Application of Biosensors for Detection of Pathogenic Food Bacteria: A Review
Abstract
:1. Introduction
2. Foodborne Pathogens
3. Monitoring of Microorganism Activities in the Food Matrix
4. Biosensors
4.1. Types of Biosensors
4.1.1. Optical Biosensors
4.1.2. Electrochemical Biosensors
4.1.3. Mechanical Biosensors
5. Bioluminescence Methods for Detection of Food Contamination
6. Principle of Bioluminescence Based-ATP Determination
7. Applications of Bioluminescence Based ATP in the Food Industry
7.1. Hygiene Monitor
7.2. Milk and Dairy Products
7.3. Meat and Meat Products
7.4. Fish and Fish Products
8. Advantages and Disadvantages of ATP Bioluminescence
9. Conclusions and Future Directions
Funding
Acknowledgments
Conflicts of Interest
References
- Randhawa, M.A.; Asghar, A.; Nadeem, M.; Ahmad, N. Food Safety: Benefits of Contamination Control on Consumers’ Health. In Food Safety and Preservation; Academic Press: Cambridge, MA, USA, 2018; pp. 13–38. [Google Scholar]
- Chatterjee, A.; Abraham, J. Microbial contamination, prevention, and early detection in food industry. In Microbial Contamination and Food Degradation; Academic Press: Cambridge, MA, USA, 2018; pp. 21–47. [Google Scholar]
- Forsythe, S.J. The Microbiology of Safe Food; John Wiley & Sons: Hoboken, NJ, USA, 2020. [Google Scholar]
- Barbosa, J.; Albano, H.; Silva, C.P.; Teixeira, P. Microbiological contamination of reusable plastic bags for food transportation. Food Control 2019, 99, 158–163. [Google Scholar] [CrossRef]
- Gursoy, D. Foodborne illnesses: An overview of hospitality operations liability. J. Hosp. 2019, 1, 41–49. [Google Scholar]
- Mead, P.S.; Slutsker, L.; Dietz, V.; McCaig, L.F.; Bresee, J.S.; Shapiro, C.; Tauxe, R.V. Food-related illness and death in the United States. Emerg. Infect. Dis. 1999, 5, 607. [Google Scholar] [CrossRef] [PubMed]
- Nakao, J.H.; Talkington, D.; Bopp, C.A.; Besser, J.; Sanchez, M.L.; Guarisco, J.; Xavier, K. Unusually high illness severity and short incubation periods in two foodborne outbreaks of Salmonella Heidelberg infections with potential coincident Staphylococcus aureus intoxication. Epidemiol. Infect. 2018, 146, 19–27. [Google Scholar] [CrossRef] [Green Version]
- Sankarankutty, K.M. Biosensors and their applications for ensuring food safety. Glob. J Pathol Microbiol 2014, 2, 15–21. [Google Scholar] [CrossRef]
- Rajapaksha, P.; Elbourne, A.; Gangadoo, S.; Brown, R.; Cozzolino, D.; Chapman, J. A review of methods for the detection of pathogenic microorganisms. Analyst 2019, 144, 396–411. [Google Scholar] [CrossRef]
- Wang, W.; Wang, Y.; Lin, L.; Song, Y.; Yang, C.J. A tridecaptin-based fluorescent probe for differential staining of Gram-negative bacteria. Anal. Bioanal. Chem. 2019, 411, 4017–4023. [Google Scholar] [CrossRef]
- Chae, W.; Kim, P.; Hwang, B.J.; Seong, B.L. Universal monoclonal antibody-based influenza hemagglutinin quantitative enzyme-linked immunosorbent assay. Vaccine 2019, 37, 1457–1466. [Google Scholar] [CrossRef]
- Liu, Y.; Cao, Y.; Wang, T.; Dong, Q.; Li, J.; Niu, C. Detection of 12 common food-borne bacterial pathogens by TaqMan real-time PCR using a single set of reaction conditions. Front. Microbiol. 2019, 10. [Google Scholar] [CrossRef]
- Etheridge, J.R.; Randolph, M.; Humphrey, C. Real-Time Estimates of Escherichia coli Concentrations Using Ultraviolet-Visible Spectrometers. J. Environ. Qual. 2019, 48, 531–536. [Google Scholar] [CrossRef]
- Batani, G.; Bayer, K.; Böge, J.; Hentschel, U.; Thomas, T. Fluorescence in situ hybridization (FISH) and cell sorting of living bacteria. Sci. Rep. 2019, 9, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duffy, G.F.; Moore, E.J. Electrochemical immunosensors for food analysis: A review of recent developments. Anal. Lett. 2017, 50, 1–32. [Google Scholar] [CrossRef]
- Weng, X.; Neethirajan, S. Ensuring food safety: Quality monitoring using microfluidics. Trends Food Sci. Technol. 2017, 65, 10–22. [Google Scholar] [CrossRef]
- Nemati, M.; Hamidi, A.; Dizaj, S.M.; Javaherzadeh, V.; Lotfipour, F. An overview on novel microbial determination methods in pharmaceutical and food quality control. Adv. Pharm. Bull. 2016, 6, 301. [Google Scholar] [CrossRef] [Green Version]
- Poghossian, A.; Geissler, H.; Schöning, M.J. Rapid methods and sensors for milk quality monitoring and spoilage detection. Biosens. Bioelectron. 2019. [Google Scholar] [CrossRef]
- Mishra, G.K.; Barfidokht, A.; Tehrani, F.; Mishra, R.K. Food safety analysis using electrochemical biosensors. Foods 2018, 7, 141. [Google Scholar] [CrossRef] [Green Version]
- Patel, P.D. Biosensors for measurement of analytes implicated in food safety: A review. TrAC Trends Anal. Chem. 2002, 21, 96–115. [Google Scholar] [CrossRef]
