Metal-Support Cooperative Effects in Au/VPO for the Aerobic Oxidation of Benzyl Alcohol to Benzyl Benzoate
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Besson, M.; Gallezot, P. Selective oxidation of alcohols and aldehydes on metal catalysts. Catal. Today 2000, 57, 127–141. [Google Scholar] [CrossRef]
- Mallat, T.; Baiker, A. Oxidation of alcohols with molecular oxygen on solid catalysts. Chem. Rev. 2004, 104, 3037–3058. [Google Scholar] [CrossRef] [PubMed]
- Dimitratos, N.; Lopez-Sanchez, J.A.; Hutchings, G.J. Selective liquid phase oxidation with supported metal nanoparticles. Chem. Sci. 2012, 3, 20–44. [Google Scholar] [CrossRef]
- Yu, Y.; Lu, B.; Wang, X.; Zhao, J.; Wang, X.; Cai, Q. Highly selective oxidation of benzyl alcohol to benzaldehyde with hydrogen peroxide by biphasic catalysis. Chem. Eng. J. 2010, 162, 738–742. [Google Scholar] [CrossRef]
- Luo, J.; Yu, H.; Wang, H.; Wang, H.; Peng, F. Aerobic oxidation of benzyl alcohol to benzaldehyde catalyzed by carbon nanotubes without any promoter. Chem. Eng. J. 2014, 240, 434–442. [Google Scholar] [CrossRef]
- Alberici, F.; Pagani, L.; Ratti, G.; Viale, P. Ivermectin alone or in combination with benzyl benzoate in the treatment of human immunodeficiency virus-associated scabies. Br. J. Dermatol. 2000, 142, 969–972. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.F.; Zheng, Q.K.; Zheng, J.Q. Effect of Carrier on the Structure and Performance of Polyphenylene Sulfide Fiber. Adv. Mater. Res. 2012, 554–556, 147–152. [Google Scholar] [CrossRef]
- Savara, A.; Chan-Thaw, C.E.; Rossetti, I.; Villa, A.; Prati, L. Benzyl alcohol oxidation on carbon-supported Pd nanoparticles: Elucidating the reaction mechanism. ChemCatChem 2015, 6, 3464–3473. [Google Scholar] [CrossRef]
- Enache, D.I.; Knight, D.W.; Hutchings, G.J. Solvent-free oxidation of primary alcohols to aldehydes using supported gold catalysts. Catal. Lett. 2005, 103, 43–52. [Google Scholar] [CrossRef]
- Cao, E.; Sankar, M.; Firth, S.; Lam, K.F.; Bethell, D.; Knight, D.K.; Hutchings, G.J.; McMillan, P.F.; Gavriilidis, A. Reaction and Raman spectroscopic studies of alcohol oxidation on gold-palladium catalysts in microstructured reactors. Chem. Eng. J. 2011, 167, 734–743. [Google Scholar] [CrossRef]
- Ferri, D.; Mondelli, C.; Krumeich, F.; Baiker, A. Discrimination of active palladium sites in catalytic liquid-phase oxidation of benzyl alcohol. J. Phys. Chem. B 2006, 110, 22982–22986. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Enache, D.I.; Edwards, J.; Carley, A.F.; Knight, D.W.; Hutchings, G.J. Solvent-free oxidation of benzyl alcohol with oxygen using zeolite-supported Au and Au-Pd catalysts. Catal. Lett. 2006, 110, 7–13. [Google Scholar] [CrossRef]
- Rogers, S.M.; Catlow, C.R.A.; Chan-Thaw, C.E.; Gianolio, D.; Gibson, E.K.; Gould, A.L.; Jian, N.; Logsdail, A.J.; Palmer, R.E.; Prati, L.; et al. Tailoring Gold Nanoparticle Characteristics and the Impact on Aqueous-Phase Oxidation of Glycerol. ACS Catal. 2015, 5. [Google Scholar] [CrossRef]
- Personick, M.L.; Madix, R.J.; Friend, C.M. Selective Oxygen-Assisted Reactions of Alcohols and Amines Catalyzed by Metallic Gold: Paradigms for the Design of Catalytic Processes. ACS Catal. 2017, 7, 965–985. [Google Scholar] [CrossRef]
