New Synthetic Methods of Novel Nanoporous Polycondensates and Excellent Oxygen Permselectivity of Their Composite Membranes
Abstract
:1. Introduction
2. Results and Discussion
2.1. Two New Synthetic Routes of Novel Nanoporous Polycondensates (sc(Rf)s) and Preparation of Their Composite Membranes Based on Poly(p-trimethylsilyldiphenylacetylene)(PDPA) or Poly(Vinyl Acetate) (PVAc)
2.2. Excellent Oxygen Permselectivity of the Novel Nanoporous Polycondensate (sc(Rf)) Composite Membranes by the New Preparation Methods
2.3. The Reason for the Excellent Oxygen Permselectivity of the Novel Nanoporous Polycondensate Composite Membranes by the New Preparation Methods
3. Experimental Procedure
3.1. Materials
3.2. Preparation of sc(I/Si)/PDPA and sc(V’/EO)/PVAc Composite Membranes (Method 1, HSP Method, Scheme 5)
3.2.1. Synthesis of scat(Rf/R0) by SCAT of Copoly(Rf/R0) (Scheme 4) in the Membrane State
3.2.2. Preparation of scat(I/Si)/PDPA and scat(V’/EO)/PVAc Composite Membrane as a Template<T> (Scheme 5a)
3.2.3. Synthesis of sc(I/Si) by Polycondensation of scat(I/Si) on PDPA Membrane Surface (Scheme 5b)
3.2.4. Preparation of sc(V’/EO)/PVAc Blend Membrane (Scheme 5b)
3.3. Synthesis of SiO-sc(V) and Preparation of SiO-sc(V)/PDPA Composite Membranes (Method 2, HPS Method, Scheme 6)
3.3.1. Preparation of Poly(V) Membrane as a Template<T> (Scheme 6a)
3.3.2. Synthesis of Insoluble ac(V) by ADMET Polymerization of Pendant Vinyl Groups in Poly(V) in the Membrane State (Scheme 6b)
3.3.3. Synthesis of Insoluble sc(V) by SCAT of Insoluble ac(V) in the Membrane State (Scheme 6c)
3.3.4. Synthesis of Soluble SiO-sc(V) by Grafting of Dimethylsilyl(SiH)-Terminated Oligosiloxane to Insoluble sc(V) in the Membrane State (Scheme 6d)
3.3.5. Preparation of SiO-sc(V)/PDPA Composite Membrane
3.4. Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Sanders, D.F.; Smith, Z.P.; Guo, R.L.; Robeson, L.M.; McGrath, L.M.; Paul, D.R.; Freeman, B.D. Energy-efficient polymeric gas separation membranes for a sustainable future: A review. Polymer 2013, 54, 4729–4761. [Google Scholar] [CrossRef] [Green Version]
- Gin, D.L.; Noble, R.D. Designing the next generation of chemical separation membranes. Science 2018, 332, 674–676. [Google Scholar] [CrossRef] [PubMed]
- Budd, P.M.; McKeown, N.B. Highly permeable polymers for gas separation membranes. Polym. Chem. 2010, 1, 63–68. [Google Scholar] [CrossRef]
- Aoki, T. Macromolecular design of permselective membranes. Prog. Polym. Sci. 1999, 24, 951–993. [Google Scholar] [CrossRef]
- Robeson, L.M. The upper bound revisited. J. Membr. Sci. 2008, 320, 390–400. [Google Scholar] [CrossRef]
- Freeman, B.D. Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes. Macromolecules 1999, 32, 375–380. [Google Scholar] [CrossRef]
- Park, H.B.; Kamcev, B.; Robeson, L.M.; Elimelech, M.; Freeman, B.D. Maximizing the right stuff: The trade-off between membrane permeability and selectivity. Science 2017, 356, 1137. [Google Scholar] [CrossRef]