- Chollet, R.; Ribault, S. Use of ATP bioluminescence for rapid detection and enumeration of contaminants: The milliflex rapid microbiology detection and enumeration system. In Bioluminescence-Recent Advances in Oceanic Measurements and Laboratory Applications; IntechOpen: London, UK, 2012. [Google Scholar]
- Jayan, H.; Pu, H.; Sun, D.W. Recent development in rapid detection techniques for microorganism activities in food matrices using bio-recognition: A review. Trends Food Sci.Technol. 2019, 95, 233–246. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, C.; Zhang, L.; Meng, Q.; Zhang, Y.; Sun, F.; Xu, Y. Fast detection of Escherichia coli in food using nanoprobe and ATP bioluminescence technology. Anal. Methods 2017, 9, 5378–5387. [Google Scholar] [CrossRef]
- Faour-Klingbeil, D.; CD Todd, E. Prevention and Control of Foodborne Diseases in Middle-East North African Countries: Review of national control systems. Int. J. Environ. Res. Public Health 2020, 17, 70. [Google Scholar] [CrossRef] [Green Version]
- Scallan, E.; Griffin, P.M.; Angulo, F.J.; Tauxe, R.V.; Hoekstra, R.M. Foodborne illness acquired in the United States unspecified agents. Emerg. Infect. Dis. 2011, 17, 16. [Google Scholar] [CrossRef] [PubMed]
- Tauxe, R.V. Emerging foodborne pathogens. Int. J. Food Microbiol. 2002, 78, 31–41. [Google Scholar] [CrossRef]
- Cacciò, S.M.; Chalmers, R.M.; Dorny, P.; Robertson, L.J. Foodborne parasites: Outbreaks and outbreak investigations. A meeting report from the European network for foodborne parasites (Euro-FBP). Food Waterborne Parasitol. 2018, 10, 1–5. [Google Scholar]
- Wu, Y.N.; Liu, X.M.; Chen, Q.; Liu, H.; Dai, Y.; Zhou, Y.J.; Chen, Y. Surveillance for foodborne disease outbreaks in China, 2003 to 2008. Food Control 2018, 84, 382–388. [Google Scholar] [CrossRef]
- Pissuwan, D.; Gazzana, C.; Mongkolsuk, S.; Cortie, M.B. Single and multiple detections of foodborne pathogens by gold nanoparticle assays. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2020, 12, e1584. [Google Scholar] [CrossRef]
- Bolton, D.J.; Robertson, L.J. Mental health disorders associated with foodborne pathogens. J. Food Prot. 2016, 79, 2005–2017. [Google Scholar] [CrossRef]
- Costanzo, N.; Ceniti, C.; Santoro, A.; Clausi, M.T.; Casalinuovo, F. Foodborne pathogen assessment in raw milk cheeses. Int. J. Food Sci. 2020. [Google Scholar] [CrossRef]
- Ghatak, S. Strategies for elimination of foodborne pathogens, their influensive detection techniques and drawbacks. In Meat Quality Analysis; Academic Press: Cambridge, MA, USA, 2020; pp. 267–286. [Google Scholar]
- Bazzoni, A.M.; Cangini, M.; Mudadu, A.G.; Lorenzoni, G.; Arras, I.; Sanna, G.; Virgilio, S. Recent findings of paralytic shellfish toxins linked to the genus Alexandrium Halim in Mediterranean mollusc production areas. Toxicon 2020, 174, 48–56. [Google Scholar] [CrossRef]
- Khare, S.; Tonk, A.; Rawat, A. Foodborne diseases outbreak in India: A Review. Int. J. Food Sci. Nutr. 2018, 3, 9–10. [Google Scholar]
- Mostafa, A.A.; Al-Askar, A.A.; Almaary, K.S.; Dawoud, T.M.; Sholkamy, E.N.; Bakri, M.M. Antimicrobial activity of some plant extracts against bacterial strains causing food poisoning diseases. Saudi J. Biol. Sci. 2018, 25, 361–366. [Google Scholar] [CrossRef]
- Grutsch, A.A.; Nimmer, P.S.; Pittsley, R.H.; McKillip, J.L. Bacillus spp. as Pathogens in the Dairy Industry. In Foodborne Diseases; Academic Press: Cambridge, MA, USA, 2018; pp. 193–211. [Google Scholar]
- Griffiths, M.W.; Schraft, H. Bacillus cereus food poisoning. In Foodborne Diseases; Academic Press: Cambridge, MA, USA, 2017; pp. 395–405. [Google Scholar]
- Xu, Z.; Luo, Y.; Soteyome, T.; Lin, C.W.; Xu, X.; Mao, Y.; Liu, J. Rapid Detection of Food-Borne Escherichia coli O157: H7 with Visual Inspection by Crossing Priming Amplification (CPA). Food Anal. Methods 2019, 1–8. [Google Scholar] [CrossRef]
- Kramarenko, T.; Meremäe, K.; Sõgel, J.; Kuningas, M.; Vilem, A.; Häkkinen, L.; Roasto, M. Occurence of Escherichia coli O157: H7 in Estonian dairy farms and beef production chain in 2005–2014. Agraarteadus 2018, 29, 89–94. [Google Scholar]
- Letchumanan, V.; Loo, K.Y.; Law, J.W.F.; Wong, S.H.; Goh, B.H.; Ab Mutalib, N.S.; Lee, L.H. Vibrio parahaemolyticus: The protagonist of foodborne diseases. Prog. Microbes Mol. Biol. 2019, 2. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Chu, Y.; Xie, G.; Li, F.; Wang, L.; Huang, J.; Yao, L. Antimicrobial resistance, virulence and genetic relationship of Vibrio parahaemolyticus in seafood from coasts of Bohai Sea and Yellow Sea, China. Int. J. Food Microbiol. 2019, 290, 116–124. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Ding, S.; Fei, Y.; Liu, G.; Jang, H.; Fang, J. Antimicrobial activity of anthocyanins and catechins against foodborne pathogens Escherichia coli and Salmonella. Food Control 2019, 106, 106712. [Google Scholar] [CrossRef]
