Antimicrobial and Antioxidant Performance of Various Essential Oils and Natural Extracts and Their Incorporation into Biowaste Derived Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Layers Made from Electrospun Ultrathin Fibers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of the Solutions
2.3. Characterization of the Solution Properties
2.4. Electrospinning
2.5. Characterization of the Electrospun Materials
2.5.1. Film Thickness
2.5.2. Morphology
2.5.3. Transparency
2.5.4. Color
2.5.5. Thermal Analysis
2.5.6. Water Contact Angle Measurements
2.5.7. Antimicrobial Activity
2.5.8. Antioxidant Activity
2.5.9. Statistical Analysis
3. Results
3.1. Solution Properties
3.2. Morphology
3.3. Optical Properties
3.4. Thermal Stability
3.5. Water Contact Angle
3.6. Active Properties
3.6.1. Antimicrobial Activity
3.6.2. Antioxidant Activity
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Figueroa-Lopez, K.J.; Andrade-Mahecha, M.M.; Torres-Varga, O.L. Development of antimicrobial biocomposite films to preserve the quality of bread. Molecules 2018, 23, 212. [Google Scholar] [CrossRef] [PubMed]
- Atarés, L.; Chiralt, A. Essential oils as additives in biodegradable films and coatings for active food packaging. Trends Food Sci. Technol. 2016, 48, 51–62. [Google Scholar] [CrossRef]
- Requena, R.; Vargas, M.; Chiralt, A. Obtaining antimicrobial bilayer starch and polyester-blend films with carvacrol. Food Hydrocoll. 2018, 83, 118–133. [Google Scholar] [CrossRef]
- Lenz, R.W.; Marchessault, R.H. Bacterial polyesters: Biosynthesis, biodegradable plastics and biotechnology. Biomacromolecules 2005, 6, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Sudesh, K.; Abe, H.; Do, Y. Synthesis, structure and properties of polyhydroxyalkanoates: Biological polyesters. Prog. Polym. Sci. 2000, 25, 1503–1555. [Google Scholar] [CrossRef]
- Torres-Giner, S.; Montanes, N.; Boronat, T.; Quiles-Carrillo, L.; Balart, R. Melt grafting of sepiolite nanoclay onto poly(3-hydroxybutyrate-co-4-hydroxybutyrate) by reactive extrusion with multi-functional epoxy-based styrene-acrylic oligomer. Eur. Polym. J. 2016, 84, 693–707. [Google Scholar] [CrossRef]
- Torres-Giner, S.; Montanes, N.; Fombuena, V.; Boronat, T.; Sanchez-Nacher, L. Preparation and characterization of compression-molded green composite sheets made of poly(3-hydroxybutyrate) reinforced with long pita fibers. Adv. Polym. Technol. 2018, 37, 1305–1315. [Google Scholar] [CrossRef]
- Arifin, W.; Kuboki, T. Effects of thermoplastic elastomers on mechanical and thermal properties of glass fiber reinforced poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) composites. Polym. Compos. 2018, 39, E1331–E1345. [Google Scholar] [CrossRef]
- Torres-Giner, S.; Hilliou, L.; Melendez-Rodriguez, B.; Figueroa-Lopez, K.J.; Madalena, D.; Cabedo, L.; Covas, J.A.; Vicente, A.A.; Lagaron, J.M. Melt processability, characterization, and antibacterial activity of compression-molded green composite sheets made of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) reinforced with coconut fibers impregnated with oregano essential oil. Food Packag. Shelf Life 2018, 17, 39–49. [Google Scholar] [CrossRef]
- López-Rubio, A.; Almenar, E.; Hernandez-Muñoz, P.; Lagarón, J.M.; Catalá, R.; Gavara, R. Overview of active polymer-based packaging technologies for food applications. Food Rev. Int. 2004, 20, 357–387. [Google Scholar] [CrossRef]
- Torres-Giner, S.; Gil, L.; Pascual-Ramírez, L.; Garde-Belza, J.A. Packaging: Food waste reduction. In Encyclopedia of Polymer Applications, 3 Volume Set; Mishra, M., Ed.; CRC Press, Taylor and Francis Group: Boca Raton, FL, USA, 2018; pp. 1990–2009. [Google Scholar]
