Evolution of Hair Treatment and Care: Prospects of Nanotube-Based Formulations
Abstract
:1. Introduction
2. Nanotube-Based Formulations for Human Hair Treatment
2.1. Halloysite Clay Nanotubes
2.1.1. Cosmetic Applications
2.1.2. Biomedical Applications
2.2. Carbon Nanotubes
3. Nanotube-Based Formulations for Animal Hair Treatment
4. Nanotubes’ Safety
5. Future Prospects
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nogueira, A.C.S.; Joekes, I. Hair melanin content and photodamage. J. Cosmet. Sci. 2007, 58, 385–391. [Google Scholar]
- Clausen, T.; Schwan-Jonczyk, A.; Lang, G.; Schuh, W.; Liebscher, K.; Springob, C.; Frankze, M.; Balzer, W.; Imhoff, S.; Maresch, G.; et al. Hair Preparations. In Ullmann’s Encyclopedia of Industrial Chemistry; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Baki, G.; Alexander, K. Introduction to Cosmetic Formulation and Technology; Wiley: Hoboken, NJ, USA, 2015. [Google Scholar]
- Orfanos, C.E.; Montagna, W.; Stüttgen, G. Hair Research: Status and Future Aspects. In Proceedings of the First International Congress on Hair Research, Hamburg, Germany, 13–16 March 1979; Springer: Berlin/Heidelberg, Germany, 1981. [Google Scholar]
- Keenan, A.C.; Antrim, R.F.; Powell, T. Characterization of hair styling formulations targeted to specific multicultural needs. J. Cosmet. Sci. 2011, 62, 149–160. [Google Scholar]
- Gavazzoni Dias, M.F. Hair cosmetics: An overview. Int. J. Trichol. 2015, 7, 2–15. [Google Scholar] [CrossRef]
- Saitta, P. Is There a True Concern Regarding the Use of Hair Dye and Malignancy Development? A Review of the Epidemiological Evidence Relating Personal Hair Dye Use to the Risk of Malignancy. Clin. Aesthet. Dermatol. 2013, 6, 8. [Google Scholar]
- International Agency for Research on Cancer. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans in Some Aromatic Amines, Organic Dyes and Related Exposures 2010; World Health Organization Press: Lyon, France, 2010; p. 706. [Google Scholar]
- Calogiuri, G.; Di Leo, E.; Butani, L.; Pizzimenti, S.; Incorvaia, C.; Macchia, L.; Nettis, E. Hypersensitivity reactions due to black henna tattoos and their components: Are the clinical pictures related to the immune pathomechanism? Clin. Mol. Allergy 2017, 15, 8. [Google Scholar] [CrossRef]
- Wolfram, L.J. Hair Cosmetics. In Handbook of Cosmetic Science and Technology; Barel, A., Paye, M., Maibach, H., Eds.; Informa Healthcare Publ.: New York, NY, USA, 2001. [Google Scholar]
- Friis, U.F.; Goosens, A.; Giménez-Arnau, A.M.; Lidén, C.; Giménez-Arnau, E.; White, I.R.; Alfonso, J.H.; Uter, W.; Johansen, J.D. Self-testing for contact allergy to hair dyes—A 5-year follow-up multicentre study. Contact Dermat. 2018, 78, 131–138. [Google Scholar] [CrossRef]
- Lee, H.Y.; Jeong, Y.I.; Choi, K.C. Hair dye-incorporated poly-gamma-glutamic acid/glycol chitosan nanoparticles based on ion-complex formation. Int. J. Nanomed. 2011, 6, 2879–2888. [Google Scholar]
- Gomes, M.J.; Martins, S.; Ferreira, D.; Segundo, M.A.; Reis, S. Lipid nanoparticles for topical and transdermal application for alopecia treatment: Development, physicochemical characterization, and in vitro release and penetration studies. Int. J. Nanomed. 2014, 9, 1231–1242. [Google Scholar]