- Amagliani, G.; Rotundo, L.; Carloni, E.; Omiccioli, E.; Magnani, M.; Brandi, G.; Fratamico, P. Detection of Shiga toxin-producing Escherichia coli (STEC) in ground beef and bean sprouts: evaluation of culture enrichment conditions. Food Res. Int. 2018, 103, 398–405. [Google Scholar] [CrossRef]
- Sharma, N. Indian Based Foodborne Diseases-A Discussion. EC Microbiol. 2019, 15, 771–776. [Google Scholar]
- Paramithiotis, S.; Drosinos, E.H.; Skandamis, P.N. Food recalls and warnings due to the presence of foodborne pathogens—A focus on fresh fruits, vegetables, dairy and eggs. Curr. Opin. Food Sci. 2017, 18, 71–75. [Google Scholar] [CrossRef]
- Li, Y.; Pei, X.; Yan, J.; Liu, D.; Zhang, H.; Yu, B.; Yang, D. Prevalence of foodborne pathogens isolated from retail freshwater fish and shellfish in China. Food Control 2019, 99, 131–136. [Google Scholar] [CrossRef]
- Baron, S.; Larvor, E.; Chevalier, S.; Jouy, E.; Kempf, I.; Granier, S.A.; Lesne, J. Antimicrobial susceptibility among urban wastewater and wild shellfish isolates of non-O1/Non-O139 Vibrio cholerae from La Rance Estuary (Brittany, France). Front. Microbiol. 2017, 8, 1637. [Google Scholar] [CrossRef] [Green Version]
- Mesbah Zekar, F.; Granier, S.A.; Touati, A.; Millemann, Y. Occurrence of Third-Generation Cephalosporins-Resistant Klebsiella pneumoniae in fresh fruits and vegetables purchased at markets in Algeria. Microbial Drug Resist. 2019. [Google Scholar] [CrossRef] [PubMed]
- Ghafur, A.; Shankar, C.; GnanaSoundari, P.; Venkatesan, M.; Mani, D.; Thirunarayanan, M.A.; Veeraraghavan, B. Detection of chromosomal and plasmid-mediated mechanisms of colistin resistance in Escherichia coli and Klebsiella pneumoniae from Indian food samples. J. Glob. Antimicrob. Resist. 2019, 16, 48–52. [Google Scholar] [CrossRef] [PubMed]
- Riley, L.W. Extraintestinal foodborne pathogens. Annu. Rev. Food Sci. Technol. 2020, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skarp, C.P.A.; Hänninen, M.L.; Rautelin, H.I.K. Campylobacteriosis: the role of poultry meat. Clin. Microbiol. Infect. 2016, 22, 103–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamad, G.M.; Abdelmotilib, N.M.; Darwish, A.M.; Zeitoun, A.M. Commercial probiotic cell-free supernatants for inhibition of Clostridium perfringens poultry meat infection in Egypt. Anaerobe 2020, 102181. [Google Scholar] [CrossRef]
- Rouger, A.; Tresse, O.; Zagorec, M. Bacterial contaminants of poultry meat: sources, species, and dynamics. Microorganisms 2017, 5, 50. [Google Scholar] [CrossRef]
- Aston, S.J.; Beeching, N.J. “Botulism”. In Hunter’s Tropical Medicine and Emerging Infectious Diseases; Content Repository; Elsevier: Amsterdam, The Netherlands, 2020; pp. 551–554. [Google Scholar]
- Yadav, S.K.; Singh, M.; Ponmariappan, S. ELISA Based Detection of Botulinum Neurotoxin Type ‘F’in Red Meat and Canned Fish. Def. Life J. 2019, 4, 226–230. [Google Scholar] [CrossRef]
- Drali, R.; Deriet, A.; Verhaegen, B.; De Keersmaecker, S.C.J.; Botteldoorn, N.; Vanneste, K.; Mouffok, F. Whole-genome sequencing of Listeria monocytogenes serotype 4b isolated from ready-to-eat lentil salad in Algiers, Algeria. New Microbes New Infect. 2020, 33, 100628. [Google Scholar] [CrossRef]
- Vojkovska, H.; Myšková, P.; Gelbíčová, T.; Skočková, A.; Koláčková, I.; Karpíšková, R. Occurrence and characterization of food-borne pathogens isolated from fruit, vegetables and sprouts retailed in the Czech Republic. Food Microbiol. 2017, 63, 147–152. [Google Scholar] [CrossRef]
- Nisa, I.; Qasim, M.; Yasin, N.; Ullah, R.; Ali, A. Shigella flexneri: an emerging pathogen. Folia Microbiologica 2020, 1–17. [Google Scholar] [CrossRef]
- Shafqat, M.; Batool, A.; Kazmi, S.S. Drinking water quality, water distribution systems and human health: A microbial evaluation of drinking water sources in salt range. Int. J. Hydro. 2018, 2, 542–547. [Google Scholar] [CrossRef]
- Bigoraj, E.; Kozyra, I.; Kwit, E.; Rzeżutka, A. Detection of hepatitis E virus (rabbit genotype) in farmed rabbits entering the food chain. Int. J. Food Microbiol. 2020, 319, 108507. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, M.; Delaune, D.; Chazouillères, O.; Blümel, J.; Roque-Afonso, A.M.; Baylis, S.A. A world health organization human hepatitis E virus reference strain related to similar strains isolated from rabbits. Genome Announc. 2018, 6, e00292–e00318. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Wu, Q.; Huang, J.; Wu, S.; Zhang, J.; Chen, L.; Lei, T. Prevalence and characterization of Salmonella isolated from raw vegetables in China. Food Control 2020, 109, 106915. [Google Scholar] [CrossRef]