- Cherpinski, A.; Gozutok, M.; Sasmazel, H.T.; Torres-Giner, S.; Lagaron, J.M. Electrospun oxygen scavenging films of poly(3-hydroxybutyrate) containing palladium nanoparticles for active packaging applications. Nanomaterials 2018, 8, 469. [Google Scholar] [CrossRef] [PubMed]
- Domínguez, R.; Barba, F.J.; Gómez, B.; Putnik, P.; Bursać Kovačevićc, D.; Pateiro, M.; Santos, E.M.; Lorenzo, J.M. Active packaging films with natural antioxidants to be used in meat industry: A review. Food Res. Int. 2018, 113, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Ge, L.; Zhu, M.; Li, X.; Xu, Y.; Ma, X.; Shi, R.; Li, D.; Mu, C. Development of active rosmarinic acid-gelatin biodegradable films with antioxidant and long-term antibacterial activities. Food Hydrocoll. 2018, 83, 308–316. [Google Scholar] [CrossRef]
- Irkin, R.; Esmer, O.K. Novel food packaging systems with natural antimicrobial agents. J. Food Sci. Technol. 2015, 52, 6095–6111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Appendini, P.; Hotchkiss, J.H. Review of antimicrobial food packaging. Innov. Food Sci. Emerg. Technol. 2002, 3, 113–126. [Google Scholar] [CrossRef]
- Ribeiro-Santos, R.; Andrade, M.; Sanches-Silva, A. Application of encapsulated essential oils as antimicrobial agents in food packaging. Curr. Opin. Food Sci. 2017, 14, 78–84. [Google Scholar] [CrossRef]
- Nguimjeu, C.; Moundanga, S.; Sadaka, F.; Dony, P.; Plasseraud, L.; Boni, G.; Brachais, L.; Vroman, I.; Brachais, C.H.; Tighzert, L.; et al. Suitability and effectiveness of active packaging for food contact: A study of sorption/desorption and antimicrobial performances of some natural extracts in packaging. In 18th IAPRI World Packaging Conference; DEStech Publications, Inc.: Lancaster, PA, USA, 2012; pp. 15–22. [Google Scholar]
- Hoseinnejad, M.; Jafari, S.M.; Katouzian, I. Inorganic and metal nanoparticles and their antimicrobial activity in food packaging applications. Crit. Rev. Microbiol. 2018, 44, 161–181. [Google Scholar] [CrossRef]
- Teixeira, B.; Marques, A.; Ramos, C.; Neng, N.R.; Nogueira, J.M.F.; Saraiva, J.A.; Nunes, M.L. Chemical composition and antibacterial and antioxidant properties of commercial essential oils. Ind. Crop. Prod. 2013, 43, 587–595. [Google Scholar] [CrossRef]
- Raut, J.S.; Karuppayil, S.M. A status review on the medicinal properties of essential oils. Ind. Crop. Prod. 2014, 62, 250–264. [Google Scholar] [CrossRef]
- FDA. Code of Federal Regulations—Title 21—Food Drugs. Chapter I—Food Drug Adm. Dep. Heal. Hum. Serv. Subchapter b—Food Hum. Consum. (Continued), Part 182—Subst. Gen. Recognized as Safe (Gras); FDA: Silver Spring, MD, USA, 2016. [Google Scholar]
- Leyva-López, N.; Gutiérrez-Grijalva, E.; Vazquez-Olivo, G.; Heredia, J. Essential oils of oregano: Biological activity beyond their antimicrobial properties. Molecules 2017, 22, 989. [Google Scholar] [CrossRef]
- Kokkini, S.; Karousou, R.; Dardioti, A.; Krigas, N.; Lanaras, T. Autumn essential oils of greek oregano. Phytochemistry 1997, 44, 883–886. [Google Scholar] [CrossRef]
- Gounaris, Y.; Skoula, M.; Fournaraki, C.; Drakakaki, G.; Makris, A. Comparison of essential oils and genetic relationship of origanum x intercedens to its parental taxa in the island of crete. Biochem. Syst. Ecol. 2002, 30, 249–258. [Google Scholar] [CrossRef]
- Shang, X.; Wang, Y.; Zhou, X.; Guo, X.; Donga, S.; Wang, D.; Zhang, J.; Pan, H.; Zhang, Y.; Miao, X. Acaricidal activity of oregano oil and its major component, carvacrol, thymol and p-cymene against psoroptes cuniculi in vitro and in vivo. Vet. Parasitol. 2016, 226, 93–96. [Google Scholar] [CrossRef] [PubMed]
- Burt, S.A.; Vlielander, R.; Haagsman, H.P.; Veldhuizen, E.J.A. Increase in activity of essential oil components carvacrol and thymol against Escherichia coli o157:H7 by addition of food stabilizers. J. Food Prot. 2005, 68, 919–926. [Google Scholar] [CrossRef] [PubMed]
