One-Step Low Temperature Hydrothermal Synthesis of Flexible TiO2/PVDF@MoS2 Core-Shell Heterostructured Fibers for Visible-Light-Driven Photocatalysis and Self-Cleaning
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Preparation of TBOT/PVDF Fibers
2.3. Fabrication of TiO2/PVDF@MoS2 Core-Shell Heterostructured Fibers
2.4. Characterization
2.5. Photocatalytic Activity
2.6. Self-Cleaning Performance
2.6.1. Hydrophobicity Property
2.6.2. Fading of Dye Droplets
2.6.3. Removal of Dust on Sample Surface
3. Results and Discussion
3.1. Synthesis and Application Process
3.2. Structure and Morphology Characteristics
3.3. Optical Characteristics
3.4. Photocatalytic Performances
3.5. Photocatalytic Mechanism
3.6. Self-Cleaning Performance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Xiang, Q.; Yu, J.; Jaroniec, M. Synergetic Effect of MoS2 and Graphene as Cocatalysts for Enhanced Photocatalytic H2 Production Activity of TiO2 Nanoparticles. J. Am. Chem. Soc. 2012, 134, 6575–6578. [Google Scholar] [CrossRef] [PubMed]
- Ding, Q.; Meng, F.; English, C.R.; Cabán-Acevedo, M.; Shearer, M.J.; Liang, D.; Daniel, A.S.; Hamers, R.J.; Jin, S. Efficient Photoelectrochemical Hydrogen Generation Using Heterostructures of Si and Chemically Exfoliated Metallic MoS2. J. Am. Chem. Soc. 2014, 136, 8504–8507. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Xu, Y.; Sun, F.; Zhang, Q.; Wang, P.; Wang, X. Enhanced photocatalytic activity of TiO2 under sunlight by MoS2 nanodots modification. Appl. Surf. Sci. 2016, 377, 221–227. [Google Scholar] [CrossRef]
- Sotelo-Vazquez, C.; Quesada-Cabrera, R.; Ling, M.; Scanlon, D.O.; Kafizas, A.; Thakur, P.K.; Lee, T.; Taylor, A.; Watson, G.W.; Palgrave, R.G.; et al. Evidence and Effect of Photogenerated Charge Transfer for Enhanced Photocatalysis in WO3/TiO2 Heterojunction Films: A Computational and Experimental Study. Adv. Funct. Mater. 2017, 1605413. [Google Scholar] [CrossRef]
- Low, J.; Dai, B.; Tong, T.; Jiang, C.; Yu, J. In Situ Irradiated X-Ray Photoelectron Spectroscopy Investigation on a Direct Z-Scheme TiO2/CdS Composite Film Photocatalyst. Adv. Mater. 2019, 31, 1802981. [Google Scholar] [CrossRef]
- Li, L.; Ya, J.; Xiang, L.; Liu, Z.; Lei, E. The preparation of CuS/TiO2 nanotube arrays with high-active under visible light by ultrasonic-assisted hydrothermal method. Appl. Phys. A 2017, 123, 667. [Google Scholar] [CrossRef]
- Chen, G.; Song, X.; Guan, L.; Chai, J.; Zhang, H.; Wang, S.; Pan, J.; Tao, J. Defect Assisted Coupling of a MoS2/TiO2 Interface and Tuning of Its Electronic Structure. Nanotechnology 2016, 27, 355203. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Selloni, A. Introduction: Titanium Dioxide (TiO2) Nanomaterials. Chem. Rev. 2014, 114, 9281–9282. [Google Scholar] [CrossRef]