- Saw, S.H.; Mak, J.L.; Tan, M.H.; Teo, S.T.; Tan, T.Y.; Cheow, M.Y.K.; Son, R. Detection and quantification of salmonella in fresh vegetables in perak, Malaysia. Food Res. 2020, 4, 441–448. [Google Scholar] [CrossRef]
- World Health Organization (WHO). To Improve Nutrition, Food Safety and Food Security, throughout the Life-Course, and in Support of Public Health and Sustainable Development; WHO: Geneva, Switzerland, 2009. [Google Scholar]
- Havelaar, A.H.; Brul, S.; De Jong, A.; De Jonge, R.; Zwietering, M.H.; Ter Kuile, B.H. Future challenges to microbial food safety. Int. J. Food Microbiol. 2010, 139, S7–S94. [Google Scholar] [CrossRef] [Green Version]
- Anonymous. Regulation (EC) No 178/2002 of the European Parliament and of the Council of 28 January 2002 laying down the general principles and requirements of food law, establishing the European Food Safety Authority and laying down procedures in matters of food safety. Off. J. Eur. Commun. 2002, 31, 1–24. [Google Scholar]
- Öz, P.; Arun, Ö.Ö. Evaluating the performance of ATP bioluminescence method by comparison with classical cultural method. Food Health 2019, 5, 77–82. [Google Scholar] [CrossRef]
- Silvestri, E.E.; Yund, C.; Taft, S.; Bowling, C.Y.; Chappie, D.; Garrahan, K.; Nichols, T.L. Considerations for estimating microbial environmental data concentrations collected from a field setting. J. Expo. Sci. Environ. Epidemiol. 2017, 27, 141–151. [Google Scholar] [CrossRef]
- González-Ferrero, C.; Irache, J.M.; Marín-Calvo, B.; Ortiz-Romero, L.; Virto-Resano, R.; González-Navarro, C.J. Encapsulation of probiotics in soybean protein-based microparticles preserves viable cell concentration in foods all along the production and storage processes. J. Microencapsul. 2020, 1–12. [Google Scholar] [CrossRef]
- Sakamoto, C.; Yamaguchi, N.; Nasu, M. Rapid and simple quantification of bacterial cells by using a microfluidic device. Appl. Environ. Microbiol. 2005, 71, 1117–1121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mobed, A.; Baradaran, B.; de la Guardia, M.; Agazadeh, M.; Hasanzadeh, M.; Rezaee, M.A.; Hamblin, M.R. Advances in detection of fastidious bacteria: From microscopic observation to molecular biosensors. TrAC Trends Anal. Chem. 2019. [Google Scholar] [CrossRef]
- Hazan, R.; Que, Y.A.; Maura, D.; Rahme, L.G. A method for high throughput determination of viable bacteria cell counts in 96-well plates. BMC Microbiol. 2012, 12, 259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ikonen, J.; Pitkänen, T.; Miettinen, I.T. Suitability of optical, physical and chemical measurements for detection of changes in bacterial drinking water quality. Int. J. Environ. Res. Public Health 2013, 10, 5349–5363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, Z.; Hou, N.; Jin, M.; Qiu, Z.; Wang, J.; Zhang, B.; Li, J. A novel enzyme-linked immunosorbent assay for detection of Escherichia coli O157: H7 using immunomagnetic and beacon gold nanoparticles. Gut Pathog. 2014, 6, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Preechakasedkit, P.; Siangproh, W.; Khongchareonporn, N.; Ngamrojanavanich, N.; Chailapakul, O. Development of an automated wax-printed paper-based lateral flow device for alpha-fetoprotein enzyme-linked immunosorbent assay. Biosens. Bioelectron. 2018, 102, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Guo, R.; McGoverin, C.; Swift, S.; Vanholsbeeck, F. A rapid and low-cost estimation of bacteria counts in solution using fluorescence spectroscopy. Anal. Bioanal. Chem. 2017, 409, 3959–3967. [Google Scholar] [CrossRef] [Green Version]
- Annenkov, V.V.; Zelinskiy, S.N.; Pal’shin, V.A.; Larina, L.I.; Danilovtseva, E.N. Coumarin based fluorescent dye for monitoring of siliceous structures in living organisms. Dye Pigment. 2019, 160, 336–343. [Google Scholar] [CrossRef]
- Ou, F.; McGoverin, C.; Swift, S.; Vanholsbeeck, F. Absolute bacterial cell enumeration using flow cytometry. J. Appl. Microbiol. 2017, 123, 464–477. [Google Scholar] [CrossRef] [Green Version]
- Adan, A.; Alizada, G.; Kiraz, Y.; Baran, Y.; Nalbant, A. Flow cytometry: basic principles and applications. Crit. Rev. Biotechnol. 2017, 37, 163–176. [Google Scholar] [CrossRef]
- Bapat, P.; Nandy, S.K.; Wangikar, P.; Venkatesh, K.V. Quantification of metabolically active biomass using methylene blue dye reduction test (MBRT): measurement of CFU in about 200 s. J. Microbiol. Methods 2006, 65, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Pawar, J.; Henry, R.; Viswanathan, P.; Patwardhan, A.; Singh, E.A. Testing of antibacterial efficacy of CuO nanoparticles by methylene blue reduction test against Bacillus cereus responsible for food spoilage and poisoning. Indian Chem. Eng. 2019, 61, 248–253. [Google Scholar] [CrossRef]