- Begum, A.; Sandhya, S.; Ali, S.S.; Vinod, K.R.; Reddy, S.; Banji, D. An in-depth review on the medicinal flora rosmarinus officinalis (lamiaceae). Acta Sci. Pol. Technol. Aliment. 2013, 12, 61–73. [Google Scholar]
- Jiang, Y.; Wu, N.; Fu, Y.-J.; Wang, W.; Luo, M.; Zhao, C.-J.; Zu, Y.-G.; Liu, X.-L. Chemical composition and antimicrobial activity of the essential oil of rosemary. Environ. Toxicol. Pharmacol. 2011, 32, 63–68. [Google Scholar] [CrossRef]
- Arranz, E.; Mes, J.; Wichers, H.J.; Jaime, L.; Mendiola, J.A.; Reglero, G.; Santoyo, S. Anti-inflammatory activity of the basolateral fraction of caco-2 cells exposed to a rosemary supercritical extract. J. Funct. Foods 2015, 13, 384–390. [Google Scholar] [CrossRef]
- Hussain, A.I.; Anwar, F.; Chatha, S.A.S.; Jabbar, A.; Mahboob, S.; Nigam, P.S. Rosmarinus officinalis essential oil: Antiproliferative, antioxidant and antibacterial activities. Braz. J. Microbiol. 2010, 41, 1070–1078. [Google Scholar] [CrossRef]
- Fournier-Larente, J.; Morin, M.-P.; Grenier, D. Green tea catechins potentiate the effect of antibiotics and modulate adherence and gene expression in porphyromonas gingivalis. Arch. Oral Biol. 2016, 65, 35–43. [Google Scholar] [CrossRef]
- Torres-Giner, S. Electrospun nanofibers for food packaging applications. In Multifunctional and Nanoreinforced Polymers for Food Packaging; Lagaron, J.M., Ed.; Woodhead Publishing Ltd.: Cambridge, UK, 2011; pp. 108–125. [Google Scholar]
- Torres-Giner, S.; Busolo, M.; Cherpinski, A.; Lagaron, J.M. Electrospinning in the packaging industry. In Electrospinning: From Basic Research to Commercialization; Kny, E., Ghosal, K., Thomas, S., Eds.; The Royal Society of Chemistry: Cambridge, UK, 2018; pp. 238–260. [Google Scholar]
- Torres-Giner, S.; Lagaron, J.M. Zein-based ultrathin fibers containing ceramic nanofillers obtained by electrospinning. I. Morphology and thermal properties. J. Appl. Polym. Sci. 2010, 118, 778–789. [Google Scholar] [CrossRef]
- Torres-Giner, S. Novel antimicrobials obtained by electrospinning methods. In Antimicrobial Polymers; Lagaron, J.M., Ocio, M.J., López-Rubio, A., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA; pp. 261–285.
- Altan, A.; Aytac, Z.; Uyar, T. Carvacrol loaded electrospun fibrous films from zein and poly(lactic acid) for active food packaging. Food Hydrocoll. 2018, 81, 48–59. [Google Scholar] [CrossRef]
- Cherpinski, A.; Torres-Giner, S.; Cabedo, L.; Lagaron, J.M. Post-processing optimization of electrospun submicron poly(3-hydroxybutyrate) fibers to obtain continuous films of interest in food packaging applications. Food Addit. Contam. Part A 2017, 34, 1817–1830. [Google Scholar] [CrossRef] [PubMed]
- Melendez-Rodriguez, B.; Castro-Mayorga, J.L.; Reis, M.A.M.; Sammon, C.; Cabedo, L.; Torres-Giner, S.; Lagaron, J.M. Preparation and characterization of electrospun food biopackaging films of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) derived from fruit pulp biowaste. Front. Sustain. Food Syst. 2018, 2, 1–16. [Google Scholar] [CrossRef]
- Kanatt, S.R.; Rao, M.S.; Chawla, S.P.; Sharma, A. Active chitosan–polyvinyl alcohol films with natural extracts. Food Hydrocoll. 2012, 29, 290–297. [Google Scholar] [CrossRef]
- Figueroa-Lopez, K.J.; Andrade-Mahecha, M.M.; Torres-Vargas, O.L. Spice oleoresins containing antimicrobial agents improve the potential use of bio-composite films based on gelatin. Food Packag. Shelf Life 2018, 17, 50–56. [Google Scholar] [CrossRef]
- Figueroa-Lopez, K.J.; Castro-Mayorga, J.L.; Andrade-Mahecha, M.M.; Cabedo, L.; Lagaron, J.M. Antibacterial and barrier properties of gelatin coated by electrospun polycaprolactone ultrathin fibers containing black pepper oleoresin of interest in active food biopackaging applications. Nanomaterials 2018, 8, 199. [Google Scholar] [CrossRef] [PubMed]
