Perovskite Downconverters for Efficient, Excellent Color-Rendering, and Circadian Solid-State Lighting
Abstract
:1. Introduction
2. Materials and Methods
2.1. Perovskite-Polymer Composite Powders
2.2. Systematic Optimization
3. Results and Discussion
3.1. Fixed CCTs
3.2. Tunable CCTs
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Crawford, M.H. LEDs for solid-state lighting: Performance challenges and recent advances. IEEE J. Sel. Top. Quantum Electron. 2009, 15, 1028–1040. [Google Scholar] [CrossRef]
- Coltrin, M.E.; Tsao, J.Y.; Ohno, Y. Limits on the maximum attainable efficiency for solid-state lighting. Proc. Spie 2007, 6841, 2–13. [Google Scholar]
- Pattison, P.M.; Tsao, J.Y.; Brainard, G.C.; Bugbee, B. LEDs for photons, physiology and food. Nature 2018, 563, 493–500. [Google Scholar] [CrossRef] [PubMed]
- Ohno, Y. Spectral design considerations for color rendering of white LED light sources. Opt. Eng. 2005, 44, 111302. [Google Scholar] [CrossRef]
- Davis, W.; Ohno, Y. Color quality scale. Opt. Eng. 2010, 49, 033602. [Google Scholar] [CrossRef]
- Bellia, L.; Bisegna, F.; Spada, G. Lighting in indoor environments: Visual and non-visual effects of light sources with different spectral power distributions. Build. Environ. 2011, 46, 1984–1992. [Google Scholar] [CrossRef]
- Lucas, R.J.; Peirson, S.N.; Berson, D.M.; Brown, T.M.; Cooper, H.M.; Czeisler, C.A.; Figueiro, M.G.; Gamlin, P.D.; Lockley, S.W.; O’Hagan, J.B.; et al. Measuring and using light in the melanopsin age. Trends Neurosci. 2014, 37, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Czeisler, C.A. Perspective: Casting light on sleep deficiency. Nature 2013, 497, S13. [Google Scholar] [CrossRef]
- Berson, D.M.; Dunn, F.A.; Takao, M. Phototransduction by retinal ganglion cells that set the circadian clock. Science 2002, 295, 1070–1073. [Google Scholar] [CrossRef]
- Gall, D. Circadiane Lichtgrößen und deren messtechnische ermittlung. Licht 2002, 54, 1292–1297. [Google Scholar]
- Gall, D.; Beiske, K. Definition and measurement of circadian radiometric quantities. In Proceedings of the 2004 CIE Symposium on Light and Health: Non-visual Effects (Commission Internationale de l’E´ clairage 2004), Vienna, Austria, 30 September–2 October 2004; pp. 129–132. [Google Scholar]
- Yoon, H.C.; Oh, J.H.; Lee, S.; Park, J.B.; Do, Y.R. Circadian-tunable perovskite quantum dot-based down-converted multi-package white LED with a color fidelity index over 90. Sci. Rep. 2017, 7, 2808. [Google Scholar] [CrossRef] [PubMed]
- Dai, Q.; Shan, Q.; Lam, H.; Hao, L.; Lin, Y.; Cui, Z. Circadian-effect engineering of solid-state lighting spectra for beneficial and tunable lighting. Opt. Express 2016, 24, 20049–20058. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.H.; Yang, S.J.; Do, Y.R. Healthy, natural, efficient and tunable lighting: Four-package white LEDs for optimizing the circadian effect, color quality and vision performance. Light Sci. Appl. 2014, 3, e141. [Google Scholar] [CrossRef]
- Luo, Z.; Chen, H.; Liu, Y.; Xu, S.; Wu, S.T. Color-tunable light emitting diodes based on quantum dot suspension. Appl. Opt. 2015, 54, 2845–2850. [Google Scholar] [CrossRef]
- Žukauskas, A.; Vaicekauskas, R. Tunability of the circadian action of tetrachromatic solid-state light sources. Appl. Phys. Lett. 2015, 106, 041107. [Google Scholar] [CrossRef]