- Fricke, C.; Harms, H.; Maskow, T. Rapid Calorimetric Detection of Bacterial Contamination: Influence of the Cultivation Technique. Front. Microbiol. 2019, 10, 2530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Broga, M.; Price, P.; Smith, S. Automatic Isothermal Titration Microcalorimeter Apparatus and Method of Use. U.S. Patent Application No.16/287,498, 2020. [Google Scholar]
- Multari, R.A.; Cremers, D.A.; Dupre, J.A.M.; Gustafson, J.E. Detection of biological contaminants on foods and food surfaces using laser-induced breakdown spectroscopy (LIBS). J. Agric. Food Chem. 2013, 61, 8687–8694. [Google Scholar] [CrossRef]
- Moncayo, S.; Manzoor, S.; Rosales, J.D.; Anzano, J.; Caceres, J.O. Qualitative and quantitative analysis of milk for the detection of adulteration by Laser Induced Breakdown Spectroscopy (LIBS). Food Chem. 2017, 232, 322–328. [Google Scholar] [CrossRef] [Green Version]
- Ellis, D.I.; Broadhurst, D.; Kell, D.B.; Rowland, J.J.; Goodacre, R. Rapid and quantitative detection of the microbial spoilage of meat by Fourier transform infrared spectroscopy and machine learning. Appl. Environ. Microbiol. 2002, 68, 2822v2828. [Google Scholar] [CrossRef] [Green Version]
- Johler, S.; Stephan, R.; Althaus, D.; Ehling-Schulz, M.; Grunert, T. High-resolution subtyping of Staphylococcus aureus strains by means of Fourier-transform infrared spectroscopy. Syst. Appl. Microbiol. 2016, 39, 189–194. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Zhang, L.; Wang, C. A Rapid Detection System Design for Escherichia coli in Food Based on a Nanoprobe and Graphite Electrode Coupled with ATP Bioluminescence Technology. IEEE Access 2019, 7, 106882–106889. [Google Scholar] [CrossRef]
- Ganjavi, M. Characterization of luminous bacteria as a biosensing element for detection of acrylamide in food. Ph.D. Dissertation, University of Maryland, College Park, MD, USA, 2014. [Google Scholar]
- Zhang, S.B.; Zhai, H.C.; Hu, Y.S.; Wang, L.; Yu, G.H.; Huang, S.X.; Cai, J.P. A rapid detection method for microbial spoilage of agro-products based on catalase activity. Food Control 2014, 42, 220–224. [Google Scholar] [CrossRef]
- Vigneshvar, S.; Sudhakumari, C.C.; Senthilkumaran, B.; Prakash, H. Recent advances in biosensor technology for potential applications–an overview. Front. Bioeng. Biotechnol. 2016, 4, 11. [Google Scholar] [CrossRef] [Green Version]
- Rotariu, L.; Lagarde, F.; Jaffrezic-Renault, N.; Bala, C. Electrochemical biosensors for fast detection of food contaminants–trends and perspective. Trac Trends Anal. Chem. 2016, 79, 80–87. [Google Scholar] [CrossRef]
- Wisuthiphaet, N.; Yang, X.; Young, G.M.; Nitin, N. Rapid detection of Escherichia coli in beverages using genetically engineered bacteriophage T7. AMB Express 2019, 9, 55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lv, X.; Huang, Y.; Liu, D.; Liu, C.; Shan, S.; Li, G.; Lai, W. Multicolor and ultrasensitive enzyme-linked immunosorbent assay based on the fluorescence hybrid chain reaction for simultaneous detection of pathogens. J. Agric. Food Chem. 2019, 67, 9390–9398. [Google Scholar] [CrossRef] [PubMed]
- Barfidokht, A.; Gooding, J.J. Approaches toward allowing electroanalytical devices to be used in biological fluids. Electroanalysis 2014, 26, 1182–1196. [Google Scholar] [CrossRef]
- Tilton, L.; Das, G.; Yang, X.; Wisuthiphaet, N.; Kennedy, I.M.; Nitin, N. Nanophotonic device in combination with bacteriophages for enhancing detection sensitivity of Escherichia coli in simulated wash water. Anal. Lett. 2019, 52, 2203–2213. [Google Scholar] [CrossRef]
- Wang, Y.; Salazar, J.K. Culture-independent rapid detection methods for bacterial pathogens and toxins in food matrices. Compr. Rev. Food Sci. Food Saf. 2016, 15, 183–205. [Google Scholar] [CrossRef]
- Hameed, S.; Xie, L.; Ying, Y. Conventional and emerging detection techniques for pathogenic bacteria in food science: A review. Trends Food Sci. Technol. 2018, 81, 61–73. [Google Scholar] [CrossRef]
- Ali, J.; Najeeb, J.; Ali, M.A.; Aslam, M.F.; Raza, A. Biosensors: Their fundamentals, designs, types and most recent impactful applications: A review. J. Biosens. Bioelectron. 2017, 8, 1–9. [Google Scholar] [CrossRef]
- Mayer, M.; Baeumner, A.J. A megatrend challenging analytical chemistry: Biosensor and chemosensor concepts ready for the internet of things. Chem. Rev. 2019, 119, 7996–8027. [Google Scholar] [CrossRef]
- Ibrišimović, N.; Ibrišimović, M.; Kesić, A.; Pittner, F. Microbial biosensor: A new trend in the detection of bacterial contamination. Mon. Chem. Chem. Mon. 2015, 146, 1363–1370. [Google Scholar]
- Qiao, Z.; Fu, Y.; Lei, C.; Li, Y. Advances in antimicrobial peptides-based biosensing methods for detection of foodborne pathogens: A review. Food Control. 2020, 107116. [Google Scholar] [CrossRef]
- Ivnitski, D.; Abdel-Hamid, I.; Atanasov, P.; Wilkins, E. Biosensors for detection of pathogenic bacteria. Biosens. Bioelectron. 1999, 14, 599–624. [Google Scholar] [CrossRef]