- Zhou, W.; Sun, F.; Pan, K.; Tian, G.; Jiang, B.; Ren, Z.; Tian, C.; Fu, H. Well-ordered Large-pore Mesoporous Anatase TiO2 with Remarkably High Thermal Stability and Improved Crystallinity: Preparation, Characterization, and Photocatalytic Performance. Adv. Funct. Mater. 2011, 21, 1922–1930. [Google Scholar] [CrossRef]
- Zhang, W.; Xiao, X.; Zheng, L.; Wan, C. Fabrication of TiO2/MoS2 Composite Photocatalyst and Its Photocatalytic Mechanism for Degradation of Methyl Orange under Visible Light. Can. J. Chem. Eng. 2015, 93, 1594–1602. [Google Scholar] [CrossRef]
- Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 Transistors. Nat. Nanotechnol. 2011, 6, 147–150. [Google Scholar] [CrossRef] [PubMed]
- Zeng, H.; Dai, J.; Yao, W.; Xiao, D.; Cui, X. Valley Polarization in MoS2 Monolayers by Optical Pumping. Nat. Nanotechnol. 2012, 7, 490–493. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Han, S.; Liu, H.; Yu, P.; Fang, X. Hierarchical MoS2 Nanosheet@TiO2 Nanotube Array Composites with Enhanced Photocatalytic and Photocurrent Performances. Small 2016, 12, 1527–1536. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Xing, Z.; Zhang, H.; Wang, W.; Zhang, Y.; Li, Z.; Wu, X.; Yu, X.; Zhou, W. Fabrication of 3D Mesoporous Black TiO2/MoS2/TiO2 Nanosheets for Visible-light-driven Photocatalysis. ChemSusChem 2016, 9, 1118–1124. [Google Scholar] [CrossRef] [PubMed]
- Hofstadler, K.; Bauer, R.; Novalic, S.; Heisler, G. New Reactor Design for Photocatalytic Wastewater Treatment with TiO2 Immobilized on Fused-Silica Glass Fibers: Photomineralization of 4-Chlorophenol. Environ. Sci. Technol. 1994, 28, 670–674. [Google Scholar] [CrossRef] [PubMed]
- Fan, W.; Lai, Q.; Zhang, Q.; Wang, Y. Nanocomposites of TiO2 and Reduced Graphene Oxide as Efficient Photocatalysts for Hydrogen Evolution. J. Phys. Chem. C 2011, 115, 10694–10701. [Google Scholar] [CrossRef]
- Yu, D.; Bai, J.; Gu, Y.; Li, C. Solvothermal Synthesis of TiO2/CNFs Heterostructures with Photocatalytic Activity. NANO Brief Rep. Rev. 2015, 10, 1550080. [Google Scholar] [CrossRef]
- He, T.; Bahi, A.; Zhou, W.; Ko, F. Electrospun Nanofibrous Ag-TiO2/Poly(vinylidene fluoride) (PVDF) Membranes with Enhanced Photocatalytic Activity. J. Nanosci. Nanotechnol. 2016, 16, 7388–7394. [Google Scholar] [CrossRef]
- Zhang, X.; Shao, C.; Li, X.; Miao, F.; Wang, K.; Lu, N.; Liu, Y. 3D MoS2 Nanosheet/TiO2 Nanofiber Heterostructures with Enhanced Photocatalytic Activity under UV Irradiation. J. Alloys Compd. 2016, 686, 137–144. [Google Scholar] [CrossRef]
- Sun, C.; Wang, N.; Zhou, S.; Hu, X.; Zhou, S.; Chen, P. Preparation of Self-supporting Hierarchical Nanostructured Anatase/rutile Composite TiO2 Film. Chem. Commun. 2008, 28, 3293–3295. [Google Scholar] [CrossRef]
- Lin, Z.; Li, J.; Zheng, Z.; Li, L.; Yu, L.; Wang, C.; Yang, G. A Floating Sheet for Efficient Photocatalytic Water Splitting. Adv. Energy Mater. 2016, 1600510. [Google Scholar] [CrossRef]