- Swaidan, R.; Ghanem, B.; Pinnau, I. Fine-tuned intrinsically ultramicroporous polymers redefine the permeability/selectivity upper bounds of membrane-based air and hydrogen separations. Macro Lett. 2015, 4, 947–951. [Google Scholar] [CrossRef]
- Rose, I.; Bezzu, C.G.; Carta, M.; Comesaña-Gándara, B.; Lasseuguette, E.; Ferrari, M.C.; Bernardo, P.; Clarizia, G.; Fuoco, A.; Jansen, J.C.; et al. Polymer ultrapermeability from the inefcient packing of 2D chains. Nat. Mater. 2017, 16, 932–937. [Google Scholar] [CrossRef]
- Maier, G. Gas separation by polymer membranes: Beyond the border. Angew. Chem. Int. Ed. 2013, 52, 4982–4984. [Google Scholar] [CrossRef]
- Carta, M.; Malpass-Evans, R.; Croad, M.; Rogan, Y.; Jansen, J.C.; Bernardo, P.; Bazzarelli, F.; McKeown, N.B. An efficient polymer molecular sieve for membrane gas separations. Science 2013, 339, 303. [Google Scholar] [CrossRef] [PubMed]
- McKeown, N.B. Polymers of intrinsic microporosity. ISRN Mater. Sci. 2012, 2012, 1–16. [Google Scholar] [CrossRef]
- McKeown, N.B.; Budd, P.M. Polymers of intrinsic microporosity (PIMs): Organic materials for membrane separations, heterogeneous catalysis and hydrogen storage. Chem. Soc. Rev. 2016, 35, 675–683. [Google Scholar] [CrossRef] [PubMed]
- Halder, K.; Georgopanos, P.; Shishatskiy, S.; Filiz, V.; Abetz, V. Investigation of gas transport and other physical properties in relation to the bromination degree of polymers of intrinsic microporosity. J. Polym. Sci. Part A Polym. Chem. 2018, 56, 2752–2761. [Google Scholar] [CrossRef]
- Nagai, K.; Masuda, T.; Nakagawa, T.; Freeman, B.D.; Pinnau, I. Poly [1-(trimethylsilyl)-1-propyne] and related polymers: Synthesis, properties and functions. Prog. Polym. Sci. 2001, 26, 721–798. [Google Scholar] [CrossRef]
- Hu, Y.; Sakaguchi, T.; Shiotsuki, M.; Sanda, F.; Masuda, T. Synthesis and characterization of poly (diphenylacetylenes) containing both hydroxy and halogen/alkyl groups as gas separation membranes. J. Membr. Sci. 2006, 285, 412–419. [Google Scholar] [CrossRef]
- Hu, Y.; Shiotsuki, M.; Sanda, F.; Freeman, B.D.; Masuda, T. Synthesis and properties of indan-based polyacetylenes that feature the highest gas permeability among all the existing polymers. Macromolecules 2008, 41, 8525–8532. [Google Scholar] [CrossRef]
- Jiang, J.; Su, F.; Trewin, A.; Wood, C.D.; Campbell, N.L.; Niu, H.; Dickinson, C.; Ganin, A.Y.; Rosseinsky, M.G.; Khimyak, Y.Z.; et al. Conjugated microporous poly(aryleneethynylene) networks. Angew. Chem. Int. Ed. 2007, 46, 8574–8578. [Google Scholar] [CrossRef]
- Tan, D.; Xiong, W.; Sun, H.; Zhang, Z.; Ma, W.; Meng, C.; Fan, W.; Li, A. Conjugated microporous polymer with film and nanotube-like morphologies. Micropor. Mesopor. Mater. 2013, 176, 25–30. [Google Scholar] [CrossRef]
- Lindemann, P.; Tsotsalas, M.; Shishatskiy, S.; Abetz, V.; Krolla-Sidenstein, P.; Azucena, C.; Monnereau, L.; Beyer, A.; Gölzhäuser, A.; Mugnaini, V.; et al. Preparation of freestanding conjugated microporous polymer nanomembranes for gas separation. Chem. Mater. 2014, 26, 7189–7193. [Google Scholar] [CrossRef]