- Lackmann, A.; Mahr, C.; Schowalter, M.; Fitzek, L.; Weissmüller, J.; Rosenauer, A.; Wittstock, A. A comparative study of alcohol oxidation over nanoporous gold in gas and liquid phase. J. Catal. 2017, 353, 99–106. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, J.; Zhou, Z.; Zhao, G. Highly selective aerobic oxidation of biomass alcohol to benzaldehyde by an: In situ doped Au/TiO2 nanotube photonic crystal photoanode for simultaneous hydrogen production promotion. J. Mater. Chem. A 2017, 5, 12407–12415. [Google Scholar] [CrossRef]
- Dias Ribeiro de Sousa Martins, L.M.; Carabineiro, S.A.C.; Wang, J.; Rocha, B.G.M.; Maldonado-Hódar, F.J.; Latourrette de Oliveira Pombeiro, A.J. Supported Gold Nanoparticles as Reusable Catalysts for Oxidation Reactions of Industrial Significance. ChemCatChem 2017, 9, 1211–1221. [Google Scholar] [CrossRef]
- Carrettin, S.; McMorn, P.; Johnston, P.; Griffin, K.; Hutchings, G.J. Selective oxidation of glycerol to glyceric acid using a gold catalyst in aqueous sodium hydroxide. Chem. Commun. 2002, 7, 696–697. [Google Scholar] [CrossRef]
- Ketchie, W.C.; Murayama, M.; Davis, R.J. Selective oxidation of glycerol over carbon-supported AuPd catalysts. J. Catal. 2007, 250, 264–273. [Google Scholar] [CrossRef]
- Villa, A.; Campisi, S.; Mohammed, K.M.H.; Dimitratos, N.; Vindigni, F.; Manzoli, M.; Jones, W.; Bowker, M.; Hutchings, G.J.; Prati, L. Tailoring the selectivity of glycerol oxidation by tuning the acid–base properties of Au catalysts. Catal. Sci. Technol. 2015, 5, 1126–1132. [Google Scholar] [CrossRef] [Green Version]
- Villa, A.; Chan-Thaw, C.E.; Veith, G.M.; More, K.L.; Ferri, D.; Prati, L. Au on nanosized NiO: A cooperative effect between au and nanosized NiO in the base-free alcohol oxidation. ChemCatChem 2011, 3, 1612–1618. [Google Scholar] [CrossRef]
- Fang, W.; Zhang, Q.; Chen, J.; Deng, W.; Wang, Y. Gold nanoparticles on hydrotalcites as efficient catalysts for oxidant-free dehydrogenation of alcohols. Chem. Commun. 2010, 46, 1547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patrícia, R.; Castro, K.; Aurélio, S.; Garcia, M.; de Abreu, W.C.; Anderson, A.; de Sousa, S.; Verônica, R.; de Moura, C.; Cláudio, S.; et al. Aerobic Oxidation of Benzyl Alcohol on a Strontium-Based Gold Material: Remarkable Intrinsic Basicity and Reusable Catalyst. Catalysts 2018, 8, 83. [Google Scholar] [CrossRef]
- Meng, Y.; Zou, S.; Zhou, Y.; Yi, W.; Yan, Y.; Ye, B.; Xiao, L.; Liu, J.; Kobayashi, H.; Fan, J. Activating molecular oxygen by Au/ZnO to selectively oxidize glycerol to dihydroxyacetone. Catal. Sci. Technol. 2018, 8, 2524–2528. [Google Scholar] [CrossRef]
- Villa, A.; Veith, G.M.; Ferri, D.; Weidenkaff, A.; Perry, K.A.; Campisi, S.; Prati, L. NiO as a peculiar support for metal nanoparticles in polyols oxidation. Catal. Sci. Technol. 2013, 3, 394–399. [Google Scholar] [CrossRef]
- Jian, J.; You, K.; Duan, X.; Gao, H.; Luo, Q.; Deng, R.; Liu, P.; Ai, Q.; Luo, H. Boosting one-step conversion of cyclohexane to adipic acid by NO2 and VPO composite catalysts. Chem. Commun. 2016, 52, 3320–3323. [Google Scholar] [CrossRef] [PubMed]
- Grasset, F.L.; Katryniok, B.; Paul, S.; Nardello-Rataj, V.; Pera-Titus, M.; Clacens, J.-M.; De Campo, F.; Dumeignil, F. Selective oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran over intercalated vanadium phosphate oxides. RSC Adv. 2013, 3, 9942. [Google Scholar] [CrossRef] [Green Version]
- Pillai, U.R.; Sahle-Demessie, E. Vanadium phosphorus oxide as an efficient catalyst for hydrocarbon oxidations using hydrogen peroxide. New J. Chem. 2003, 27, 525–528. [Google Scholar] [CrossRef]