- Tan, J.Z.Y.; Zeng, J.; Kong, D.; Bian, J.; Zhang, X. Growth of Crystallized Titania from the Cores of Amorphous Tetrabutyl Titanate@PVDF Nanowires. J. Mater. Chem. 2012, 22, 18603–18608. [Google Scholar] [CrossRef]
- Hay, A.A.; Mousa, H.M.; Khan, A.; Vanegas, P.; Lim, J.H. TiO2 Nanorods Coated onto Nylon 6 Nanofibers using Hydrothermal Treatment with Improved Mechanical properties. Colloids Surf. A Physicochem. Eng. Asp. 2014, 457, 275–281. [Google Scholar]
- Yu, D.; Bai, J.; Liang, H.; Wang, J.; Li, C. A New Fabrication of AgX (X=Br, I)-TiO2 Nanoparticles Immobilized on Polyacrylonitrile (PAN) Nanofibers with High Photocatalytic Activity and Renewable Property. RSC Adv. 2015, 5, 91457–91465. [Google Scholar] [CrossRef]
- Liu, F.; Hashim, N.A.; Liu, Y.; Abed, M.R.M.; Li, K. Progress in the Production and Modification of PVDF Membranes. J. Membr. Sci. 2011, 375, 1–27. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, H.; Zhang, B.; Zhang, J.; Liu, R.; Ning, X.; Long, Y. Synthesis and Application of Highly Ordered Arrays of TiO2 Rods Grown on Electrospun PVDF Fibers. Mater. Res. Express 2017, 4, 075907. [Google Scholar] [CrossRef]
- Tang, W.; Zhu, T.; Zhou, P.; Zhao, W.; Wang, Q.; Feng, G.; Yuan, H. Poly (vinylidene fluoride)/poly (methyl methacrylate)/TiO2 Blown Films: Preparation and Surface Study. J. Mater. Sci. 2011, 46, 6656–6663. [Google Scholar] [CrossRef]
- Mohammadi, B.; Yousefi, A.A.; Bellah, S.M. Effect of Tensile Strain Rate and Elongation on Crystalline Structure and Piezoelectric Properties of PVDF Thin Films. Polym. Test. 2007, 26, 42–50. [Google Scholar] [CrossRef]
- Tian, B.; Chen, F.; Zhang, J.; Anpo, M. Influences of Acids and Salts on the Crystalline Phase and Morphology of TiO2 Prepared under Ultrasound Irradiation. J. Colloid Interface Sci. 2006, 303, 142–148. [Google Scholar] [CrossRef]
- Zong, X.; Yan, H.; Wu, G.; Ma, G.; Wen, F.; Wang, L.; Li, C. Enhancement of Photocatalytic H2 Evolution on CdS by Loading MoS2 as Cocatalyst under Visible Light Irradiation. J. Am. Chem. Soc. 2008, 130, 7176–7177. [Google Scholar] [CrossRef]
- Dong, B.; Liu, Y.; Han, G.; Hu, W.; Chai, Y.; Liu, Y.; Liu, C. Facile Synthesis of MoS2 Modified TiO2 Nanospheres with Enhanced Photoelectrocatalytic Activity. Int. J. Electrochem. Sci. 2016, 11, 3039–3049. [Google Scholar] [CrossRef]
- Song, X.; Chen, G.; Guan, L.; Zhang, H.; Tao, J. Interfacial Engineering of MoS2/TiO2 Hybrids for Enhanced Electrocatalytic Hydrogen Evolution Reaction. Appl. Phys. Express 2016, 9, 095801. [Google Scholar] [CrossRef]
- Zhou, W.; Yin, Z.; Du, Y.; Huang, X.; Zeng, Z.; Fan, Z.; Liu, H.; Wang, J.; Zhang, H. Synthesis of Few-layer MoS2 Nanosheet-coated TiO2 Nanobelt Heterostructures for Enhanced Photocatalytic Activities. Small 2013, 9, 140–147. [Google Scholar] [CrossRef]