- Pellissery, A.J.; Vinayamohan, P.G.; Amalaradjou, M.A.R.; Venkitanarayanan, K. Spoilage bacteria and meat quality. In Meat Quality Analysis; Academic Press: Cambridge, MA, USA, 2020; pp. 307–334. [Google Scholar]
- Alamer, S.; Eissa, S.; Chinnappan, R.; Herron, P.; Zourob, M. Rapid colorimetric lactoferrin-based sandwich immunoassay on cotton swabs for the detection of foodborne pathogenic bacteria. Talanta 2018, 185, 275–280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiao, K.; Sun, W.; Zhang, S.S. Sensitive detection of a plant virus by electrochemical enzyme-linked immunoassay. Fresenius’ J. Anal. Chem. 2000, 367, 667–671. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Liu, L.; Kong, D.; Kuang, H.; Wang, L.; Xu, C. Dual amplified electrochemical immunosensor for highly sensitive detection of Pantoea stewartii sbusp. stewartii. ACS Appl. Mater. Interfaces 2014, 6, 21178–21183. [Google Scholar] [CrossRef]
- Jarocka, U.; Wąsowicz, M.; Radecka, H.; Malinowski, T.; Michalczuk, L.; Radecki, J. Impedimetric immunosensor for detection of Plum Pox Virus in plant extracts. Electroanalysis 2011, 23, 2197–2204. [Google Scholar] [CrossRef]
- Jarocka, U.; Radecka, H.; Malinowski, T.; Michalczuk, L.; Radecki, J. Detection of Prunus Necrotic Ringspot Virus in plant extracts with impedimetric immunosensor based on glassy carbon electrode. Electroanalysis 2013, 25, 433–438. [Google Scholar] [CrossRef]
- Salomone, A.; Mongelli, M.; Roggero, P.; Boscia, D. Reliability of detection of Citrus tristeza virus by an immunochromatographic lateral flow assay in comparison with ELISA. J. Plant Pathol. 2004, 86, 43–48. [Google Scholar]
- Drygin, Y.F.; Blintsov, A.N.; Grigorenko, V.G.; Andreeva, I.P.; Osipov, A.P.; Varitzev, Y.A.; Atabekov, J.G. Highly sensitive field test lateral flow immunodiagnostics of PVX infection. Appl. Microbiol. Biotechnol. 2012, 93, 179–189. [Google Scholar] [CrossRef]
- Skottrup, P.D.; Nicolaisen, M.; Justesen, A.F. Towards on-site pathogen detection using antibody-based sensors. Biosens. Bioelectron. 2008, 24, 339–348. [Google Scholar] [CrossRef]
- Lim, J.W.; Ha, D.; Lee, J.; Lee, S.K.; Kim, T. Review of micro/nanotechnologies for microbial biosensors. Front. Bioeng. Biotechnol. 2015, 3, 61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bansod, B.; Kumar, T.; Thakur, R.; Rana, S.; Singh, I. A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms. Biosens. Bioelectron. 2017, 94, 443–455. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Guo, S.; Zhao, M.; Zhang, P.; Xin, Z.; Tao, J.; Bai, L. Amperometric DNA biosensor for Mycobacterium tuberculosis detection using flower-like carbon nanotubes-polyaniline nanohybrid and enzyme-assisted signal amplification strategy. Biosens. Bioelectron. 2018, 119, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Sobhan, A.; Lee, J.; Park, M.K.; Oh, J.H. Rapid detection of Yersinia enterocolitica using a single–walled carbon nanotube-based biosensor for Kimchi product. LWT 2019, 108, 48–54. [Google Scholar] [CrossRef]
- Silva, N.F.; Almeida, C.M.; Magalhães, J.M.; Gonçalves, M.P.; Freire, C.; Delerue-Matos, C. Development of a disposable paper-based potentiometric immunosensor for real-time detection of a foodborne pathogen. Biosens. Bioelectron. 2019, 141, 111317. [Google Scholar] [CrossRef] [PubMed]
- Silva, N.F.; Magalhães, J.M.; Barroso, M.F.; Oliva-Teles, T.; Freire, C.; Delerue-Matos, C. In situ formation of gold nanoparticles in polymer inclusion membrane: Application as platform in a label-free potentiometric immunosensor for Salmonella typhimurium detection. Talanta 2019, 194, 134–142. [Google Scholar] [CrossRef]
- Haddada, M.B.; Salmain, M.; Boujday, S. Gold colloid-nanostructured surfaces for enhanced piezoelectric immunosensing of staphylococcal enterotoxin A. Sens. Actuators B Chem. 2018, 255, 1604–1613. [Google Scholar] [CrossRef] [Green Version]
- Arlett, J.L.; Myers, E.B.; Roukes, M.L. Comparative advantages of mechanical biosensors. Nat. Nanotechnol. 2011, 6, 203. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.; Chen, F.; Wang, R.; Li, Y. Whole-bacterium SELEX of DNA aptamers for rapid detection of E. coli O157: H7 using a QCM sensor. J. Biotechnol. 2018, 266, 39–49. [Google Scholar] [CrossRef]
- Bayramoglu, G.; Ozalp, V.C.; Oztekin, M.; Arica, M.Y. Rapid and label-free detection of Brucella melitensis in milk and milk products using an aptasensor. Talanta 2019, 200, 263–271. [Google Scholar] [CrossRef]
- Masdor, N.A.; Altintas, Z.; Tothill, I.E. Sensitive detection of Campylobacter jejuni using nanoparticles enhanced QCM sensor. Biosens. Bioelectron. 2016, 78, 328–336. [Google Scholar] [CrossRef] [PubMed]