- Mahdavi, V.; Hasheminasab, H.R. Vanadium phosphorus oxide catalyst promoted by cobalt doping for mild oxidation of benzyl alcohol to benzaldehyde in the liquid phase. Appl. Catal. A Gen. 2014, 482, 189–197. [Google Scholar] [CrossRef]
- Mahdavi, V.; Hasheminasab, H.R.; Abdollahi, S. Liquid Phase Selective Oxidation of Alcohols over VPO Catalysts Supported on Mesoporous Hexagonal Molecular Sieves (HMS). J. Chin. Chem. Soc. 2010, 57, 189–198. [Google Scholar] [CrossRef]
- Luciani, S.; Cavani, F.; Dal Santo, V.; Dimitratos, N.; Rossi, M.; Bianchi, C.L. The mechanism of surface doping in vanadyl pyrophosphate, catalyst for n-butane oxidation to maleic anhydride: The role of Au promoter. Catal. Today 2011, 169, 200–206. [Google Scholar] [CrossRef]
- Wang, D.; Villa, A.; Spontoni, P.; Su, D.S.; Prati, L. In situ formation of Au-Pd bimetallic active sites promoting the physically mixed monometallic catalysts in the liquid-phase oxidation of alcohols. Chem. A Eur. J. 2010, 16, 10007–10013. [Google Scholar] [CrossRef] [PubMed]
- Carniti, P.; Gervasini, A.; Marzo, M. Silica-niobia oxides as viable acid catalysts in water: Effective vs. intrinsic acidity. Catal. Today 2010, 152, 42–47. [Google Scholar] [CrossRef]
- Mori, K.; Hara, T.; Mizugaki, T.; Ebitani, K.; Kaneda, K. Hydroxyapatite-supported palladium nanoclusters: A highly active heterogeneous catalyst for selective oxidation of alcohols by use of molecular oxygen. J. Am. Chem. Soc. 2004, 126, 10657–10666. [Google Scholar] [CrossRef]
- Dimitratos, N.; Villa, A.; Prati, L.; Hammond, C.; Chan-Thaw, C.E.; Cookson, J.; Bishop, P.T. Effect of the preparation method of supported Au nanoparticles in the liquid phase oxidation of glycerol. Appl. Catal. A Gen. 2016, 514, 267–275. [Google Scholar] [CrossRef]
- Carniti, P.; Gervasini, A.; Biella, S.; Auroux, A. Intrinsic and effective acidity study of niobic acid and niobium phosphate by a multitechnique approach. Chem. Mater. 2005, 17, 6128–6136. [Google Scholar] [CrossRef]
- Védrine, J.C. Acid-base characterization of heterogeneous catalysts: An up-to-date overview. Res. Chem. Intermed. 2015, 41, 9387–9423. [Google Scholar] [CrossRef]
- Villa, A.; Wang, D.; Su, D.S.; Prati, L. Gold sols as catalysts for glycerol oxidation: The role of stabilizer. ChemCatChem 2009, 1, 510–514. [Google Scholar] [CrossRef]
- Wang, F.; Dubois, J.-L.; Ueda, W. Catalytic dehydration of glycerol over vanadium phosphate oxides in the presence of molecular oxygen. J. Catal. 2009, 268, 260–267. [Google Scholar] [CrossRef]
- Dong, W.-S.; Bartley, J.K.; Girgsdies, F.; Schlögl, R.; Hutchings, G.J. The hydration and transformation of vanadyl pyrophosphate. J. Mater. Chem. 2005, 15, 4147. [Google Scholar] [CrossRef]
- Hutchings, G.J.; Higgins, R. Effect of Promoters on the Selective Oxidation ofn-Butane with Vanadium-Phosphorus Oxide Catalysts. J. Catal. 1996, 162, 153–168. [Google Scholar] [CrossRef]
- Abon, M.; Bere, K.E.; Tuel, A.; Delichere, P. Evolution of a VPO catalyst in n-butane oxidation reaction during the activation time. J. Catal. 1995, 156, 28–36. [Google Scholar] [CrossRef]
- Sananés-Schulz, M.T.; Ben Abdelouahab, F.; Hutchings, G.J.; Volta, J.C. On the role of Fe and Co dopants during the activation of the VO(HPO4), 0.5 H2O precursor of the vanadium phosphorus catalyst as studied by in situ laser Raman spectroscopy: II. Study of VO(HPO4), 0.5 H2O precur. J. Catal. 1996, 163, 346–353. [Google Scholar] [CrossRef]