- Milella, E.; Cosentino, F.; Licciulli, A.; Massaro, C. Preparation and Characterisation of Titania/hydroxyapatite Composite Coatings Obtained by Sol-gel Process. Biomaterials 2001, 22, 1425–1431. [Google Scholar] [CrossRef]
- Yu, J.; Zhao, X. Effect of Surface Treatment on the Photocatalytic Activity and Hydrophilic Property of the Sol-gel Derived TiO2 Thin Films. Mater. Res. Bull. 2001, 36, 97–107. [Google Scholar] [CrossRef]
- Liu, C.; Wang, L.; Tang, Y.; Luo, S.; Liu, Y.; Zhang, S.; Zeng, Y.; Xu, Y. Vertical Single or Few-layer MoS2 Nanosheets Rooting into TiO2 Nanofibers for Highly Efficient Photocatalytic Hydrogen Evolution. Appl. Catal. B Environ. 2015, 164, 1–9. [Google Scholar] [CrossRef]
- Liao, S.; Huang, D.; Yu, D.; Su, Y.; Yuan, G. Preparation and Characterization of ZnO/TiO2, SO42−/ZnO/TiO2 Photocatalyst and Their Photocatalysis. J. Photochem. Photobiol. A Chem. 2004, 168, 7–13. [Google Scholar] [CrossRef]
- Xu, J.; Cao, X. Characterization and Mechanism of MoS2/CdS Composite Photocatalyst Used for Hydrogen Production from Water Splitting under Visible Light. Chem. Eng. J. 2015, 260, 642–648. [Google Scholar] [CrossRef]
- Liu, H.; Hu, H.; Wang, J.; Niehoff, P.; He, X.; Paillard, E.; Eder, D.; Winter, M.; Li, J. Hierarchical Ternary MoO2/MoS2/heteroatom-doped Carbon Hybrid Materials for High-performance Lithium-ion Storage. ChemElectroChem 2016, 3, 922–932. [Google Scholar] [CrossRef]
- Liu, N.; Guo, Y.; Yang, X.; Lin, H.; Yang, L.; Shi, Z.; Zhong, Z.; Wang, S.; Tang, Y.; Gao, Q. Microwave-assisted Reactant-protecting Strategy toward Efficient MoS2 Electrocatalysts in Hydrogen Evolution Reaction. ACS Appl. Mater. Interfaces 2015, 7, 23741–23749. [Google Scholar] [CrossRef] [PubMed]
- Sekiyama, H.; Kosugi, N.; Kuroda, H.; Ohta, T. Sulfur K-edge Absorption Spectra of Na2SO4, Na2SO3, Na2S2O3, and Na2S2Ox (x = 5–8). Bull. Chem. Soc. Jpn. 1986, 59, 575–579. [Google Scholar] [CrossRef]
- Liu, J.; Li, Y.; Ke, J.; Wang, Z.; Xiao, H. Synergically Improving Light Harvesting and Charge Transportation of TiO2 Nanobelts by Deposition of MoS2 for Enhanced Photocatalytic Removal of Cr (VI). Catalysts 2017, 7, 30. [Google Scholar] [CrossRef]
- Sing, K.S.W.; Everett, D.H.; Haul, R.A.W.; Moscou, L.; Pierotti, R.A.; Rouquerol, J.; Siemieniewska, T. Reporting Physisorption Data for Gas/solid Systems with Special Reference to the Determination of Surface Area and Porosity. Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef]
- Rouquerol, J.; Avnir, D.; Fairbridge, C.W.; Everett, D.H.; Haynes, J.H.; Pernicone, N.; Ramsay, J.D.F.; Sing, K.S.W.; Unger, K.K. Recommendations for the Characterization of Porous solids. Pure Appl. Chem. 1994, 66, 1739–1758. [Google Scholar] [CrossRef]