- Karczmarczyk, A.; Haupt, K.; Feller, K.H. Development of a QCM-D biosensor for Ochratoxin A detection in red wine. Talanta 2017, 166, 193–197. [Google Scholar] [CrossRef] [PubMed]
- Shang, Q.; Su, Y.; Liang, Y.; Lai, W.; Jiang, J.; Wu, H.; Zhang, C. Ultrasensitive cloth-based microfluidic chemiluminescence detection of Listeria monocytogenes hlyA gene by hemin/G-quadruplex DNAzyme and hybridization chain reaction signal amplification. Anal. Bioanal. Chem. 2020. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.S.; Kim, Y.J.; Chon, J.W.; Kim, D.H.; Yim, J.H.; Kim, H.; Seo, K.H. Two-stage label-free aptasensing platform for rapid detection of Cronobacter sakazakii in powdered infant formula. Sens. Actuators B Chem. 2017, 239, 94–99. [Google Scholar] [CrossRef]
- Shukla, S.; Lee, G.; Song, X.; Park, J.H.; Cho, H.; Lee, E.J.; Kim, M. Detection of Cronobacter sakazakii in powdered infant formula using an immunoliposome-based immunomagnetic concentration and separation assay. Sci. Rep. 2016, 6, 34721. [Google Scholar] [CrossRef] [Green Version]
- Oh, S.Y.; Heo, N.S.; Shukla, S.; Cho, H.J.; Vilian, A.E.; Kim, J.; Huh, Y.S. Development of gold nanoparticle-aptamer-based LSPR sensing chips for the rapid detection of Salmonella typhimurium in pork meat. Sci. Rep. 2017, 7, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Zaraee, N.; Bhuiya, A.M.; Gong, E.S.; Geib, M.T.; Ünlü, N.L.; Ozkumur, A.Y.; Ünlü, M.S. Highly Sensitive and Label-free Digital Detection of Whole Cell E. coli with Interferometric Reflectance Imaging. arXiv 2019, arXiv:2019,1911.06950. [Google Scholar]
- Janik, M. Development of rapid and real-time detection of pathogenic E. coli bacteria using microcavity in-line Mach-Zehnder interferometer (μIMZI). Ph.D. Thesis, Université du Québec en Outaouais, Gatineau, QB, Canada, 2019. [Google Scholar]
- Mudgal, N.; Yupapin, P.; Ali, J.; Singh, G. BaTiO 3-Graphene-Affinity Layer–Based Surface Plasmon Resonance (SPR) Biosensor for Pseudomonas Bacterial Detection. Plasmonics 2020, 1–9. [Google Scholar] [CrossRef]
- Zhang, P.; Chen, Y.P.; Wang, W.; Shen, Y.; Guo, J.S. Surface plasmon resonance for water pollutant detection and water process analysis. Trac Trends Anal. Chem. 2016, 85, 153–165. [Google Scholar] [CrossRef]
- Ren, J.; He, F.; Yi, S.; Cui, X. A new MSPQC for rapid growth and detection of Mycobacterium tuberculosis. Biosens. Bioelectron. 2008, 24, 403–409. [Google Scholar] [CrossRef]
- He, F.; Xiong, Y.; Liu, J.; Tong, F.; Yan, D. Construction of Au-IDE/CFP10-ESAT6 aptamer/DNA-AuNPs MSPQC for rapid detection of Mycobacterium tuberculosis. Biosens. Bioelectron. 2016, 77, 799–804. [Google Scholar] [CrossRef] [PubMed]
- Ozalp, V.C.; Bayramoglu, G.; Erdem, Z.; Arica, M.Y. Pathogen detection in complex samples by quartz crystal microbalance sensor coupled to aptamer functionalized core–shell type magnetic separation. Anal. Chim. Acta 2015, 853, 533–540. [Google Scholar] [CrossRef] [PubMed]
- Farka, Z.; Juřík, T.; Pastucha, M.; Skládal, P. Enzymatic precipitation enhanced surface plasmon resonance immunosensor for the detection of salmonella in powdered milk. Anal. Chem. 2016, 88, 11830–11836. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, L.; Hu, Q.; Wang, R.; Li, Y.; Kidd, M. Rapid and sensitive detection of Campylobacter jejuni in poultry products using a nanoparticle-based piezoelectric immunosensor integrated with magnetic immunoseparation. J. Food Prot. 2018, 81, 1321–1330. [Google Scholar] [CrossRef] [PubMed]
- Masdor, N.A.; Altintas, Z.; Shukor, M.Y.; Tothill, I.E. Subtractive inhibition assay for the detection of Campylobacter jejuni in chicken samples using surface plasmon resonance. Sci. Rep. 2019, 9, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Pohanka, M. QCM immunosensor for the determination of Staphylococcus aureus antigen. Chem. Pap. 2020, 74, 451–458. [Google Scholar] [CrossRef]
- Noi, K.; Iijima, M.; Kuroda, S.I.; Ogi, H. Ultrahigh-sensitive wireless QCM with bio-nanocapsules. Sens. Actuators B Chem. 2019, 293, 59–62. [Google Scholar] [CrossRef]
- Zelada-Guillén, G.A.; Sebastián-Avila, J.L.; Blondeau, P.; Riu, J.; Rius, F.X. Label-free detection of Staphylococcus aureus in skin using real-time potentiometric biosensors based on carbon nanotubes and aptamers. Biosens. Bioelectron. 2012, 31, 226–232. [Google Scholar] [CrossRef]
- Arora, S.; Ahmed, D.N.; Khubber, S.; Siddiqui, S. Detecting food borne pathogens using electrochemical biosensors: An overview. IJCS 2018, 6, 1031–1039. [Google Scholar]
- Sheikhzadeh, E.; CHamsaz, M.; Turner, A.P.F.; Jager, E.W.H.; Beni, V. Label-free impedimetric biosensor for Salmonella Typhimurium detection based on poly [pyrrole-co-3-carboxyl-pyrrole] copolymer supported aptamer. Biosens. Bioelectron. 2016, 80, 194–200. [Google Scholar] [CrossRef] [Green Version]