- Roque, L.V.; Dias, I.S.; Cruz, N.; Rebelo, A.; Roberto, A.; Rijo, P.; Reis, C.P. Design of Finasteride-Loaded Nanoparticles for Potential Treatment of Alopecia. Skin Pharmacol. Physiol. 2017, 30, 197–204. [Google Scholar] [CrossRef] [Green Version]
- Haveli, S.D.; Walter, P.; Patriarche, G.; Ayache, J.; Castaing, J.; Van Elslande, E.; Tsoucaris, G.; Wang, P.-A.; Kagan, H.B. Hair fiber as a nanoreactor in controlled synthesis of fluorescent gold nanoparticles. Nano Lett. 2012, 12, 6212–6217. [Google Scholar] [CrossRef]
- Trelles, M.A.; Almudever, P.; Alcolea, J.M.; Cortijo, J.; Serrano, G.; Expósito, I.; Royo, J.; Leclère, F.M. Cuttlefish Ink Melanin Encapsulated in Nanolipid Bubbles and Applied Through a Micro-Needling Procedure Easily Stains White Hair Facilitating Photoepilation. J. Drugs Dermatol. 2016, 15, 615–625. [Google Scholar] [PubMed]
- Schneider, M.; Stracke, F.; Hansen, S.; Schaefer, U.F. Nanoparticles and their interactions with the dermal barrier. Dermatoendocrinology 2009, 1, 197–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lademann, J.; Richter, H.; Teichmann, A.; Otberg, N.; Blume-Peytavi, U.; Luengo, J.; Weiss, B.; Schaefer, U.F.; Lehr, C.-M.; Wepf, R.; et al. Nanoparticles—An efficient carrier for drug delivery into the hair follicles. Eur. J. Pharm. Biopharm. 2007, 66, 159–164. [Google Scholar] [CrossRef] [PubMed]
- Luo, C.; Zhou, L.; Chiou, K.; Huang, J. Multifunctional graphene hair dye. Chem 2018, 4, 784–794. [Google Scholar] [CrossRef]
- Zhou, Z.; Lenk, R.; Dellinger, A.; MacFarland, D.; Kumar, K.; Wilson, S.R.; Kepley, C.L. Fullerene nanomaterials potentiate hair growth. Nanomedicine 2009, 5, 202–207. [Google Scholar] [CrossRef] [Green Version]
- Madheswaran, T.; Baskaran, R.; Thapa, R.K.; Rhyu, J.Y.; Choi, H.Y.; Kim, J.O.; Yong, C.S.; Yoo, B.K. Design and In Vitro Evaluation of Finasteride-Loaded Liquid Crystalline Nanoparticles for Topical Delivery. AAPS PharmSciTech 2013, 14, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Eatemadi, A.; Daraee, H.; Karimkhanloo, H.; Kouhi, M.; Zarghami, N.; Akbarzadeh, A.; Abasi, M.; Hanifehpour, Y.; Joo, S.W. Carbon nanotubes: Properties, synthesis, purification, and medical applications. Nanoscale Res. Lett. 2014, 9, 393. [Google Scholar] [CrossRef]
- Panchal, A.; Fakhrullina, G.; Fakhrullin, R.; Lvov, Y. Self-assembly of clay nanotubes on hair surface for medical and cosmetic formulations. Nanoscale 2018, 10, 18205–18216. [Google Scholar] [CrossRef]
- Liu, M.; Jia, Z.; Jia, D.; Zhou, C. Recent advance in research on halloysite nanotubes-polymer nanocomposite. Progr. Polym. Sci. 2014, 39, 1498–1525. [Google Scholar] [CrossRef]
- Abdullayev, E.; Joshi, A.; Wei, W.; Zhao, Y.; Lvov, Y. Enlargement of Halloysite Clay Nanotube Lumen by Selective Etching of Aluminum Oxide. ACS Nano 2012, 6, 7216–7226. [Google Scholar] [CrossRef] [PubMed]
- Kodama, H.G.; Grim, R.E. Clay Mineral. Encyclopædia Britannica 2014. Available online: https://www.britannica.com/science/clay-mineral (accessed on 3 April 2019).