- Torres-Giner, S.; Torres, A.; Ferrándiz, M.; Fombuena, V.; Balart, R. Antimicrobial activity of metal cation-exchanged zeolites and their evaluation on injection-molded pieces of bio-based high-density polyethylene. J. Food Saf. 2017, 37, 1–12. [Google Scholar] [CrossRef]
- Busolo, M.A.; Lagaron, J.M. Antioxidant polyethylene films based on a resveratrol containing clay of interest in food packaging applications. Food Packag. Shelf Life 2015, 6, 30–41. [Google Scholar] [CrossRef]
- Rošic, R.; Pelipenko, J.; Kocbek, P.; Baumgartner, S.; Bešter-Rogač, M.; Kristl, J. The role of rheology of polymer solutions in predicting nanofiber formation by electrospinning. Eur. Polym. J. 2012, 48, 1374–1384. [Google Scholar] [CrossRef]
- Arfa, A.B.; Chrakabandhu, Y.; Preziosi-Belloy, L.; Chalie, P.; Gontard, N. Coating papers with soy protein isolates as inclusion matrix of carvacrol. Food Res. Int. 2007, 40, 22–32. [Google Scholar] [CrossRef]
- Jouki, M.; Yazdi, F.T.; Mortazavi, S.A.; Koocheki, A. Quince seed mucilage films incorporated with oregano essential oil: Physical, thermal, barrier, antioxidant and antibacterial properties. Food Hydrocoll. 2014, 36, 9–19. [Google Scholar] [CrossRef]
- Bhardwaj, N.; Kundu, S.C. Electrospinning: A fascinating fiber fabrication technique. Biotechnol. Adv. 2010, 28, 325–347. [Google Scholar] [CrossRef] [PubMed]
- Kaltsa, O.; Yanniotis, S.; Mandala, I. Stability properties of different fenugreek galactomannans in emulsions prepared by high-shear and ultrasonic method. Food Hydrocoll. 2016, 52, 487–496. [Google Scholar] [CrossRef]
- Mahdi Jafari, S.; He, Y.; Bhandari, B. Production of sub-micron emulsions by ultrasound and microfluidization techniques. J. Food Eng. 2007, 82, 478–488. [Google Scholar] [CrossRef]
- Paximada, P.; Echegoyen, Y.; Koutinas, A.A.; Mandala, I.G.; Lagaron, J.M. Encapsulation of hydrophilic and lipophilized catechin into nanoparticles through emulsion electrospraying. Food Hydrocoll. 2017, 64, 123–132. [Google Scholar] [CrossRef]
- Gómez-Estaca, J.; Montero, P.; Fernández-Martín, F.; Alemán, A.; Gómez-Guillén, M.C. Physical and chemical properties of tuna-skin and bovine-hide gelatin films with added aqueous oregano and rosemary extracts. Food Hydrocoll. 2009, 23, 1334–1341. [Google Scholar] [CrossRef] [Green Version]
- Barbieri, N.; Sanchez-Contreras, A.; Canto, A.; Cauich-Rodriguez, J.V.; Vargas-Coronado, R.; Calvo-Irabien, L.M. Effect of cyclodextrins and mexican oregano (lippia graveolens kunth) chemotypes on the microencapsulation of essential oil. Ind. Crop. Prod. 2018, 121, 114–123. [Google Scholar] [CrossRef]
- Yang, Y.; Kayan, B.; Bozer, N.; Pate, B.; Baker, C.; Gizir, A.M. Terpene degradation and extraction from basil and oregano leaves using subcritical water. J. Chromatogr. A 2007, 1152, 262–267. [Google Scholar] [CrossRef]
- Gibara Guimarães, A.; Almeida Oliveira, M.; dos Santos Alves, R.; dos Passos Menezes, P.; Russo Serafini, M.; Antunes de Souza Araújo, A.; Pereira Bezerra, D.; Quintans Júnior, L.J. Encapsulation of carvacrol, a monoterpene present in the essential oil of oregano, with β-cyclodextrin, improves the pharmacological response on cancer pain experimental protocols. Chem. Biol. Interact. 2015, 227, 69–76. [Google Scholar] [CrossRef]
- Pineros-Hernandez, D.; Medina-Jaramillo, C.; López-Córdoba, A.; Goyanes, S. Edible cassava starch films carrying rosemary antioxidant extracts for potential use as active food packaging. Food Hydrocoll. 2017, 63, 488–495. [Google Scholar] [CrossRef]
- Cordeiro, A.M.T.M.; Medeiros, M.L.; Santos, N.A.; Soledade, L.E.B.; Pontes, L.F.B.L.; Souz, A.L.; Queiroz, N.; Souza, A.G. Rosemary (Rosmarinus officinalis L.) extract. J. Therm. Anal. Calorim. 2013, 113, 889–895. [Google Scholar] [CrossRef]