- Solsona, B.; Zazhigalov, V.A.; López Nieto, J.M.; Bacherikova, I.V.; Diyuk, E.A. Oxidative dehydrogenation of ethane on promoted VPO catalysts. Appl. Catal. A Gen. 2003, 249, 81–92. [Google Scholar] [CrossRef]
- Richter, F.; Papp, H.; Wolf, G.U.; Götze, T.; Kubias, B. Study of the surface composition of vanadyl pyrophosphate catalysts by XPS and ISS–Influence of Cs+ and water vapor on the surface P/V ratio of (VO)2P2O7 catalysts. Fresenius J. Anal. Chem. 1999, 365, 150–153. [Google Scholar] [CrossRef]
- Centi, G.; Golinelli, G.; Busca, G. Modification of the surface pathways in alkane oxidation by selective doping of Broensted acid sites of vanadyl pyrophosphate. J. Phys. Chem. 1990, 94, 6813–6819. [Google Scholar] [CrossRef]
- Barbosa, S.L.; Ottone, M.; Santos, M.C.; Junior, G.C.; Lima, C.D.; Glososki, G.C.; Lopes, N.P.; Klein, S.I. Benzyl benzoate and dibenzyl ether from of benzoic acid and benzyl alcohol under microwave irradiation using a SiO2-SO3H catalyst. Catal. Commun. 2015, 68, 97–100. [Google Scholar] [CrossRef]
Catalyst 1 | Au Size (nm) | Acid sites 2 | Activity 3 | Activity Ns 4 | Selectivity (%) 5 | |||
---|---|---|---|---|---|---|---|---|
(mmol g−1) | Benzal-Dehyde | Benzyl Ether | Benzyl Benzoate | Benzoic Acid | ||||
VPO 6 | - | 0.485 (>99%) | 2 | - | 16 | 4 | 78 | - |
1%AuIW/VPO | 19.1 | 0.324 (92%) | 120 | 1639 | 8 | 6 | 76 | - |
1%AuSI/AC | 3.6 | - | 27 | 98 | 82 | 1 | 7 | 7 |
1%AuIW/AC | 23.1 | - | 8 | 114 | 83 | - | 6 | 9 |
Samples | V2P | P1s | O1s | Au4f | Au %at | P/V | ||||
---|---|---|---|---|---|---|---|---|---|---|
V4+ | V5+ | |||||||||
VPO | BE eV | 517.0 | 518.2 | 134.0 | 531.3 | 532.1 | 533.3 | - | - | 3.3 |
% | 58.2 | 41.8 | 100 | 54.7 | 29.6 | 15.7 | ||||
AuIW/VPO fresh | BE eV | 517.0 | 518.4 | 134.1 | 531.3 | 532.0 | 533.2 | 84.3 | 0.14 | 3.4 |
% | 57.6 | 42.4 | 100 | 55.1 | 30.6 | 14.3 | 100 | |||
AuIW/VPO used | BE eV | 516.9 | - | 133.8 | 531.2 | 532.0 | 533.0 | 84.2 | 0.03 | 2.9 |
% | 100 | - | 100 | 60.0 | 21.3 | 18.7 | 100 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campisi, S.; Ferri, M.; Chan-Thaw, C.E.; Sanchez Trujillo, F.J.; Motta, D.; Tabanelli, T.; Dimitratos, N.; Villa, A. Metal-Support Cooperative Effects in Au/VPO for the Aerobic Oxidation of Benzyl Alcohol to Benzyl Benzoate. Nanomaterials 2019, 9, 299. https://doi.org/10.3390/nano9020299
Campisi S, Ferri M, Chan-Thaw CE, Sanchez Trujillo FJ, Motta D, Tabanelli T, Dimitratos N, Villa A. Metal-Support Cooperative Effects in Au/VPO for the Aerobic Oxidation of Benzyl Alcohol to Benzyl Benzoate. Nanomaterials. 2019; 9(2):299. https://doi.org/10.3390/nano9020299
Chicago/Turabian StyleCampisi, Sebastiano, Michele Ferri, Carine E. Chan-Thaw, Felipe J. Sanchez Trujillo, Davide Motta, Tommaso Tabanelli, Nikolaos Dimitratos, and Alberto Villa. 2019. "Metal-Support Cooperative Effects in Au/VPO for the Aerobic Oxidation of Benzyl Alcohol to Benzyl Benzoate" Nanomaterials 9, no. 2: 299. https://doi.org/10.3390/nano9020299
APA StyleCampisi, S., Ferri, M., Chan-Thaw, C. E., Sanchez Trujillo, F. J., Motta, D., Tabanelli, T., Dimitratos, N., & Villa, A. (2019). Metal-Support Cooperative Effects in Au/VPO for the Aerobic Oxidation of Benzyl Alcohol to Benzyl Benzoate. Nanomaterials, 9(2), 299. https://doi.org/10.3390/nano9020299