Effect of Size on Hydrogen Adsorption on the Surface of Deposited Gold Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Haruta, M.; Yamada, N.; Kobayashi, T.; Iijima, S. Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. J. Catal. 1989, 115, 301–309. [Google Scholar] [CrossRef]
- Wittstock, A.; Zielasek, V.; Biener, J.; Friend, C.M.; Baumer, M. Nanoporous Gold Catalysts for Selective Gas-Phase Oxidative Coupling of Methanol at Low Temperature. Science 2010, 327, 319–322. [Google Scholar] [CrossRef] [PubMed]
- Shah, N.; Basu, P.; Prakash, P.; Donck, S.; Gravel, E.; Namboothiri, I.N.N.; Doris, E. Supramolecular Assembly of Gold Nanoparticles on Carbon Nanotubes: Application to the Catalytic Oxidation of Hydroxylamines. Nanomaterials 2016, 6, 37. [Google Scholar] [CrossRef] [PubMed]
- Raptis, C.; Garcia, H.; Stratakis, M. Selective Isomerization of Epoxides to Allylic Alcohols Catalyzed by TiO2-Supported Gold Nanoparticles. Angew. Chem. Int. Ed. 2009, 48, 3133–3236. [Google Scholar] [CrossRef] [PubMed]
- Taylor, S.F.R.; Sa, J.; Hardacre, C. Friedel–Crafts Alkylation of Aromatics with Benzyl Alcohol over Gold-Modified Silica. ChemCatChem 2011, 3, 119–121. [Google Scholar] [CrossRef]
- Meyer, R.; Shaikhutdinov, S.K.; Freund, H.-J. Surface chemistry of catalysis by gold. Gold Bull. 2004, 37, 72–124. [Google Scholar] [CrossRef] [Green Version]
- Hashmi, A.S.K.; Hutchings, G.J. Gold Catalysis. Angew. Chem. Int. Ed. 2006, 45, 7896–7936. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Tian, L.; Jiang, Z.; Pei, S.; Xie, S.; Qiao, M.; Fan, K. Heteroepitaxial growth of gold on flowerlike magnetite: An efficacious and magnetically recyclable catalyst for chemoselective hydrogenation of crotonaldehyde to crotyl alcohol. J. Catal. 2011, 281, 106–118. [Google Scholar] [CrossRef]
- Corma, A.; Serna, P. Chemoselective Hydrogenation of Nitro Compounds with Supported Gold Catalysts. Science 2006, 313, 332–334. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Hu, B.; Fujimoto, K.; Haruta, M.; Tokunaga, M. Hydroformylation of olefins by Au/Co3O4 catalysts. Appl. Catal. B 2009, 92, 411–421. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, S.; Wang, Y.; Zhang, H.; Liang, F. Controllable Synthesis and Catalytic Performance of Gold Nanoparticles with Cucurbit[n]urils (n = 5–8). Nanomaterials 2018, 8, 1015. [Google Scholar] [CrossRef] [PubMed]
- Alegria, E.C.B.A.; Ribeiro, A.P.C.; Mendes, M.; Ferraria, A.M.; Botelho do Rego, A.M.; Pombeiro, A.J.L. Effect of Phenolic Compounds on the Synthesis of Gold Nanoparticles and its Catalytic Activity in the Reduction of Nitro Compounds. Nanomaterials 2018, 8, 320. [Google Scholar] [CrossRef] [PubMed]
- Su, F.-Z.; He, L.; Ni, J.; Cao, Y.; He, H.-Y.; Fan, K.-N. Efficient and chemoselective reduction of carbonyl compounds with supported gold catalysts under transfer hydrogenation conditions. Chem. Commun. 2008, 3531–3533. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Qian, Y.; Ding, R.-S.; Liu, Y.-M.; He, H.-Y.; Fan, K.-N.; Cao, Y. Highly Efficient Heterogeneous Gold-catalyzed Direct Synthesis of Tertiary and Secondary Amines from Alcohols and Urea. ChemSusChem 2012, 5, 621–624. [Google Scholar] [CrossRef] [PubMed]
- Uozumi, Y.; Hamasaka, G. Hydrochlorination of Alkynes with Titania-Supported Gold Nanoparticles. Synfacts 2017, 1, 0890. [Google Scholar]
- Barton, D.G.; Podkolzin, S.G. Kinetic Study of a Direct Water Synthesis over Silica-Supported Gold Nanoparticles. J. Phys. Chem. B 2005, 109, 2262–2274. [Google Scholar] [CrossRef] [PubMed]
- Bus, E.; van Bokhoven, J.A. Hydrogen chemisorption on supported platinum, gold, and platinum–gold-alloy catalysts. Phys. Chem. Chem. Phys. 2007, 9, 2894–2902. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, K.; Miyamoto, Y.; Kawasaki, T.; Tanji, T.; Tai, Y.; Satsuma, A. Chemoselective Hydrogenation of Nitroaromatics by Supported Gold Catalysts: Mechanistic Reasons of Size- and Support-Dependent Activity and Selectivity. J. Phys. Chem. C 2009, 113, 17803–17810. [Google Scholar] [CrossRef]