- López de Dicastillo, C.; Castro-López, M.d.M.; López-Vilariño, J.M.; González-Rodríguez, M.V. Immobilization of green tea extract on polypropylene films to control the antioxidant activity in food packaging. Food Res. Int. 2013, 53, 522–528. [Google Scholar] [CrossRef]
- Cherpinski, A.; Torres-Giner, S.; Vartiainen, J.; Peresin, M.S.; Lahtinen, P.; Lagaron, J.M. Improving the water resistance of nanocellulose-based films with polyhydroxyalkanoates processed by the electrospinning coating technique. Cellulose 2018, 25, 1291–1307. [Google Scholar] [CrossRef]
- Zou, P.; Liu, H.; Li, Y.; Huang, J.; Yao, D. Surface dextran modified electrospun poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (phbv) fibrous scaffold promotes the proliferation of bone marrow-derived mesenchymal stem cells. Mater. Lett. 2016, 179, 109–113. [Google Scholar] [CrossRef]
- Galus, S.; Kadzińska, J. Whey protein edible films modified with almond and walnut oils. Food Hydrocoll. 2016, 52, 78–86. [Google Scholar] [CrossRef]
- Medina-Jaramillo, C.; Ochoa-Yepes, O.; Bernal, C.; Famá, L. Active and smart biodegradable packaging based on starch and natural extracts. Carbohydr. Polym. 2017, 176, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Bravo Cadena, M.; Preston, G.M.; Van der Hoorn, R.A.L.; Townley, H.E.; Thompson, I.P. Species-specific antimicrobial activity of essential oils and enhancement by encapsulation in mesoporous silica nanoparticles. Ind. Crop. Prod. 2018, 122, 582–590. [Google Scholar] [CrossRef]
- Castilho, P.C.; Savluchinske-Feio, S.; Weinhold, T.S.; Gouveia, S.C. Evaluation of the antimicrobial and antioxidant activities of essential oils, extracts and their main components from oregano from madeira island, portugal. Food Control 2012, 23, 552–558. [Google Scholar] [CrossRef]
- Stefanakis, M.K.; Touloupakis, E.; Anastasopoulos, E.; Ghanotakis, D.; Katerinopoulos, H.E.; Makridis, P. Antibacterial activity of essential oils from plants of the genus origanum. Food Control 2013, 34, 539–546. [Google Scholar] [CrossRef]
- Mohsenabadi, N.; Rajaei, A.; Tabatabaei, M.; Mohsenifar, A. Physical and antimicrobial properties of starch-carboxy methyl cellulose film containing rosemary essential oils encapsulated in chitosan nanogel. Int. J. Biol. Macromol. 2018, 112, 148–155. [Google Scholar] [CrossRef]
- Okoh, O.O.; Sadimenko, A.P.; Afolayan, A.J. Comparative evaluation of the antibacterial activities of the essential oils of rosmarinus officinalis l. Obtained by hydrodistillation and solvent free microwave extraction methods. Food Chem. 2010, 120, 308–312. [Google Scholar] [CrossRef]
- Saeed, M.; Naveed, M.; Arif, M.; Kakar, M.U.; Manzoor, R.; El-Hack, M.E.A.; Alagawany, M.; Tiwari, R.; Khandia, R.; Munjal, A.; et al. Green tea (camellia sinensis) and l-theanine: Medicinal values and beneficial applications in humans—A comprehensive review. Biomed. Pharmacother. 2017, 95, 1260–1275. [Google Scholar] [CrossRef] [PubMed]
- Clarke, D.; Molinaro, S.; Tyuftin, A.; Bolton, D.; Fanning, S.; Kerry, J.P. Incorporation of commercially-derived antimicrobials into gelatin based films and assessment of their antimicrobial activity and impact. Food Control 2016, 64, 202–211. [Google Scholar] [CrossRef]
- Rakmai, J.; Cheirsilp, B.; Mejuto, J.C.; Torrado-Agrasar, A.; Simal-Gandara, J. Physico-chemical characterization and evaluation of bio-efficacies of black pepper essential oil encapsulated in hydroxypropyl-beta-cyclodextrin. Food Hydrocoll. 2017, 65, 157–164. [Google Scholar] [CrossRef]
- Cox, S.D.; Mann, C.M.; Markham, J.L.; Bell, H.C.; Gustafson, J.E.; Warmington, J.R.; Wyllie, S.G. The mode of antimicrobial action of the essential oil of melaleuca alternifolia (tea tree oil). J. Appl. Microbiol. 2000, 88, 170–175. [Google Scholar] [CrossRef]
