Deposition of Silicon-Based Stacked Layers for Flexible Encapsulation of Organic Light Emitting Diodes
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Burrows, P.E.; Bulovic, V.; Forrest, S.R.; Sapochak, L.S.; McCarty, D.M.; Thompson, M.E. Reliability and degradation of organic light emitting devices. Appl. Phys. Lett. 1994, 65, 2922–2924. [Google Scholar] [CrossRef]
- Park, E.K.; Kim, S.; Heo, J.; Kim, H.J. Electrical evaluation of crack generation in SiNx and SiOxNy thin-film encapsulation layers for OLED displays. Appl. Surf. Sci. 2016, 370, 126–130. [Google Scholar] [CrossRef]
- Klumbies, H.; Schmidt, P.; Hähnel, M.; Singh, A.; Schroeder, U.; Richter, C.; Mikolajick, T.; Hoßbach, C.; Albert, M.; Bartha, J.W.; et al. Thickness dependent barrier performance of permeation barriers made from atomic layer deposited alumina for organic devices. Org. Electron. 2015, 17, 138–143. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.-Q.; Duan, Y.; Duan, Y.-H.; Wang, X.; Chen, P.; Yang, D.; Sun, F.-B.; Xue, K.-W. High barrier properties of transparent thin-film encapsulations for top emission organic light-emitting diodes. Org. Electron. 2014, 15, 1120–1125. [Google Scholar]
- Jeong, E.G.; Han, Y.C.; Im, H.G.; Bae, B.S.; Choi, K.C. Highly reliable hybrid nano-stratified moisture barrier for encapsulating flexible OLEDs. Org. Electron. 2016, 33, 150–155. [Google Scholar] [CrossRef]
- To, C.H.; Wong, F.L.; Lee, C.S.; Zapien, J.A. Transmission optimization of multilayer OLED encapsulation based on spectroscopic ellipsometry. Thin Solid Films 2013, 549, 22–29. [Google Scholar] [CrossRef]
- Lin, T.Y.; Lee, C.T. Organosilicon function of gas barrier films purely deposited by inductively coupled plasma chemical vapor deposition system. J. Alloys Compd. 2012, 542, 11–16. [Google Scholar] [CrossRef]
- Park, J.; Ham, H.; Park, C. Heat transfer property of thin-film encapsulation for OLEDs. Org. Electron. 2011, 12, 227–233. [Google Scholar] [CrossRef]
- Wong, F.L.; Fung, M.K.; Tao, S.L.; Lai, S.L.; Tsang, W.M.; Kong, K.H.; Choy, W.M.; Lee, C.S.; Lee, S.T. Long-lifetime thin-film encapsulated organic light-emitting diodes. J. Appl. Phys. 2008, 104, 014509. [Google Scholar] [CrossRef]
- Granstrom, J.; Swensen, J.S.; Moon, J.S.; Rowell, G.; Yuen, J.; Heeger, A.J. Encapsulation of organic light-emitting devices using a perfluorinated polymer. Appl. Phys. Lett. 2008, 93, 1–4. [Google Scholar] [CrossRef]
- Modreanu, M.; Gartner, M.; Tomozeiu, N.; Seekamp, J.; Cosmin, P. Investigation on optical and microstructural properties of photoluminescent LPCVD SiOxNy thin films. Opt. Mater. 2001, 17, 145–148. [Google Scholar] [CrossRef]
- Yoon, S.G.; Kang, S.M.; Jung, W.S.; Kim, H.; Kim, S.W.; Yoon, D.H. Low refraction properties of F-doped SiOC:H thin films prepared by PECVD. Thin Solid Films 2008, 516, 1410–1413. [Google Scholar] [CrossRef]
- Dergez, D.; Bittner, A.; Schalko, J.; Schmid, U. Low-stress and long-term stable a-SiNx:H films deposited by ICP-PECVD. Procedia Eng. 2014, 87, 100–103. [Google Scholar] [CrossRef]
- Nogay, G.; Saleh, Z.M.; Özkol, E.; Turan, R. Vertically aligned Si nanocrystals embedded in amorphous Si matrix prepared by inductively coupled plasma chemical vapor deposition (ICP-CVD). Mater. Sci. Eng. B 2015, 196, 28–34. [Google Scholar] [CrossRef]
- Lien, S.-Y.; Cho, Y.-S.; Hsu, C.-H.; Shen, K.-Y.; Zhang, S.; Wu, W.-Y. Mechanism of dense silicon dioxide films deposited under 100 °C via inductively coupled plasma chemical vapor deposition. Surf. Coat. Technol. 2019, 359, 247–251. [Google Scholar] [CrossRef]
