourran, A.; Möller, M. Morphologies of Polymer Crystals in Thin Films. In Lecture Notes in Physics: Progress in Understanding of Polymer Crystallization; Reiter, G., Strobl, G.R., Eds.; Springer: Heidelberg, Germany, 2007; Volume 714, pp. 179–200. [Google Scholar]
- Grozev, N.; Botiz, I.; Reiter, G. Morphological instabilities of polymer crystals. Eur. Phys. J. E 2008, 27, 63–71. [Google Scholar] [CrossRef]
- Botiz, I.; Darling, S.B. Self-assembly of poly(3-hexylthiophene)-block-polylactide rod-coil block copolymer and subsequent incorporation of electron acceptor material. Macromolecules 2009, 42, 8211–8217. [Google Scholar] [CrossRef]
- Jamieson, F.C.; Domingo, E.B.; McCarthy-Ward, T.; Heeney, M.; Stingelin, N.; Durrant, J.R. Fullerene crystallisation as a key driver of charge separation in polymer/fullerene bulk heterojunction solar cells. Chem. Sci. 2012, 3, 485–492. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Todor-Boer, O.; Petrovai, I.; Tarcan, R.; Vulpoi, A.; David, L.; Astilean, S.; Botiz, I. Enhancing Photoluminescence Quenching in Donor–Acceptor PCE11:PPCBMB Films through the Optimization of Film Microstructure. Nanomaterials 2019, 9, 1757. https://doi.org/10.3390/nano9121757
Todor-Boer O, Petrovai I, Tarcan R, Vulpoi A, David L, Astilean S, Botiz I. Enhancing Photoluminescence Quenching in Donor–Acceptor PCE11:PPCBMB Films through the Optimization of Film Microstructure. Nanomaterials. 2019; 9(12):1757. https://doi.org/10.3390/nano9121757
Chicago/Turabian StyleTodor-Boer, Otto, Ioan Petrovai, Raluca Tarcan, Adriana Vulpoi, Leontin David, Simion Astilean, and Ioan Botiz. 2019. "Enhancing Photoluminescence Quenching in Donor–Acceptor PCE11:PPCBMB Films through the Optimization of Film Microstructure" Nanomaterials 9, no. 12: 1757. https://doi.org/10.3390/nano9121757
APA StyleTodor-Boer, O., Petrovai, I., Tarcan, R., Vulpoi, A., David, L., Astilean, S., & Botiz, I. (2019). Enhancing Photoluminescence Quenching in Donor–Acceptor PCE11:PPCBMB Films through the Optimization of Film Microstructure. Nanomaterials, 9(12), 1757. https://doi.org/10.3390/nano9121757