- Ding, S.; Wang, W. Covalent organic frameworks (COFs): From design to applications. Chem. Soc. Rev. 2013, 42, 548–568. [Google Scholar] [CrossRef] [PubMed]
- Dechnik, J.; Gascon, J.; Doonan, C.J.; Janiak, C.; Sumby, C.J. Mixed-matrix membranes. Angew. Chem. Int. Ed. 2017, 56, 9292–9310. [Google Scholar] [CrossRef] [PubMed]
- Chung, T.; Jiang, L.Y.; Li, Y.; Kulprathipanja, S. Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Prog. Polym. Sci. 2017, 32, 483–507. [Google Scholar] [CrossRef]
- Vinothkannan, M.; Kim, A.R.; Gnana kumar, G.; Yoo, D.J. Sulfonated graphene oxide/Nafion composite membranes for high temperature and low humidity proton exchange membrane fuel cells. RSC Adv. 2018, 8, 7494–7508. [Google Scholar] [CrossRef] [Green Version]
- Vinothkannan, M.; Kim, A.R.; Gnana kumar, G.; Yoon, J.; Yoo, D.J. Toward improved mechanical strength, oxidative stability and proton conductivity of an aligned quadratic hybrid (SPEEK/FPAPB/Fe3O4-FGO) membrane for application in high temperature and low humidity fuel cells. RSC Adv. 2017, 7, 39034–39048. [Google Scholar] [CrossRef]
- Liu, L.; Namikoshi, T.; Zang, Y.; Aoki, T.; Hadano, S.; Abe, Y.; Wasuzu, I.; Tsutsuba, T.; Teraguchi, M.; Kaneko, T. Top-down preparation of self-supporting supramolecular polymeric membranes using highly selective photocyclic aromatization of cis-cisoid helical poly(phenylacetylene)s in the membrane state. J. Am. Chem. Soc. 2013, 135, 602–605. [Google Scholar] [CrossRef]
- Wang, J.; Zang, Y.; Yin, G.; Aoki, T.; Urita, H.; Taguwa, K.; Liu, L.; Namikoshi, T.; Teraguchi, M.; Kaneko, T.; et al. Facile synthesis of five 2D surface modifiers by highly selective photocyclic aromatization and efficient enhancement of oxygen permselectivities of three polymer membranes by surface modification using a small amount of the 2D surface modifiers. Polymer 2014, 55, 1384–1396. [Google Scholar] [CrossRef]
- Miyata, M.; Namikoshi, T.; Liu, L.; Zang, Y.; Aoki, T.; Abe, Y.; Oniyama, Y.; Tsutsuba, T.; Teraguchi, M.; Kaneko, T. Flexible self-supporting supramolecular polymeric membranes consisting of 1, 3, 5-trisubstituted benzene derivatives synthesized by highly selective photocyclic aromatization of helical poly(phenylacetylene)s in the membrane state. Polym. Commun. 2013, 54, 4431–4435. [Google Scholar] [CrossRef]
- Liu, L.; Long, Q.; Aoki, T.; Namikoshi, T.; Abe, Y.; Miyata, M.; Teraguchi, M.; Kaneko, T.; Wang, Y.; Zhang, C. A chiral supramolecular polymer membrane without any chiral substituents by highly selective photocyclic aromatization of a one-handed helical cis-cisoidal polyphenylacetylene. Macromol. Chem. Phys. 2015, 216, 530–537. [Google Scholar]
- Aoki, T.; Kaneko, T.; Maruyama, N.; Sumi, A.; Takahashi, M.; Sato, T.; Teraguchi, M. Helixsense-selective polymerization of phenylacetylene having two hydroxy groups using a chiral catalytic system. J. Am. Chem. Soc. 2003, 125, 6346–6347. [Google Scholar] [CrossRef]
