Fabrication of Superhydrophobic Silicone Rubber with Periodic Micro/Nano-Suction Cup Structure by ArF Excimer Laser-Induced Photodissociation
Abstract
:1. Introduction
2. Experimental Procedure
3. Results and Discussion
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Ganachaud, F.; Boileau, S.; Boury, B. Silicone Based Polymers; Springer: Heidelberg, Germany, 2008. [Google Scholar]
- Nirmalraj, P.; Lehner, R.; Thompson, D.; Rothen-Rutishauser, B.; Mayer, M. Subcellular imaging of liquid silicone coated-intestinal epithelial cells. Sci. Rep. 2018, 8, 10763. [Google Scholar] [CrossRef] [PubMed]
- Wu, A.S.; Small, W., IV; Bryson, T.M.; Cheng, E.; Metz, T.R.; Schulze, S.E.; Duoss, E.B.; Wilson, T.S. 3D printed silicones with shape memory. Sci. Rep. 2017, 7, 4664. [Google Scholar] [CrossRef] [PubMed]
- Owen, M.J.; Dvornic, P.R. Silicone Surface Science; Springer: Heidelberg, Germany, 2012. [Google Scholar]
- Wilbur, J.L.; Kumar, A.; Kim, E.; Whitesides, G.M. Microfabrication by microcontact printing of self-assembled monolayers. Adv. Mater. 1994, 6, 600–604. [Google Scholar] [CrossRef]
- Ryu, J.; Kim, K.; Park, J.-Y.; Hwang, B.G.; Ko, Y.-C.; Kim, H.-J.; Han, J.-S.; Seo, E.-R.; Park, Y.-J.; Lee, S.J. Nearly perfect durable superhydrophobic surfaces fabricated by a simple one-step plasma treatment. Sci. Rep. 2017, 7, 1981. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, J.; Artus, G.R.J.; Seeger, S. Superhydrophobic silicone nanofilament coatings. J. Adhes. Sci. Technol. 2012, 22, 251–263. [Google Scholar] [CrossRef]
- Barthlott, W.; Neinhuis, C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 1997, 202, 1–8. [Google Scholar] [CrossRef]
- Gao, X.; Yan, X.; Yao, X.; Xu, L.; Zhang, K.; Zhang, J.; Yang, B.; Jiang, L. The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography. Adv. Mater. 2007, 19, 2213–2217. [Google Scholar] [CrossRef]
- Ranella, A.; Barberoglou, M.; Bakogianni, S.; Fotakis, C.; Stratakis, E. Tuning cell adhesion by controlling the roughness and wettability of 3D micro/nano silicon structures. Acta Biomater. 2010, 6, 2711–2720. [Google Scholar] [CrossRef] [PubMed]
- Vorobyev, A.Y.; Guo, C. Multifunctional surfaces produced by femtosecond laser pulses. J. Appl. Phys. 2015, 117, 033103. [Google Scholar] [CrossRef] [Green Version]
- Ta, D.V.; Dunn, A.; Wasley, T.J.; Kay, R.W.; Stringer, J.; Smith, P.J.; Connaughton, C.; Shephard, J.D. Nanosecond laser textured superhydrophobic metallic surfaces and their chemical sensing applications. Appl. Surf. Sci. 2016, 357, 248–254. [Google Scholar] [CrossRef]
- Cai, Y.; Chang, W.; Luo, X.; Sousa, A.M.L.; Lau, K.H.A.; Qin, Y. Superhydrophobic structures on 316L stainless steel surfaces machined by nanosecond pulsed laser. Precis. Eng. 2018, 52, 266–275. [Google Scholar] [CrossRef] [Green Version]
- Cataldo, V.A.; Cavallaro, G.; Lazzara, G.; Milioto, S.; Parisi, F. Coffee grounds as filler for pectin: Green composites with competitive performances dependent on the UV irradiation. Carbohyd. Polym. 2017, 170, 198–205. [Google Scholar] [CrossRef] [PubMed]
- Bertolino, V.; Cavallaro, G.; Lazzara, G.; Merli, M.; Milioto, S.; Parisi, F.; Sciascia, L. Gas-phase surface engineering of polystyrene beads used to challenge automated particle inspection systems. Ind. Eng. Chem. Res. 2016, 55, 7373–7380. [Google Scholar] [CrossRef]