- Hsu, C.-H.; Cho, Y.-S.; Liu, T.-X.; Chang, H.-W.; Lien, S.-Y. Optimization of residual stress of SiO2/organic silicon stacked layer prepared using inductively coupled plasma deposition. Surf. Coat. Technol. 2017, 320, 293–297. [Google Scholar] [CrossRef]
- Castricum, H.L.; Sah, A.; Kreiter, R.; Blank, D.H.A.; Vente, J.F.; ten Elshof, J.E. Hybrid ceramic nanosieves: Stabilizing nanopores with organic links. Chem. Commun. 2008, 9, 1103–1105. [Google Scholar] [CrossRef] [PubMed]
- Brook, M.A. The chemistry and physical properties of biomedical silicones. In Biomaterials in Plastic Surgery; Elsevier: Amsterdam, The Netherlands, 2012; pp. 52–67. [Google Scholar]
- Koo, W.H.; Jeong, S.M.; Choi, S.H.; Baik, H.K.; Lee, S.M.; Lee, S.J. Water vapor barrier properties of transparent SnO2-SiOx composite films on polymer substrate. J. Phys. Chem. B 2004, 108, 18884–18889. [Google Scholar] [CrossRef]
- Dimitrov, V.; Komatsu, T. Classification of simple oxides: A polarizability approach. J. Solid State Chem. 2002, 163, 100–112. [Google Scholar] [CrossRef]
- Park, S.K.; Han, J.I.; Moon, D.G.; Kim, W.K. Mechanical stability of externally deformed indium-tin-oxide films on polymer substrates. Jpn. J. Appl. Phys. 2003, 42, 623–629. [Google Scholar] [CrossRef]
- Marshall, D.B.; Evans, A.G. Measurement of adherence of residually stressed thin films by indentation. I. Mechanics of interface delamination. J. Appl. Phys. 1984, 56, 2632–2638. [Google Scholar] [CrossRef]
- Lin, Y.C.; Shi, W.Q.; Chen, Z.Z. Effect of deflection on the mechanical and optoelectronic properties of indium tin oxide films deposited on polyethylene terephthalate substrates by pulse magnetron sputtering. Thin Solid Films 2009, 517, 1701–1705. [Google Scholar] [CrossRef]
- Reid, M.; Punch, J.; Ryan, C.; Franey, J.; Derkits, G.E.; Reents, W.D.; Garfias, L.F. The corrosion of electronic resistors. IEEE Trans. Compon. Packag. Technol. 2007, 30, 666–672. [Google Scholar] [CrossRef]
- Protopopoff, E.; Marcus, P. Potential-pH diagram for sulfur and hydroxyl adsorbed on silver in water containing sulfides. Electrochim. Acta 2012, 63, 22–27. [Google Scholar] [CrossRef]
Parameter | SiOx | SiCxHy |
---|---|---|
Power (W) | 600 | 400 |
Pressure (mTorr) | 5 | 5 |
TMS flow (sccm) | 60 | 10 |
O2 flow (sccm) | 2 | — |
Ar flow (sccm) | — | 40 |
Temperature (°C) | 90 | 90 |
Thickness (nm) | 100–500 | 10–90 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsu, C.-H.; Lin, Y.-S.; Wu, H.-Y.; Zhang, X.-Y.; Wu, W.-Y.; Lien, S.-Y.; Wuu, D.-S.; Jiang, Y.-L. Deposition of Silicon-Based Stacked Layers for Flexible Encapsulation of Organic Light Emitting Diodes. Nanomaterials 2019, 9, 1053. https://doi.org/10.3390/nano9071053
Hsu C-H, Lin Y-S, Wu H-Y, Zhang X-Y, Wu W-Y, Lien S-Y, Wuu D-S, Jiang Y-L. Deposition of Silicon-Based Stacked Layers for Flexible Encapsulation of Organic Light Emitting Diodes. Nanomaterials. 2019; 9(7):1053. https://doi.org/10.3390/nano9071053
Chicago/Turabian StyleHsu, Chia-Hsun, Yang-Shih Lin, Hsin-Yu Wu, Xiao-Ying Zhang, Wan-Yu Wu, Shui-Yang Lien, Dong-Sing Wuu, and Yeu-Long Jiang. 2019. "Deposition of Silicon-Based Stacked Layers for Flexible Encapsulation of Organic Light Emitting Diodes" Nanomaterials 9, no. 7: 1053. https://doi.org/10.3390/nano9071053
APA StyleHsu, C. -H., Lin, Y. -S., Wu, H. -Y., Zhang, X. -Y., Wu, W. -Y., Lien, S. -Y., Wuu, D. -S., & Jiang, Y. -L. (2019). Deposition of Silicon-Based Stacked Layers for Flexible Encapsulation of Organic Light Emitting Diodes. Nanomaterials, 9(7), 1053. https://doi.org/10.3390/nano9071053