- Liu, L.J.; Zang, Y.; Hadano, S.; Aoki, T.; Teraguchi, M.; Kaneko, T.; Namikoshi, T. New achiral phenylacetylene monomers having an oligosiloxanyl group most suitable for helix-sense-selective polymerization and for obtaining good optical resolution membrane materials. Macromolecules 2010, 43, 9268–9276. [Google Scholar] [CrossRef]
- Teraguchi, M.; Tanioka, D.; Kaneko, T.; Aoki, T. Helix-sense-selective polymerization of achiral phenylacetylenes with two N-alkylamide groups to generate the one-handed helical polymers stabilized by intramolecular hydrogen bonds. Macro Lett. 2012, 1, 1258–1261. [Google Scholar] [CrossRef]
- Zang, Y.; Wang, X.; Zhang, W.; Aoki, T.; Teraguchi, M.; Kaneko, T.; Ma, L.; Jia, H. Catalytic helix-sense-selective polymerisation of achiral substituted acetylenes containing bulky π-conjugated planar substituents yielding soluble and statically stable one-handed helical polymers. RSC Adv. 2015, 5, 106819–106823. [Google Scholar] [CrossRef]
- Liu, L.J.; Zang, Y.; Jia, H.; Aoki, T.; Kaneko, T.; Hadano, S.; Teraguchi, M.; Miyata, M.; Zhang, G.; Namikoshi, T. Helix-sense-selective polymerization of achiral phenylacetylenes and unique properties of the resulting cis-cisoidal polymers. Polym. Rev. 2017, 57, 89–118. [Google Scholar] [CrossRef]
- Zang, Y.; Aoki, T.; Liu, L.; Abe, Y.; Kakihana, Y.; Teraguchi, M.; Kaneko, T. Pseudo helix-senseselective polymerisation of achiral substituted acetylenes. Chem. Commun. 2012, 48, 4761–4763. [Google Scholar] [CrossRef] [PubMed]
- Zang, Y.; Tanagi, H.; Matsui, K.; Teraguchi, M.; Kaneko, T.; Ma, L.; Jia, H.; Shinohara, K. Synthesis of two well-defined quadruple-stranded copolymers having two kinds of backbones by postpolymerization of a helical template polymer. Macromol. Rapid. Comm. 2017, 39, 1700556. [Google Scholar] [CrossRef]
- Xu, L.; Lei, T.; Jing, B.; Zang, Y.; Miao, F.; Aoki, T.; Teraguchi, M.; Kaneko, T. Synthesis of soluble oligsiloxane-end-capped hyperbranched polyazomethine and their application to CO2/N2 separation membranes. Des. Monomers. Polym. 2018, 21, 99–104. [Google Scholar] [CrossRef]
- Teraguchi, M.; Mishima, K.; Fujimori, J.; Nishida, M.; Muramatsu, H.; Higashimura, J. Living metathesis polymerization of [o-(trifluoromethyl)phenyl]acetylene by molybdenum-based three-component catalysts. Macromolecules 1992, 25, 1401–1404. [Google Scholar]
- Zang, Y.; Aoki, T.; Kaneko, T.; Teraguchi, M.; Ma, L.; Jia, H.; Miao, F. Synthesis and oxygen permeability of novel graft copolymers consisting of a polyphenylacetylene backbone and long oligosiloxane grafts from phenylacetylene-type macromonomers. Polymer 2018, 156, 66–70. [Google Scholar] [CrossRef]
- Zang, Y.; Aoki, T.; Shoji, K.; Teraguchi, M.; Kaneko, T.; Ma, L.; Jia, H.; Miao, F. Synthesis and oxygen permeation of novel well-defined homopoly(phenylacetylene)s with different sizes and shapes of oligosiloxanyl side groups. J. Membr. Sci. 2018, 561, 26–38. [Google Scholar] [CrossRef]