- Santos, A.C.; Ferreira, C.; Veiga, F.; Ribeiro, A.J.; Panchal, A.; Lvov, Y.; Agarwal, A. Halloysite clay nanotubes for life sciences applications: From drug encapsulation to bioscaffold. Adv. Colloid Interface Sci. 2018, 257, 58–70. [Google Scholar] [CrossRef]
- Lvov, Y.; Wang, W.; Zhang, L.; Fakhrullin, R. Halloysite Clay Nanotubes for Loading and Sustained Release of Functional Compounds. Adv. Mater. 2016, 28, 1227–1250. [Google Scholar] [CrossRef]
- Yendluri, R.; Lvov, Y.; de Villiers, M.M.; Vinokurov, V.; Naumenko, E.; Tarasova, E.; Fakhrullin, R. Paclitaxel Encapsulated in Halloysite Clay Nanotubes for Intestinal and Intracellular Delivery. J. Pharm. Sci. 2017, 106, 3131–3139. [Google Scholar] [CrossRef]
- Shi, Y.F.; Tian, Z.; Zhang, Y.; Shen, H.B.; Jia, N.Q. Functionalized halloysite nanotube-based carrier for intracellular delivery of antisense oligonucleotides. Nanoscale Res. Lett. 2011, 6, 608. [Google Scholar] [CrossRef]
- Suner, S.S.; Demirci, S.; Yetiskin, B.; Fakhrullin, R.; Naumenko, E.; Okay, O.; Ayyala, R.S.; Sahiner, N. Cryogel composites based on hyaluronic acid and halloysite nanotubes as scaffold for tissue engineering. Int. J. Biol. Macromol. 2019, 130, 627–635. [Google Scholar] [CrossRef]
- Liu, M.; Fakhrullin, R.; Novikov, A.; Panchal, A.; Lvov, Y. Tubule nanoclay-organic heterostructures for biomedical applications. Macromol. Biosci. 2019, 19, 1800419. [Google Scholar] [CrossRef]
- Deen, I.; Pang, X.; Zhitomirsky, I. Electrophoretic deposition of composite chitosan–halloysite nanotube–hydroxyapatite films. Colloids Surfaces Physicochem. Eng. Asp. 2012, 410, 38–44. [Google Scholar] [CrossRef]
- Yuan, P.; Tan, D.; Annabi-Bergaya, F. Properties and applications of halloysite nanotubes: Recent research advances and future prospects. Appl. Clay Sci. 2015, 112, 75–93. [Google Scholar] [CrossRef]
- Gallardo, A.; Mougabure-Cueto, G.; Vassena, C.; Picollo, M.I.; Toloza, A.C. Comparative efficacy of new commercial pediculicides against adults and eggs of Pediculus humanus capitis (head lice). Parasitol. Res. 2012, 110, 1601–1606. [Google Scholar] [CrossRef]
- Asenov, A.; Oliveira, F.A.; Speare, R.; Liesenfeld, O.; Hengge, U.R.; Heukelbach, J. Efficacy of chemical and botanical over-the-counter pediculicides available in Brazil, and off-label treatments, against head lice ex vivo. Int. J. Dermatol. 2010, 49, 324–330. [Google Scholar] [CrossRef]
- Downs, A.M.R.; Stafford, K.A.; Hunt, L.P.; Ravenscroft, J.C.; Coles, G.C. Widespread insecticide resistance in head lice to the over-the-counter pediculocides in England, and the emergence of carbaryl resistance. Br. J. Dermatol. 2002, 146, 88–93. [Google Scholar] [CrossRef]
- Cavallaro, G.; Lazzara, G.; Milioto, S.; Parisi, F.; Sanzillo, V. Modified Halloysite Nanotubes: Nanoarchitectures for Enhancing the Capture of Oils from Vapor and Liquid Phases. ACS Appl. Mater. Interfaces 2014, 6, 606–612. [Google Scholar] [CrossRef]