- Yong, A.-L.; Ooh, K.-F.; Ong, H.-C.; Chai, T.-T.; Wong, F.-C. Investigation of antibacterial mechanism and identification of bacterial protein targets mediated by antibacterial medicinal plant extracts. Food Chem. 2015, 186, 32–36. [Google Scholar] [CrossRef] [PubMed]
- Park, J.-A.; Kim, S.-B. Preparation and characterization of antimicrobial electrospun poly(vinyl alcohol) nanofibers containing benzyl triethylammonium chloride. React. Funct. Polym. 2015, 93, 30–37. [Google Scholar] [CrossRef]
- Torres-Giner, S.; Martinez-Abad, A.; Lagaron, J.M. Zein-based ultrathin fibers containing ceramic nanofillers obtained by electrospinning. Ii. Mechanical properties, gas barrier, and sustained release capacity of biocide thymol in multilayer polylactide films. J. Appl. Polym. Sci. 2014, 131, 9270–9276. [Google Scholar] [CrossRef]
- Cruz-Gálvez, A.M.; Castro-Rosas, J.; Rodríguez-Marín, M.L.; Cadena-Ramírez, A.; Tellez-Jurado, A.; Tovar-Jiménez, X.; Chavez-Urbiola, E.A.; Abreu-Corona, A.; Gómez-Aldapa, C.A. Antimicrobial activity and physicochemical characterization of a potato starch-based film containing acetonic and methanolic extracts of hibiscus sabdariffa for use in sausage. LWT 2018, 93, 300–305. [Google Scholar] [CrossRef]
- Khaneghah, A.M.; Bagher Hashemi, S.M.; Limbo, S. Antimicrobial agents and packaging systems in antimicrobial active food packaging: An overview of approaches and interactions. Food Bioprod. Process. 2018, 111, 1–19. [Google Scholar] [CrossRef]
- Sentkowska, A.; Pyrzynska, K. Investigation of antioxidant interaction between green tea polyphenols and acetaminophen using isobolographic analysis. J. Pharm. Biomed. Anal. 2018, 159, 393–397. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo, J.M.; Sichetti Munekata, P.E. Phenolic compounds of green tea: Health benefits and technological application in food. Asian Pac. J. Trop. Biomed. 2016, 6, 709–719. [Google Scholar] [CrossRef] [Green Version]
- Shahidi, F.; Zhong, Y. Novel antioxidants in food quality preservation and health promotion. Eur. J. Lipid Sci. Technol. 2010, 112, 930–940. [Google Scholar] [CrossRef]
- Chun, S.-S.; Vattem, D.A.; Lin, Y.-T.; Shetty, K. Phenolic antioxidants from clonal oregano (origanum vulgare) with antimicrobial activity against helicobacter pylori. Process Biochem. 2005, 40, 809–816. [Google Scholar] [CrossRef]
- Bajalan, I.; Rouzbahani, R.; Pirbalouti, A.G.; Maggi, F. Antioxidant and antibacterial activities of the essential oils obtained from seven iranian populations of rosmarinus officinalis. Ind. Crop. Prod. 2017, 107, 305–311. [Google Scholar] [CrossRef]
- Hongjun Shao, S.Y.; Qi Wang, Z.Z.; Xingbin Yang, L.Z. Non-extractable polyphenols of green tea and their antioxidant, anti-α-glucosidase capacity, and release during in vitro digestion. J. Funct. Foods 2018, 42, 129–136. [Google Scholar]
- Afroz Bakht, M.; Geesi, M.H.; Riadi, Y.; Imran, M.; Imtiyaz Ali, M.; Jawed Ahsan, M.; Ajmal, N. Ultrasound-assisted extraction of some branded tea: Optimization based on polyphenol content, antioxidant potential and thermodynamic study. Saudi J. Biol. Sci. 2018, in press. [Google Scholar] [CrossRef]
- Lu, M.-J.; Chen, C. Enzymatic modification by tannase increases the antioxidant activity of green tea. Food Res. Int. 2008, 41, 130–137. [Google Scholar] [CrossRef]
- Asensio, C.M.; Grosso, N.R.; Juliani, H.R. Quality characters, chemical composition and biological activities of oregano (Origanum spp.) essential oils from central and southern argentina. Ind. Crop. Prod. 2015, 63, 203–213. [Google Scholar] [CrossRef]
