Mechanical Properties of Vacancy Tuned Carbon Honeycomb
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Mechanical Properties
3.2. Effect of Vacancy Defects on Mechanical Properties
3.3. Temperature Sensitivity of Strength of CHC with Vacancy Defects
3.4. Effect of Vacancy Concentration on Mechanical Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Poncharal, P. Electrostatic Deflections and Electromechanical Resonances of Carbon Nanotubes. Science 1999, 283, 1513–1516. [Google Scholar] [CrossRef] [PubMed]
- Treacy, M.M.J.; Ebbesen, T.W.; Gibson, J.M. Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 1996, 381, 678–680. [Google Scholar] [CrossRef]
- Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Dikin, D.A.; Stankovich, S.; Zimney, E.J.; Piner, R.D.; Dommett, G.H.B.; Evmenenko, G.; Nguyen, S.T.; Ruoff, R.S. Preparation and characterization of graphene oxide paper. Nature 2007, 448, 457–460. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.J.; Yang, Q.S.; He, X.Q.; Liew, K.M. Design of 3D carbon nanotube-based nanostructures and prediction of their extra-strong mechanical properties under tension and compression. Comput. Mater. Sci. 2014, 85, 324–331. [Google Scholar] [CrossRef]
- Liu, X.; Lu, W.; Ayala, O.M.; Wang, L.P.; Karlsson, A.M.; Yang, Q.; Chou, T.-W. Microstructural evolution of carbon nanotube fibers: Deformation and strength mechanism. Nanoscale 2013, 5, 2002–2008. [Google Scholar] [CrossRef] [PubMed]
- Park, N.; Ihm, J. Electronic structure and mechanical stability of the graphitic honeycomb lattice. Phys. Rev. B 2000, 62, 7614–7618. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Xie, Y.; Gao, Y.; Chang, P.Y.; Zhang, S.; Vanderbilt, D. Nexus networks in carbon honeycombs. Phys. Rev. Mater. 2018, 2, 44205. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Wu, D.; Yang, B.; Ruckenstein, E.; Chen, H. Semimetallic carbon honeycombs: New three-dimensional graphene allotropes with Dirac cones. Nanoscale 2018, 10, 2748–2754. [Google Scholar] [CrossRef]
- Krainyukova, N.V.; Zubarev, E.N. Carbon honeycomb high capacity storage for gaseous and liquid species. Phys. Rev. Lett. 2016, 116, 055501. [Google Scholar] [CrossRef]
- Kuc, A.; Seifert, G. Hexagon-preserving carbon foams: Properties of hypothetical carbon allotropes. Phys. Rev. B 2006, 74, 214104. [Google Scholar] [CrossRef]
- Pang, Z.; Gu, X.; Wei, Y.; Yang, R.; Dresselhaus, M.S. Bottom-up design of three-dimensional carbon-honeycomb with superb specific strength and high thermal conductivity. Nano Lett. 2017, 17, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Yang, F.; Bi, K.; Yang, J.; Chen, Y. Thermal transport properties of all-sp2 three-dimensional graphene: Anisotropy, size and pressure effects. Carbon 2017, 113, 212–218. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, C. Buckling of carbon honeycombs: A new mechanism for molecular mass transportation. J. Phys. Chem. C. 2017, 121, 8196–8203. [Google Scholar] [CrossRef]
- Zhang, Z.; Kutana, A.; Yang, Y.; Krainyukova, N.V.; Penev, E.S.; Yakobson, B.I. Nanomechanics of carbon honeycomb cellular structures. Carbon 2017, 113, 26–32. [Google Scholar] [CrossRef]
- Gu, X.; Pang, Z.; Wei, Y.; Yang, R. On the influence of junction structures on the mechanical and thermal properties of carbon honeycombs. Carbon 2017, 119, 278–286. [Google Scholar] [CrossRef] [Green Version]
- Mielke, S.L.; Troya, D.; Zhang, S.; Li, J.-L.; Xiao, S.; Car, R.; Ruoff, R.S.; Schatz, G.C.; Belytschko, T. The role of vacancy defects and holes in the fracture of carbon nanotubes. Chem. Phys. Lett. 2004, 390, 413–420. [Google Scholar] [CrossRef]
- Zandiatashbar, A.; Lee, G.H.; An, S.J.; Lee, S.; Mathew, N.; Terrones, M.; Hayashi, T.; Picu, C.R.; Hone, J.; Koratkar, N. Effect of defects on the intrinsic strength and stiffness of graphene. Nat. Commun. 2014, 5, 3186. [Google Scholar] [CrossRef] [Green Version]
- Peng, Q.; Meng, F.; Yang, Y.; Lu, C.; Deng, H.; Wang, L.; De, S.; Gao, F. Shockwave generates <100> dislocation loops in bcc iron. Nat. Commun. 2018, 9, 4880. [Google Scholar] [CrossRef]
- Xie, L.; An, H.; Peng, Q.; Qin, Q.; Zhang, Y. Sensitive five-fold local symmetry to kinetic energy of depositing atoms in Cu-Zr thin film growth. Materials 2018, 11, 2548. [Google Scholar] [CrossRef]
- Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef]
- Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO—The open visualization tool. Model. Simul. Mater. Sci. 2010, 18, 015012. [Google Scholar] [CrossRef]
- Donald, W.B.; Olga, A.S.; Judith, A.H.; Steven, J.S.; Boris, N.; Susan, B.S. A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J. Phys.-Condens. Matter 2002, 14, 783. [Google Scholar]
- Deng, B.; Hou, J.; Zhu, H.; Liu, S.; Liu, E.; Shi, Y.; Peng, Q. The normal-auxeticity mechanical phase transition in graphene. 2D Mater. 2017, 4, 021020. [Google Scholar] [CrossRef] [Green Version]
- Hossain, M.Z.; Hao, T.; Silverman, B. Stillinger–Weber potential for elastic and fracture properties in graphene and carbon nanotubes. J. Phys.-Condens. Matter 2018, 30, 055901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, J.; Wu, W.; Zhong, C.; Liu, N.; Ouyang, C.; Yang, H.Y.; Yang, S.A. Three-dimensional honeycomb carbon: Junction line distortion and novel emergent fermions. Carbon 2019, 141, 417–426. [Google Scholar] [CrossRef]
Direction | Young’s Moduli (GPa) | Failure Strain | Strength (GPa) |
---|---|---|---|
Zigzag | 46 | 0.204 | 23.7 |
Armchair | 43 | 0.320 | 22.4 |
Cell axis | 550 | 0.225 | 55.3 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, L.; An, H.; He, C.; Qin, Q.; Peng, Q. Mechanical Properties of Vacancy Tuned Carbon Honeycomb. Nanomaterials 2019, 9, 156. https://doi.org/10.3390/nano9020156
Xie L, An H, He C, Qin Q, Peng Q. Mechanical Properties of Vacancy Tuned Carbon Honeycomb. Nanomaterials. 2019; 9(2):156. https://doi.org/10.3390/nano9020156
Chicago/Turabian StyleXie, Lu, Haojie An, Chenwei He, Qin Qin, and Qing Peng. 2019. "Mechanical Properties of Vacancy Tuned Carbon Honeycomb" Nanomaterials 9, no. 2: 156. https://doi.org/10.3390/nano9020156
APA StyleXie, L., An, H., He, C., Qin, Q., & Peng, Q. (2019). Mechanical Properties of Vacancy Tuned Carbon Honeycomb. Nanomaterials, 9(2), 156. https://doi.org/10.3390/nano9020156