- Cavallaro, G.; Lazzara, G.; Milioto, S.; Parisi, F. Hydrophobically Modified Halloysite Nanotubes as Reverse Micelles for Water-in-Oil Emulsion. Langmuir 2015, 31, 7472–7478. [Google Scholar] [CrossRef]
- Fakhrullina, G.I.; Akhatova, F.S.; Lvov, Y.M.; Fakhrullin, R.F. Toxicity of halloysite clay nanotubes in vivo: A Caenorhabditis elegans study. Environ. Sci. Nano 2015, 2, 54–59. [Google Scholar] [CrossRef]
- Ablon, G.; Rieder, E. Over-the-Counter Hair Loss Treatments: Help or Hype? J. Drugs Dermatol. 2019, 18, 312. [Google Scholar]
- Messenger, A.G.; Rundegren, J. Minoxidil: Mechanisms of action on hair growth. Br. J. Dermatol. 2004, 150, 186–194. [Google Scholar] [CrossRef]
- Huang, X.; Kobos, R.; Xu, G. Hair Coloring and Cosmetic Compositions Comprising Carbon Nanotubes. U.S. Patent US7276088B2, 2 October 2007. [Google Scholar]
- Huang, X.; Kobos, R.; Xu, G. Peptide-Based Carbon Nanotube Hair Colorants and Their Use in Hair Colorant and Cosmetic Compositions. U.S. Patent US20050229335A1, 20 October 2005. [Google Scholar]
- Liu, Y.-F.; Huang, P.; Li, Y.-Q.; Liu, Q.; Tao, J.-K.; Xiong, D.-J.; Hu, N.; Yan, C.; Wang, H.; Fu, S.-Y. A biomimetic multifunctional electronic hair sensor. J. Mater. Chem. A 2019, 7, 1889–1896. [Google Scholar] [CrossRef]
- Maschmann, M.R.; Ehlert, G.J.; Dickinson, B.T.; Phillips, D.M.; Ray, C.W.; Reich, G.W.; Baur, J.W. Bioinspired carbon nanotube fuzzy fiber hair sensor for air-flow detection. Adv. Mater. 2014, 26, 3230–3234. [Google Scholar] [CrossRef]
- Lvov, Y.; Panchal, A.; Fakhrullin, R. Coating of Clay Micro-tubes on Surfaces of Hair and Natural Fibers. U.S. Patent 10,166,175, 2 May 2019. [Google Scholar]
- Luther, H.; Reinehr, D.; Zink, R. Use of Selected Benzotriazole Derivatives for Protecting Human and Animal Skin and Hair from the Harmful Effects of UV Radiation. U.S. Patent US6201000B1, 2001. [Google Scholar]
- Ferenz, M.; Herrwerth, S.; Winter, P. Use of Polysiloxanes with Quaternary Ammonium Groups for Protecting Animal or Human Hair against Heat Damage. German patent DE1020080141020A1, 2008. [Google Scholar]
- Menkart, J.; Wolfram, J.; Mao, I. Caucasian hair, negro hair and wool: Similarities and differences. J. Soc. Cosmet. Chem. 1966, 17, 769–787. [Google Scholar]
- Santos, A.C.; Morais, F.; Simões, A.; Pereira, I.; Sequeira, J.A.; Pereira-Silva, M.; Veiga, F.; Ribeiro, A. Nanotechnology for the development of new cosmetic formulations. Expert Opin. Drug Deliv. 2019, 16, 313–330. [Google Scholar] [CrossRef]
- Armstead, A.L.; Li, B. Nanotoxicity: Emerging concerns regarding nanomaterial safety and occupational hard metal (WC-Co) nanoparticle exposure. Int. J. Nanomed. 2016, 11, 6421–6433. [Google Scholar] [CrossRef]