- Yu, C.; Yang, K.; Shu, Q.; Yu, J.C.; Cao, F.; Li, X.; Zhou, X. Preparation, characterization and photocatalytic performance of Mo-doped ZnO photocatalysts. Sci. China Chem. 2012, 55, 1802–1810. [Google Scholar] [CrossRef]
- Khanchandani, S.; Kumar, S.; Ganguli, A.K. Comparative Study of TiO2/CuS Core/shell and Composite Nanostructures for Efficient Visible Light Photocatalysis. ACS Sustain. Chem. Eng. 2016, 4, 1487–1499. [Google Scholar] [CrossRef]
- Yuan, Y.; Ye, Z.; Lu, H.; Hu, B.; Li, Y.; Chen, D.; Zhong, J.; Yu, Z.; Zou, Z. Constructing Anatase TiO2 Nanosheets with Exposed (001) Facets/layered MoS2 Two-dimensional Nanojunctions for Enhanced Solar Hydrogen Generation. ACS Catal. 2016, 6, 532–541. [Google Scholar] [CrossRef]
- He, H.; Lin, J.; Fu, W.; Wang, X.; Wang, H.; Zeng, Q.; Gu, Q.; Li, Y.; Yan, C.; Tay, B.K.; et al. MoS2/TiO2 Edge-on Heterostructure for Efficient Photocatalytic Hydrogen Evolution. Adv. Energy Mater. 2016, 1600464. [Google Scholar] [CrossRef]
- Naldoni, A.; Allieta, M.; Santangelo, S.; Marelli, M.; Fabbri, F.; Cappelli, S.; Bianchi, C.L.; Psaro, R.; Santo, V.D. Effect of Nature and Location of Defects on Bandgap Narrowing in Black TiO2 Nanoparticles. J. Am. Chem. Soc. 2012, 134, 7600–7603. [Google Scholar] [CrossRef]
- Abazović, N.D.; Čomor, M.I.; Dramićanin, M.D.; Jovanović, D.J.; Ahrenkiel, S.P.; Nedeljković, J.M. Photoluminescence of Anatase and Rutile TiO2 Particles. J. Phys. Chem. B 2006, 110, 25366–25370. [Google Scholar] [CrossRef]
- Yang, Y.; Wen, J.; Wei, J.; Xiong, R.; Shi, J.; Pan, C. Polypyrrole-Decorated Ag-TiO2 Nanofibers Exhibiting Enhanced Photocatalytic Activity under Visible-Light Illumination. ACS Appl. Mater. Interfaces 2013, 5, 6201–6207. [Google Scholar] [CrossRef]
- Pan, L.; Zou, J.; Zhang, X.; Wang, L. Water-mediated Promotion of Dye Sensitization of TiO2 under Visible Light. J. Am. Chem. Soc. 2011, 133, 10000–10002. [Google Scholar] [CrossRef]
- Che, L.; Dong, Y.; Wu, M.; Zhao, Y.; Liu, L.; Zhou, H. Characterization of Selenite Reduction by Lysinibacillus sp. ZYM-1 and Photocatalytic Performance of Biogenic Selenium Nanospheres. ACS Sustain. Chem. Eng. 2017, 5, 2535–2543. [Google Scholar] [CrossRef]
- Yuan, L.; Yang, M.; Xu, Y. Tuning the Surface Charge of Graphene for Selfassembly Synthesis of a SnNb2O6 Nanosheet-graphene (2D-2D) Nanocomposite with Enhanced Visible Light Photoactivity. Nanoscale 2014, 6, 6335–6345. [Google Scholar] [CrossRef]
- Hu, X.; Mohamood, T.; Ma, W.; Chen, C.; Zhao, J. Oxidative Decomposition of Rhodamine B Dye in the Presence of VO2+ and/or Pt (IV) under Visible Light Irradiation: N-deethylation, Chromophore Cleavage, and Mineralization. J. Phys. Chem. B 2006, 110, 26012–26018. [Google Scholar] [CrossRef]