No. | Additives | Content (wt%) | θa) (deg) | PO2b) (barrer) | αb) |
---|---|---|---|---|---|
1 | none(pure PDPA) | 0 | 103 | 1520 | 1.83 |
2 | scat(I/Si) | 1.0 | 91.9 | 3120 | 2.15 |
3 | sc(I/Si) | 1.0 | 90.5 | 5320 | 2.45 |
4 | none(pure scat(I/Si)) | 0 | 90.1 | - c) | - c) |
No. | Additives | Mw of the Additives a) | Content (wt%) | PO2b) (barrer) | αb) |
---|---|---|---|---|---|
1 | none (pure PVAc) | none | 0 | 5.58 | 2.97 |
2 | scat(V’/EO) | 1710 | 10 | 6.31 | 3.99 |
3 | sc(V’/EO) | 3490 | 10 | 6.52 | 4.12 |
SiO-sc(V) | Composite Membrane | ||||||
---|---|---|---|---|---|---|---|
No. | Mw of the Peak Having the Highest Mw a) (×105) | Contents of SiO-sc(V) a) (%) | Composition of sc(V) in SiO-sc(V) b) (%) | Content of SiO-sc(V) (wt%) | θc) (deg) | PO2d) (barrer) | αd) |
1 | 5.74 | 71.1 | 39.9 | 0.5 | 96.6 | 1770 | 2.49 |
2 | 5.74 | 71.1 | 39.9 | 1.0 | 96.5 | 1920 | 2.28 |
3 e) | - | - | - | 0 | 103 | 1520 | 1.83 |
4 f) | 0.08 | - | - | 100 | 86.2 | - g) | - g) |
sc(V) | Composite Membrane | ||||||
---|---|---|---|---|---|---|---|
No. | Additives | Peak for Higher Mw a) (×103) | Area Ratio of Mw max a) (%) | Content b) (wt%) | θc) (deg) | PO2d) (barrer) | αd) |
1 | sc(V) | 8.18 | 75.2 | 1.0 | 98.4 | 1250 | 2.16 |
2 | scat(V) | 1.30 | - | 1.0 | 97.3 | 1190 | 2.14 |
sc(Rf) | Composite Membrane | |||||
---|---|---|---|---|---|---|
Method | Code for sc(Rf) | Size of the Nonopores or Nanospaces a) (nm) | Peak for Higher Mw b) (×103) | Area Ratio of Mw max b) (%) | θc) (deg) | αd) |
1 | sc(I/Si) | 3.8~4.6 | - e) | - e) | 90.5 (90.1) | 2.45 |
2 | SiO-sc(V) | 2.5~3.3 | 574 | 71.1 | 96.6 (86.2) | 2.49 |
3 | sc(V) | 0.31~0.36 | 8.18 | 75.2 | 98.4 (86.2) | 2.16 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zang, Y.; Aoki, T.; Teraguchi, M.; Kaneko, T.; Jia, H.; Ma, L.; Miao, F. New Synthetic Methods of Novel Nanoporous Polycondensates and Excellent Oxygen Permselectivity of Their Composite Membranes. Nanomaterials 2019, 9, 859. https://doi.org/10.3390/nano9060859
Zang Y, Aoki T, Teraguchi M, Kaneko T, Jia H, Ma L, Miao F. New Synthetic Methods of Novel Nanoporous Polycondensates and Excellent Oxygen Permselectivity of Their Composite Membranes. Nanomaterials. 2019; 9(6):859. https://doi.org/10.3390/nano9060859
Chicago/Turabian StyleZang, Yu, Toshiki Aoki, Masahiro Teraguchi, Takashi Kaneko, Hongge Jia, Liqun Ma, and Fengjuan Miao. 2019. "New Synthetic Methods of Novel Nanoporous Polycondensates and Excellent Oxygen Permselectivity of Their Composite Membranes" Nanomaterials 9, no. 6: 859. https://doi.org/10.3390/nano9060859
APA StyleZang, Y., Aoki, T., Teraguchi, M., Kaneko, T., Jia, H., Ma, L., & Miao, F. (2019). New Synthetic Methods of Novel Nanoporous Polycondensates and Excellent Oxygen Permselectivity of Their Composite Membranes. Nanomaterials, 9(6), 859. https://doi.org/10.3390/nano9060859