- Takao, H.; Okoshi, M.; Inoue, N. Fabrication of SiO2-humps on silicone rubber using F2 laser. Jpn. J. Appl. Phys. 2002, 41, L1088–L1089. [Google Scholar] [CrossRef]
- Okoshi, M.; Kimura, T.; Takao, H.; Inoue, N.; Yamashita, T. Photochemical modification of silicone films using F2 laser for selective chemical etching. Jpn. J. Appl. Phys. 2004, 43, 3438–3442. [Google Scholar] [CrossRef]
- Takao, H.; Okoshi, M.; Inoue, N. Swelling and modification of silicone surface by F2 laser irradiation. Appl. Phys. A 2004, 79, 1571–1574. [Google Scholar] [CrossRef]
- Takao, H.; Okoshi, M.; Miyagami, H.; Inoue, N. Fabrication of SiO2 microlenses on silicone rubber using a vacuum-ultraviolet F2 laser. IEEE J. Sel. Top. Quant. 2004, 10, 1426–1429. [Google Scholar] [CrossRef]
- Takao, H.; Miyagami, H.; Okoshi, M.; Inoue, N. Microlenses fabricated on silicone rubber using an F2 laser. Jpn. J. Appl. Phys. 2005, 44, 1808–1811. [Google Scholar] [CrossRef]
- Okoshi, M.; Pambudi, W.S. Fabrication of superhydrophobic silicone rubber by ArF-excimer-laser-induced microstructuring for repelling water in water. Appl. Phys. Express 2016, 9, 112701. [Google Scholar] [CrossRef]
- Okoshi, M.; Awaihara, Y.; Yamashita, T.; Inoue, N. F2-laser-induced micro/nanostructuring and surface modification of iron thin film to realize hydrophobic and corrosion resistant. Jpn. J. Appl. Phys. 2014, 53, 112701. [Google Scholar] [CrossRef]
- Okoshi, M. Fabrication of superhydrophobic silicone rubber operating in water. Appl. Phys. Express 2018, 11, 101801. [Google Scholar] [CrossRef]
- Okoshi, M. Formation of textured Al thin film on silicone rubber to obtain superhydrophobic property. SN Appl. Sci. 2018, 1, 133. [Google Scholar] [CrossRef] [Green Version]
- Gemmell, B.J.; Colin, S.P.; Costello, J.H.; Dabiri, J.O. Suction-based propulsion as a basis for efficient animal swimming. Nat. Commun. 2015, 6, 8790. [Google Scholar] [CrossRef] [PubMed]
- Baik, S.; Kim, D.W.; Park, Y.; Lee, T.J.; Bhang, S.H.; Pang, C. A wet-tolerant adhesive patch inspired by protuberances in suction cups of octopi. Nature 2017, 546, 396–400. [Google Scholar] [CrossRef] [PubMed]
- Okoshi, M. Fabrication of silicone rubber periodic micro-suction cup structures using a 193 nm ArF excimer laser. Appl. Phys. Express 2019, 12, 062012. [Google Scholar] [CrossRef]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okoshi, M. Fabrication of Superhydrophobic Silicone Rubber with Periodic Micro/Nano-Suction Cup Structure by ArF Excimer Laser-Induced Photodissociation. Nanomaterials 2019, 9, 870. https://doi.org/10.3390/nano9060870
Okoshi M. Fabrication of Superhydrophobic Silicone Rubber with Periodic Micro/Nano-Suction Cup Structure by ArF Excimer Laser-Induced Photodissociation. Nanomaterials. 2019; 9(6):870. https://doi.org/10.3390/nano9060870
Chicago/Turabian StyleOkoshi, Masayuki. 2019. "Fabrication of Superhydrophobic Silicone Rubber with Periodic Micro/Nano-Suction Cup Structure by ArF Excimer Laser-Induced Photodissociation" Nanomaterials 9, no. 6: 870. https://doi.org/10.3390/nano9060870
APA StyleOkoshi, M. (2019). Fabrication of Superhydrophobic Silicone Rubber with Periodic Micro/Nano-Suction Cup Structure by ArF Excimer Laser-Induced Photodissociation. Nanomaterials, 9(6), 870. https://doi.org/10.3390/nano9060870