- Zhuang, J.; Dai, W.; Tian, Q.; Li, Z.; Xie, L.; Wang, J.; Liu, P. Photocatalytic Degradation of RhB over TiO2 Bilayer Films: Effect of Defects and Their Location. Langmuir 2010, 26, 9686–9694. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, H.; Jang, D. Facile Microwave Fabrication of CdS Nanobubbles with Highly Efficient Photocatalytic Performances. J. Mater. Chem. A 2014, 2, 5791–5799. [Google Scholar] [CrossRef]
- Watanabe, T.; Takizawa, T.; Honda, K. Photocatalysis through Excitation of Adsorbates. 1. Highly efficient N-deethylation of Rhodamine B Adsorbed to Cadmium Sulfide. J. Phys. Chem. 1977, 81, 1845–1851. [Google Scholar] [CrossRef]
- Teng, W.; Wang, Y.; Huang, H.; Li, X.; Tang, Y. Enhanced Photoelectrochemical Performance of MoS2 Nanobelts-loaded TiO2 Nanotube Arrays by Photo-assisted Electrodeposition. Appl. Surf. Sci. 2017, 425, 507–517. [Google Scholar] [CrossRef]
- Wang, C.; Lin, H.; Liu, Z.; Wu, J.; Xu, Z.; Zhang, C. Controlled Formation of TiO2/MoS2 Core–shell Heterostructures with Enhanced Visible-light Photocatalytic Activities. Part. Part. Syst. Charact. 2016, 33, 221–227. [Google Scholar] [CrossRef]
- Li, C.; Zhang, S.; Zhou, Y.; Li, J. A Situ Hydrothermal Synthesis of a Two-dimensional MoS2/TiO2 Heterostructure Composite with Exposed (001) Facets and Its Visible-light Photocatalytic Activity. J. Mater. Sci. Mater. Electron. 2017, 28, 9003–9010. [Google Scholar] [CrossRef]
Typical Sample | Absorption Edge (nm) | Energy Band Gap (eV) |
---|---|---|
MoS2/PVDF | 780.4 | 1.6 |
TiO2/PVDF@ MoS2 | 639.3 | 1.9 |
P25 | 375.7 | 3.3 |
TiO2/PVDF | 361.8 | 3.4 |
TBOT/PVDF | 335.5 | 3.7 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.-G.; Liu, H.; Wang, X.-X.; Zhang, J.; Yu, M.; Ramakrishna, S.; Long, Y.-Z. One-Step Low Temperature Hydrothermal Synthesis of Flexible TiO2/PVDF@MoS2 Core-Shell Heterostructured Fibers for Visible-Light-Driven Photocatalysis and Self-Cleaning. Nanomaterials 2019, 9, 431. https://doi.org/10.3390/nano9030431
Zhang Z-G, Liu H, Wang X-X, Zhang J, Yu M, Ramakrishna S, Long Y-Z. One-Step Low Temperature Hydrothermal Synthesis of Flexible TiO2/PVDF@MoS2 Core-Shell Heterostructured Fibers for Visible-Light-Driven Photocatalysis and Self-Cleaning. Nanomaterials. 2019; 9(3):431. https://doi.org/10.3390/nano9030431
Chicago/Turabian StyleZhang, Zhi-Guang, Hui Liu, Xiao-Xiong Wang, Jun Zhang, Miao Yu, Seeram Ramakrishna, and Yun-Ze Long. 2019. "One-Step Low Temperature Hydrothermal Synthesis of Flexible TiO2/PVDF@MoS2 Core-Shell Heterostructured Fibers for Visible-Light-Driven Photocatalysis and Self-Cleaning" Nanomaterials 9, no. 3: 431. https://doi.org/10.3390/nano9030431
APA StyleZhang, Z. -G., Liu, H., Wang, X. -X., Zhang, J., Yu, M., Ramakrishna, S., & Long, Y. -Z. (2019). One-Step Low Temperature Hydrothermal Synthesis of Flexible TiO2/PVDF@MoS2 Core-Shell Heterostructured Fibers for Visible-Light-Driven Photocatalysis and Self-Cleaning. Nanomaterials, 9(3), 431. https://doi.org/10.3390/nano9030431