- Mechergui, K.; Jaouadi, W.; Coelho, J.P.; Larbi Khouja, M. Effect of harvest year on production, chemical composition and antioxidant activities of essential oil of oregano (Origanum vulgare subsp glandulosum (desf.) ietswaart) growing in north africa. Ind. Crop. Prod. 2016, 90, 32–37. [Google Scholar] [CrossRef]
- Yan, F.; Azizi, A.; Janke, S.; Schwarz, M.; Zeller, S.; Honermeier, B. Antioxidant capacity variation in the oregano (Origanum vulgare L.) collection of the german national genebank. Ind. Crop. Prod. 2016, 92, 19–25. [Google Scholar] [CrossRef]
- Shojaee-Aliabadi, S.; Hosseini, H.; Mohammadifar, M.A.; Mohammadi, A.; Ghasemlou, M.; Ojagh, S.M.; Hosseini, S.M.; Khaksar, R. Characterization of antioxidant-antimicrobial κ-carrageenan films containing satureja hortensis essential oil. Int. J. Biol. Macromol. 2013, 52, 116–124. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Estaca, J.; López-de-Dicastillo, C.; Hernández-Muñoz, P.; Catalá, R.; Gavara, R. Advances in antioxidant active food packaging. Trends Food Sci. Technol. 2014, 35, 42–51. [Google Scholar] [CrossRef]
- Robertson, G.L. Food Packaging: Principles and Practice; CRC Press, Taylor and Francis Group: Boca Raton, FL, USA, 1998; Volume 6. [Google Scholar]
Samples | Apparent Viscosity (cP) | Surface Tension (mN/m) | Conductivity (µs) |
---|---|---|---|
PHBV | 212.4 ± 0.04 a | 25.3 ± 0.05 a | 0.40 ± 0.01 a |
PHBV + OEO | 205.5 ± 0.01 b | 25.5 ± 0.07 a | 0.42 ± 0.02 a |
PHBV + RE | 208.1 ± 0.03 c | 25.4 ± 0.09 a | 0.41 ± 0.01 a |
PHBV + GTE | 206.9 ± 0.05 d | 25.5 ± 0.06 a | 0.39 ± 0.01 a |
Samples | a* | b* | L* | ΔE* | ||
---|---|---|---|---|---|---|
PHBV | 0.87 ± 0.07 a | −0.38 ± 0.02 a | 89.82 ± 0.06 a | - | 3.13 ± 0.02 a | 0.016 ± 0.06 a |
PHBV + OEO | 1.13 ± 0.05 b | 6.67 ± 0.03 b | 85.35 ± 0.07 b | 8.36 ± 0.08 a | 3.55 ± 0.03 b | 0.019 ± 0.08 b |
PHBV + RE | 0.04 ± 0.01 c | 6.67 ± 0.08 b | 87.33 ± 0.01 c | 7.52 ± 0.06 b | 6.44 ± 0.02 c | 0.026 ± 0.05 c |
PHBV + GTE | 0.07 ± 0.09 c | 14.45± 0.05 c | 84.38 ± 0.03 d | 15.82 ± 0.05 c | 16.42 ± 0.06 d | 0.067 ± 0.04 d |
Sample | T5% (°C) | Tdeg (°C) | Mass Loss (%) | Residual Mass (%) |
---|---|---|---|---|
OEO | 101.5 | 178.4 | 74.16 | 0.14 |
RE | 364.0 | 412.7 | 52.45 | 0.48 |
GTE | 352.7 | 411.5 | 49.89 | 0.56 |
PHBV | 251.5 | 278.7 | 47.74 | 2.10 |
PHBV + OEO | 197.5 | 283.6 | 69.58 | 0.16 |
PHBV + RE | 248.5 | 270.8 | 60.94 | 2.49 |
PHBV + GTE | 249.3 | 273.8 | 61.65 | 2.21 |
Sample | Bacteria | MIC | MBC |
---|---|---|---|
OEO | E. coli | 0.625 µL/mL | 0.625 µL/mL |
S. aureus | 0.312 µL/mL | 0.312 µL/mL | |
RE | E. coli | 10 µL/mL | 20 µL/mL |
S. aureus | 5 µL/mL | 10 µL/mL | |
GTE | E. coli | 160 µL/mL | 160 µL/mL |
S. aureus | 40 µL/mL | 80 µL/mL |
Microorganism | Day | Control Sample log (CFU/mL) | Test Sample log (CFU/mL) | R | |
---|---|---|---|---|---|
S. aureus | PHBV + OEO | 1 | 6.91 ± 0.06 | 3.78 ± 0.08 | 3.13 ± 0.06 |
8 | 6.88 ± 0.50 | 3.68 ± 0.03 | 3.20 ± 0.04 | ||
15 | 6.89 ± 0.20 | 3.65 ± 0.10 | 3.24 ± 0.15 | ||
PHBV + RE | 1 | 6.87 ± 0.03 | 4.07 ± 0.07 | 2.80 ± 0.06 | |
8 | 6.88 ± 0.09 | 4.01 ± 0.03 | 2.87 ± 0.03 | ||
15 | 6.87 ± 0.02 | 3.95 ± 0.01 | 2.92 ± 0.02 | ||
PHBV + GTE | 1 | 6.91 ± 0.10 | 5.00 ± 0.32 | 1.91 ± 0.20 | |
8 | 6.89 ± 0.23 | 4.94 ± 0.18 | 1.95 ± 0.13 | ||
15 | 6.92 ± 0.11 | 4.93 ± 0.22 | 1.99 ± 0.19 | ||
E. coli | PHBV + OEO | 1 | 6.95 ± 0.30 | 4.24 ± 0.09 | 2.71 ± 0.10 |
8 | 6.90 ± 0.08 | 4.09 ± 0.10 | 2.81 ± 0.20 | ||
15 | 6.87 ± 0.07 | 4.01 ± 0.03 | 2.86 ± 0.05 | ||
PHBV + RE | 1 | 6.89 ± 0.03 | 5.00 ± 0.06 | 1.89 ± 0.05 | |
8 | 6.90 ± 0.09 | 4.96 ± 0.07 | 1.94 ± 0.07 | ||
15 | 6.88 ± 0.08 | 4.91 ± 0.09 | 1.97 ± 0.07 | ||
PHBV + GTE | 1 | 6.89 ± 0.15 | 5.70 ± 0.19 | 1.19 ± 0.17 | |
8 | 6.87 ± 0.33 | 5.63 ± 0.21 | 1.24 ± 0.23 | ||
15 | 6.90 ± 0.46 | 5.62 ± 0.27 | 1.28 ± 0.31 |
Microorganism | Day | Control Sample log (CFU/mL) | Test Sample log (CFU/mL) | R | |
---|---|---|---|---|---|