- Mihranyan, A.; Ferraz, N.; Strømme, M. Current status and future prospects of nanotechnology in cosmetics. Prog. Mater. Sci. 2012, 57, 875–910. [Google Scholar] [CrossRef]
- Wang, X.; Gong, J.; Gui, Z.; Hu, T.; Xu, X. Halloysite nanotubes-induced Al accumulation and oxidative damage in liver of mice after 30-day oral administration. Environ. Toxicol. 2018, 33, 623–630. [Google Scholar] [CrossRef]
- Vergaro, V.; Abdullayev, E.; Lvov, Y.M.; Zeitoun, A.; Cingolani, R.; Rinaldi, R.; Leporatti, S. Cytocompatibility and Uptake of Halloysite Clay Nanotubes. Biomacromolecules 2010, 11, 820–826. [Google Scholar] [CrossRef]
- Rong, R.; Zhang, Y.; Zhang, Y.; Hu, Y.; Yang, W.; Hu, X.; Wen, L.; Zhang, Q. Inhibition of inhaled halloysite nanotube toxicity by trehalose through enhanced autophagic clearance of p62. Nanotoxicology 2019, 13, 354–368. [Google Scholar] [CrossRef]
- Elmore, A.R. Cosmetic Ingredient Review Expert Panel. Int. J. Toxicol. 2003, 22, 37–102. [Google Scholar]
- Amenta, V.; Aschberger, K. Carbon nanotubes: Potential medical applications and safety concerns. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2015, 7, 371–386. [Google Scholar] [CrossRef]
- Bussy, C.; Kostarelos, K. Carbon nanotubes in medicine and biology—Safety and toxicology. Adv. Drug Deliv. Rev. 2013, 65, 2061–2062. [Google Scholar] [CrossRef]
- Nilforoushzadeh, M.A.; Zare, M.; Zarrintaj, P.; Alizadeh, E.; Taghiabadi, E.; Heidari-Kharaji, M.; Amirkhani, M.A.; Saeb, M.R.; Mozafari, M. Engineering the niche for hair regeneration—A critical review. Nanomedicine 2019, 15, 70–85. [Google Scholar] [CrossRef]
- Tan, J.J.; Kang, L. Engineering the future of hair follicle regeneration and delivery. Ther. Deliv. 2018, 9, 321–324. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, A.C.; Panchal, A.; Rahman, N.; Pereira-Silva, M.; Pereira, I.; Veiga, F.; Lvov, Y. Evolution of Hair Treatment and Care: Prospects of Nanotube-Based Formulations. Nanomaterials 2019, 9, 903. https://doi.org/10.3390/nano9060903
Santos AC, Panchal A, Rahman N, Pereira-Silva M, Pereira I, Veiga F, Lvov Y. Evolution of Hair Treatment and Care: Prospects of Nanotube-Based Formulations. Nanomaterials. 2019; 9(6):903. https://doi.org/10.3390/nano9060903
Chicago/Turabian StyleSantos, Ana Cláudia, Abhishek Panchal, Naureen Rahman, Miguel Pereira-Silva, Irina Pereira, Francisco Veiga, and Yuri Lvov. 2019. "Evolution of Hair Treatment and Care: Prospects of Nanotube-Based Formulations" Nanomaterials 9, no. 6: 903. https://doi.org/10.3390/nano9060903
APA StyleSantos, A. C., Panchal, A., Rahman, N., Pereira-Silva, M., Pereira, I., Veiga, F., & Lvov, Y. (2019). Evolution of Hair Treatment and Care: Prospects of Nanotube-Based Formulations. Nanomaterials, 9(6), 903. https://doi.org/10.3390/nano9060903