- Nakamura, S.; Mukai, T.; Senoh, M. High-power GaN pn junction blue-light-emitting diodes. Jpn. J. Appl. Phys. 1991, 30, L1998–L2001. [Google Scholar] [CrossRef]
- Shimizu, K.T.; Böhmer, M.; Estrada, D.; Gangwal, S.; Grabowski, S.; Bechtel, H.; Kang, E.; Vampola, K.J.; Chamberlin, D.; Shchekin, O.B.; et al. Toward commercial realization of quantum dot based white light-emitting diodes for general illumination. Photon. Res. 2017, 5, A1–A6. [Google Scholar] [CrossRef]
- Mangum, B.D.; Landes, T.S.; Theobald, B.R.; Kurtin, J.N. Exploring the bounds of narrow-band quantum dot downconverted LEDs. Photon. Res. 2017, 5, A13–A22. [Google Scholar] [CrossRef]
- Protesescu, L.; Yakumin, S.; Bodnarchuk, M.I.; Krieg, F.; Caputo, R.; Hendon, C.H.; Yang, R.X.; Walsh, A.; Kovalenko, M.C. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692–3696. [Google Scholar] [CrossRef]
- Zhang, F.; Zhong, H.; Chen, C.; Wu, X.G.; Hu, X.; Huang, H.; Han, J.; Zou, B.; Dong, Y. Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: Potential alternatives for display technology. ACS Nano 2015, 9, 4533–4542. [Google Scholar] [CrossRef]
- Weidman, M.C.; Seitz, M.; Stranks, S.D.; Tisdale, W.A. Highly tunable colloidal perovskite nanoplatelets through variable cation, metal, and halide composition. ACS Nano 2016, 10, 7830–7839. [Google Scholar] [CrossRef] [PubMed]
- Pathak, S.; Sakai, N.; Wisnivesky Rocca Rivarola, F.; Stranks, S.D.; Liu, J.; Eperon, G.; Ducati, C.; Wojciechowski, K.; Griffiths, J.T.; Haghighirad, A.A.; et al. Perovskite Crystals for Tuneable White Light Emission. Chem. Mater. 2015, 27, 8066–8075. [Google Scholar] [CrossRef]
- Bekenstein, Y.; Koscher, B.A.; Eaton, S.W.; Yang, P.; Alivisatos, A.P. Highly luminescent colloidal nanoplates of perovskite cesium lead halide and their oriented assemblies. J. Am. Chem. Soc. 2015, 137, 16008–16011. [Google Scholar] [CrossRef]
- Sutherland, B.R.; Sargent, E.H. Perovskite photonic sources. Nat. Photon. 2016, 10, 295–302. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Chen, H.; Chen, H.; Wang, Y.; Wu, S.T.; Dong, Y. Hybrid downconverters with green perovskite-polymer composite films for wide color gamut displays. Opt. Express 2017, 25, 12915–12925. [Google Scholar] [CrossRef] [PubMed]
- Yoon, H.C.; Kang, H.; Lee, S.; Oh, J.H.; Yang, H.; Do, Y.R. Study of perovskite QD down-converted LEDs and six-color white LEDs for future displays with excellent color performance. ACS Appl. Mater. Interfaces 2016, 8, 18189–18200. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.; Bai, Z.; Zhong, H. In situ fabricated perovskite nanocrystals: A revolution in optical materials. Adv. Opt. Mater. 2018, 6, 1800380. [Google Scholar] [CrossRef]
- Huang, H.; Bodnarchuk, M.I.; Kershaw, S.V.; Kovalenko, M.V.; Rogach, A.L. Lead halide perovskite nanocrystals in the research spotlight: Stability and defect tolerance. ACS Energy Lett. 2017, 2, 2071–2083. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Bai, Z.; Lu, W.G.; Wang, Y.; Zou, B.; Zhong, H. In situ fabrication of halide perovskite nanocrystal-embedded polymer composite films with enhanced photoluminescence for display backlights. Adv. Mater. 2016, 28, 9163–9168. [Google Scholar] [CrossRef]
- Wang, Y.; He, J.; Chen, H.; Chen, J.; Zhu, R.; Ma, P.; Towers, A.; Lin, Y.; Gesquiere, A.J.; Wu, S.T.; et al. Ultrastable, highly luminescent organic-inorganic perovskite-polymer composite films. Adv. Mater. 2016, 28, 10710–10717. [Google Scholar] [CrossRef]