- Fujitani, T.; Nakamura, I.; Akita, T.; Okumura, M.; Haruta, M. Hydrogen Dissociation by Gold Clusters. Angew. Chem. Int. Ed. 2009, 48, 9515–9518. [Google Scholar] [CrossRef] [PubMed]
- Boronat, M.; Illas, F.; Corma, A. Active Sites for H2 Adsorption and Activation in Au/TiO2 and the Role of the Support. J. Phys. Chem. A 2009, 113, 3750–3757. [Google Scholar] [CrossRef] [PubMed]
- Panayotov, D.A.; Burrows, S.P.; Yates, J.T.; Morris, J.R. Mechanistic Studies of Hydrogen Dissociation and Spillover on Au/TiO2: IR Spectroscopy of Coadsorbed CO and H-Donated Electrons. J. Phys. Chem. C 2011, 115, 22400–22408. [Google Scholar] [CrossRef]
- Manzoli, M.; Chiorino, A.; Vindigni, F.; Boccuzzi, F. Hydrogen interaction with gold nanoparticles and clusters supported on different oxides: A FTIR study. Catal. Today 2012, 181, 62–67. [Google Scholar] [CrossRef]
- Silverwood, I.P.; Rogers, S.M.; Callear, S.K.; Parker, S.F.; Catlow, C.R.A. Evidence for a surface gold hydride on a nanostructured gold catalyst. Chem. Commun. 2016, 52, 533–536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watkins, W.L.; Borensztein, Y. Mechanism of hydrogen adsorption on gold nanoparticles and charge transfer probed by anisotropic surface plasmon resonance. Phys. Chem. Chem. Phys. 2017, 19, 27397–27405. [Google Scholar] [CrossRef] [PubMed]
- Gatin, A.K.; Grishin, M.V.; Kirsankin, A.A.; Kharitonov, V.A.; Shub, B.R. Individual nanoparticles of aluminum, gold, nickel, and platinum deposited on a pyrolytic graphite surface. Nanotechnol. Russia 2013, 8, 36–45. [Google Scholar] [CrossRef]
- Grishin, M.V.; Gatin, A.K.; Dokhlikova, N.V.; Kirsankin, A.A.; Kulak, A.I.; Nikolaev, S.A.; Shub, B.R. Adsorption and interaction of hydrogen and oxygen on the surface of separate crystalline gold nanoparticles. Kinet. Catal. 2015, 56, 532–539. [Google Scholar] [CrossRef]
- Guntherodt, H.-J.; Wiesendanger, R. (Eds.) Scanning Tunnelling Microscopy I. General Principles and Applications to Clean and Absorbate-Covered Surfaces; Springer-Verlag: Berlin, Germany, 1994; p. 280. [Google Scholar]
- Binnig, G.; Rohrer, H.; Gerber, C.; Weibel, E. Surface Studies by Scanning Tunneling Microscopy. Appl. Phys. Lett. 1982, 49, 57. [Google Scholar] [CrossRef]
- Meyer, E.; Hug, H.J.; Bennewitz, R. Scanning Probe Microscopy; Springer: Berlin, Germany, 2004; p. 210. [Google Scholar]
- Hamers, R.J.; Wang, Y.J. Atomically-Resolved Studies of the Chemistry and Bonding at Silicon Surfaces. Chem. Rev. 1996, 96, 1261–1290. [Google Scholar] [CrossRef] [PubMed]
- Hamers, R.J.; Tromp, R.M.; Demuth, J.E. Surface Electronic Structure of Si (111)-(7×7) Resolved in Real Space. Phys. Rev. Lett. 1986, 56, 1972. [Google Scholar] [CrossRef] [PubMed]
- Gatin, A.K.; Grishin, M.V.; Dokhlikova, N.V.; Kolchenko, N.N.; Sarvadii, S.Y.; Shub, B.R. Initial Stages of Deuterium Adsorption on Gold Nanoparticles. Kinet. Catal. 2018, 59, 820–827. [Google Scholar]
- Dokhlikova, N.V.; Kolchenko, N.N.; Grishin, M.V.; Shub, B.R. Electron delocalization in heterogeneous AunHm systems. Nanotechnol. Russia 2016, 11, 7–11. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gatin, A.; Grishin, M.; Dokhlikova, N.; Ozerin, S.; Sarvadii, S.; Kharitonov, V.; Shub, B. Effect of Size on Hydrogen Adsorption on the Surface of Deposited Gold Nanoparticles. Nanomaterials 2019, 9, 344. https://doi.org/10.3390/nano9030344
Gatin A, Grishin M, Dokhlikova N, Ozerin S, Sarvadii S, Kharitonov V, Shub B. Effect of Size on Hydrogen Adsorption on the Surface of Deposited Gold Nanoparticles. Nanomaterials. 2019; 9(3):344. https://doi.org/10.3390/nano9030344
Chicago/Turabian StyleGatin, Andrey, Maxim Grishin, Nadezhda Dokhlikova, Sergey Ozerin, Sergey Sarvadii, Vasiliy Kharitonov, and Boris Shub. 2019. "Effect of Size on Hydrogen Adsorption on the Surface of Deposited Gold Nanoparticles" Nanomaterials 9, no. 3: 344. https://doi.org/10.3390/nano9030344
APA StyleGatin, A., Grishin, M., Dokhlikova, N., Ozerin, S., Sarvadii, S., Kharitonov, V., & Shub, B. (2019). Effect of Size on Hydrogen Adsorption on the Surface of Deposited Gold Nanoparticles. Nanomaterials, 9(3), 344. https://doi.org/10.3390/nano9030344