S. aureus | PHBV + OEO | 1 | 6.91 ± 0.06 | 3.78 ± 0.08 | 3.13 ± 0.06 |
8 | 6.93 ± 0.30 | 3.52 ± 0.90 | 3.41 ± 0.30 | ||
15 | 6.92 ± 0.20 | 3.33 ± 0.08 | 3.59 ± 0.07 | ||
PHBV + RE | 1 | 6.87 ± 0.03 | 4.07 ± 0.07 | 2.80 ± 0.06 | |
8 | 6.89 ± 0.07 | 3.92 ± 0.05 | 2.91 ± 0.04 | ||
15 | 6.88 ± 0.12 | 3.86 ± 0.15 | 3.02 ± 0.11 | ||
PHBV + GTE | 1 | 6.91 ± 0.10 | 5.00 ± 0.32 | 1.91 ± 0.20 | |
8 | 6.89 ± 0.15 | 4.89 ± 0.17 | 2.00 ± 0.11 | ||
15 | 6.86 ± 0.20 | 4.78 ± 0.19 | 2.08 ± 0.21 | ||
E. coli | PHBV + OEO | 1 | 6.95 ± 0.30 | 4.24 ± 0.09 | 2.71 ± 0.10 |
8 | 6.90 ± 0.08 | 3.96 ± 0.10 | 2.94 ± 0.30 | ||
15 | 6.92 ± 0.09 | 3.91 ± 0.07 | 3.01 ± 0.06 | ||
PHBV + RE | 1 | 6.89 ± 0.03 | 5.00 ± 0.06 | 1.89 ± 0.05 | |
8 | 6.87 ± 0.05 | 4.88 ± 0.08 | 1.99 ± 0.09 | ||
15 | 6.88 ± 0.07 | 4.79 ± 0.03 | 2.09 ± 0.05 | ||
PHBV + GTE | 1 | 6.89 ± 0.15 | 5.70 ± 0.19 | 1.19 ± 0.17 | |
8 | 6.91 ± 0.11 | 5.62 ± 0.13 | 1.29 ± 0.15 | ||
15 | 6.90 ± 0.28 | 5.53 ± 0.21 | 1.37 ± 0.19 |
Sample | Inhibition Percentage (%) | Concentration (µg eq trolox/g Sample) |
---|---|---|
OEO | 91.96 ± 0.03 | 84.34 ± 0.03 |
RE | 75.24 ± 0.04 | 62.34 ± 0.03 |
GTE | 71.77 ± 0.08 | 61.95 ± 0.07 |
PHBV + OEO | 43.14 ± 0.07 | 28.56 ± 0.05 |
PHBV + RE | 25.82 ± 0.07 | 18.31 ± 0.05 |
PHBV + GTE | 22.12 ± 0.06 | 13.14 ± 0.04 |
Open System | Closed System | ||||
---|---|---|---|---|---|
Sample | Day | Inhibition Percentage (%) | Concentration (µg eq trolox/g Sample) | Inhibition Percentage (%) | Concentration (µg eq trolox/g Sample) |
PHBV + OEO | 1 | 24.54 ± 0.04 | 26.48 ± 0.04 | 24.54 ± 0.04 | 26.48 ± 0.04 |
8 | 16.08 ± 0.08 | 16.82 ± 0.09 | 17.43 ± 0.04 | 17.57 ± 0.04 | |
15 | 14.90 ± 0.06 | 15.75 ± 0.06 | 15.24 ± 0.01 | 16.47 ± 0.01 | |
PHBV + RE | 1 | 15.59 ± 0.02 | 16.31 ± 0.02 | 15.59 ± 0.02 | 16.31 ± 0.02 |
8 | 10.42 ± 0.08 | 10.27 ± 0.08 | 13.50 ± 0.01 | 13.97 ± 0.01 | |
15 | 7.310 ± 0.04 | 7.710 ± 0.04 | 8.200 ± 0.15 | 8.120 ± 0.02 | |
PHBV + GTE | 1 | 11.14 ± 0.04 | 11.79 ± 0.04 | 11.14 ± 0.04 | 11.79 ± 0.04 |
8 | 8.910 ± 0.10 | 8.760 ± 0.10 | 9.960 ± 0.02 | 9.820 ± 0.02 | |
15 | 6.680 ± 0.11 | 6.540 ± 0.11 | 7.800 ± 0.02 | 8.250 ± 0.02 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Figueroa-Lopez, K.J.; Vicente, A.A.; Reis, M.A.M.; Torres-Giner, S.; Lagaron, J.M. Antimicrobial and Antioxidant Performance of Various Essential Oils and Natural Extracts and Their Incorporation into Biowaste Derived Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Layers Made from Electrospun Ultrathin Fibers. Nanomaterials 2019, 9, 144. https://doi.org/10.3390/nano9020144
Figueroa-Lopez KJ, Vicente AA, Reis MAM, Torres-Giner S, Lagaron JM. Antimicrobial and Antioxidant Performance of Various Essential Oils and Natural Extracts and Their Incorporation into Biowaste Derived Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Layers Made from Electrospun Ultrathin Fibers. Nanomaterials. 2019; 9(2):144. https://doi.org/10.3390/nano9020144
Chicago/Turabian StyleFigueroa-Lopez, Kelly J., António A. Vicente, Maria A.M. Reis, Sergio Torres-Giner, and Jose M. Lagaron. 2019. "Antimicrobial and Antioxidant Performance of Various Essential Oils and Natural Extracts and Their Incorporation into Biowaste Derived Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Layers Made from Electrospun Ultrathin Fibers" Nanomaterials 9, no. 2: 144. https://doi.org/10.3390/nano9020144
APA StyleFigueroa-Lopez, K. J., Vicente, A. A., Reis, M. A. M., Torres-Giner, S., & Lagaron, J. M. (2019). Antimicrobial and Antioxidant Performance of Various Essential Oils and Natural Extracts and Their Incorporation into Biowaste Derived Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Layers Made from Electrospun Ultrathin Fibers. Nanomaterials, 9(2), 144. https://doi.org/10.3390/nano9020144