- Zhang, C.; He, J.; Chen, H.; Tan, G.; Zhou, L.; Wu, S.T.; Sohn, Y.; Dong, Y. Converting light diffusing polymer powders into stable perovskite-based tunable downconverters. Sid Int. Symp. Dig. Tech. Pap. 2018, 18, 222–224. [Google Scholar] [CrossRef]
- He, Z.; Zhang, C.; Dong, Y.; Wu, S.-T. Emerging Perovskite Nanocrystals-Enhanced Solid-State Lighting and Liquid-Crystal Displays. Crystals 2019, 9, 59. [Google Scholar] [CrossRef]
- He, Z.; Chen, H.; Lee, Y.H.; Wu, S.T. Tuning the correlated color temperature of white light-emitting diodes resembling Planckian locus. Opt. Express 2018, 26, A136–A143. [Google Scholar] [CrossRef] [PubMed]
- Coello, C.A.C.; Lamont, G.B. Applications of Multi-Objective Evolutionary Algorithms; World Scientific: Singapore, 2004. [Google Scholar]
MHP Components | Emission Peaks (nm) | FWHMs (nm) | CIE 1931 Color Coordinates (x, y) |
---|---|---|---|
CsPb (Cl0.33Br0.67)3 | 483.6 | 20.7 | (0.084, 0.177) |
CsPb (Cl0.25Br0.75)3 | 499.6 | 18.5 | (0.024, 0.514) |
CsPbBr3 | 526.0 | 18.0 | (0.132, 0.806) |
CsPb (Br0.5I0.5)3 | 558.2 | 34.2 | (0.372, 0.622) |
CsPb (Br0.33I0.67)3 | 609.3 | 34.2 | (0.642, 0.358) |
CsPb (Br0.25I0.75)3 | 626.0 | 37.0 | (0.682, 0.318) |
CsPb (Br0.2I0.8)3 | 634.2 | 39.5 | (0.693, 0.306) |
CsPb (Br0.14I0.86)3 | 664.0 | 31.5 | (0.726, 0.274) |
Blue LED | MHP1 | MHP2 | MHP3 | MHP4 | MHP5 | |
---|---|---|---|---|---|---|
Central wavelength (nm) | 450–465 | 480–520 | 500–540 | 540–610 | 570–640 | 610–680 |
FWHM (nm) | 20 (fixed) | 18–24 | 18–24 | 30–40 | 30–40 | 30–40 |
Blue LED | MHP1 | MHP2 | MHP3 | MHP4 | MHP5 | ||
---|---|---|---|---|---|---|---|
Central wavelength (nm) | 461.4 | 502.4 | 521.7 | 540.4 | 572.4 | 620.7 | |
OP1 | FWHM (nm) | 20.0 | 23.2 | 19.0 | 35.5 | 35.3 | 30.0 |
Ratio (%) | 13.8 | 1.0 | 20.9 | 3.4 | 18.6 | 42.3 | |
Central wavelength (nm) | 461.4 | 522.0 | 570.9 | 620.8 | - | - | |
Fitting | FWHM (nm) | 20.1 | 21.0 | 39.5 | 29.7 | - | - |
Ratio (%) | 14.2 | 22.8 | 19.4 | 43.6 | - | - |
Blue LED | MHP1 | MHP2 | MHP3 | MHP4 | MHP5 | ||
---|---|---|---|---|---|---|---|
Central wavelength (nm) | 450.3 | 491.9 | 530.8 | 570.0 | 571.6 | 620.1 | |
OP1 | FWHM (nm) | 20.0 | 18.7 | 19.9 | 32.9 | 36.3 | 31.6 |
Ratio (%) | 25.9 | 26.5 | 18.1 | 11.4 | 1.7 | 16.4 | |
Central wavelength (nm) | 450.3 | 491.9 | 530.8 | 570.2 | 620.1 | - | |
Fitting | FWHM (nm) | 20.0 | 18.7 | 19.9 | 33.3 | 31.6 | - |
Ratio (%) | 25.9 | 26.5 | 18.1 | 13.1 | 16.4 | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Z.; Zhang, C.; Chen, H.; Dong, Y.; Wu, S.-T. Perovskite Downconverters for Efficient, Excellent Color-Rendering, and Circadian Solid-State Lighting. Nanomaterials 2019, 9, 176. https://doi.org/10.3390/nano9020176
He Z, Zhang C, Chen H, Dong Y, Wu S-T. Perovskite Downconverters for Efficient, Excellent Color-Rendering, and Circadian Solid-State Lighting. Nanomaterials. 2019; 9(2):176. https://doi.org/10.3390/nano9020176
Chicago/Turabian StyleHe, Ziqian, Caicai Zhang, Hao Chen, Yajie Dong, and Shin-Tson Wu. 2019. "Perovskite Downconverters for Efficient, Excellent Color-Rendering, and Circadian Solid-State Lighting" Nanomaterials 9, no. 2: 176. https://doi.org/10.3390/nano9020176
APA StyleHe, Z., Zhang, C., Chen, H., Dong, Y., & Wu, S. -T. (2019). Perovskite Downconverters for Efficient, Excellent Color-Rendering, and Circadian Solid-State Lighting. Nanomaterials, 9(2), 176. https://doi.org/10.3390/nano9020176