- Bagheryan, Z.; Raoof, J.B.; Golabi, M.; Turner, A.P.; Beni, V. Diazonium-based impedimetric aptasensor for the rapid label-free detection of Salmonella typhimurium in food sample. Biosens. Bioelectron. 2016, 80, 566–573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vásquez, G.; Rey, A.; Rivera, C.; Iregui, C.; Orozco, J. Amperometric biosensor based on a single antibody of dual function for rapid detection of Streptococcus agalactiae. Biosens. Bioelectron. 2017, 87, 453–458. [Google Scholar] [CrossRef] [PubMed]
- Arachchillaya, B.P.A.P. Development and Evaluation of a Paper Based Biochemical Sensor for Realtime Detection of Food Pathogen; Bachelor Project; Asian Institute of Technology: Khlong Luang, Thailand, 2018. [Google Scholar]
- Hao, N.; Zhang, X.; Zhou, Z.; Hua, R.; Zhang, Y.; Liu, Q.; Qian, J.; Henan, L.; Wang, K. AgBr nanoparticles/3D nitrogen-doped graphene hydrogel for fabricating all-solid-state luminol-electrochemiluminescence Escherichia coli aptasensors. Biosens. Bioelectron. 2017, 97, 377–383. [Google Scholar] [CrossRef] [PubMed]
- Sha, Y.; Zhang, X.; Li, W.; Wu, W.; Wang, S.; Guo, Z.; Zhou, J.; Su, X. A label-free multi-functionalized graphene oxide based electrochemiluminscence immunosensor for ultrasensitive and rapid detection of Vibrio parahaemolyticus in seawater and seafood. Talanta 2016, 147, 220–225. [Google Scholar] [CrossRef]
- Liu, H.; Zhou, X. Paper-based bipolar electrode electrochemiluminescence (pBPE-ECL) analysis system for sensitive detection of pathogenic bacteria. Anal. Chem. 2016, 88, 10191–10197. [Google Scholar] [CrossRef]
- Qiao, Y.; Li, J.; Li, H.; Fang, H.; Fan, D.; Wang, W. A label-free photoelectrochemical aptasensor for bisphenol A based on surface plasmon resonance of gold nanoparticle-sensitized ZnO nanopencils. Biosens. Bioelectron. 2016, 86, 315–320. [Google Scholar] [CrossRef]
- Zhou, Y.; Sui, C.; Yin, H.; Wang, Y.; Wang, M.; Ai, S. Tungsten disulfide (WS 2) nanosheet-based photoelectrochemical aptasensing of chloramphenicol. Microchim. Acta 2018, 185, 453. [Google Scholar] [CrossRef]
- Okoth, O.K.; Yan, K.; Liu, Y.; Zhang, J. Graphene-doped Bi2S3 nanorods as visible-light photoelectrochemical aptasensing platform for sulfadimethoxine detection. Biosens. Bioelectron. 2016, 86, 636–642. [Google Scholar] [CrossRef]
- Pistelok, F.; Pohl, A.; Stuczyński, T.; Wiera, B. Using ATP tests for assessment of hygiene risks. Ecol. Chem. Eng. S 2016, 23, 259–270. [Google Scholar] [CrossRef] [Green Version]
- Sharpe, A.N.; Woodrow, M.N.; Jackson, A.K. Adenosinetriphosphate (ATP) levels in foods contaminated by bacteria. J. Appl. Bacteriol. 1970, 33, 758–767. [Google Scholar] [CrossRef]
- Mandal, P.K.; Biswas, A.K. Modern techniques for rapid detection of meatborne pathogens. In Meat Quality Analysis; Academic Press: Cambridge, MA, USA, 2020; pp. 287–303. [Google Scholar]
- Ranjan, R.; Rastogi, N.K.; Thakur, M.S. Development of immobilized biophotonic beads consisting of Photobacterium leiognathi for the detection of heavy metals and pesticide. J. Hazard. Mater. 2012, 225, 114–123. [Google Scholar] [CrossRef] [PubMed]
- Feng, P. Emergence of rapid methods for identifying microbial pathogens in foods. J. AOAC Int. 1996, 79, 809–812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samkutty, P.J.; Gough, R.H.; Adkinson, R.W.; McGrew, P. Rapid assessment of the bacteriological quality of raw milk using ATP bioluminescence. J. Food Prot. 2001, 64, 208–212. [Google Scholar] [CrossRef] [PubMed]
- Chen, J. ATP bioluminescence: a rapid indicator for environmental hygiene and microbial quality of meats. Dairy Food Environ. Sanit. 2000, 20, 617–620. [Google Scholar]
- Dowhanick, T.M.; Sobczak, J. ATP bioluminescence procedure for viability testing of potential beer spoilage microorganisms. J. Am. Soc. Brew. Chem. 1994, 52, 19–23. [Google Scholar] [CrossRef]
- Ukuku, D.O.; Pilizota, V.; Sapers, G.M. Bioluminescence ATP assay for estimating total plate counts of surface microflora of whole cantaloupe and determining efficacy of washing treatments. J. Food Prot. 2001, 64, 813–819. [Google Scholar] [CrossRef]
- Griffiths, M.W. The role of ATP bioluminescence in the food industry: new light on old problems. Food Technol. 1996, 50, 62–72. [Google Scholar]
- Ur Rahman, U.; Shahzad, T.; Sahar, A.; Ishaq, A.; Khan, M.I.; Zahoor, T.; Aslam, S. Recapitulating the competence of novel & rapid monitoring tools for microbial documentation in food systems. LWT-Food Sci. Technol. 2016, 67, 62–66. [Google Scholar]
- Hyun, B.; Cha, H.G.; Lee, N.; Yum, S.; Baek, S.H.; Shin, K. Development of an ATP assay for rapid onboard testing to detect living microorganisms in ballast water. J. Sea Res. 2018, 133, 73–80. [Google Scholar] [CrossRef]
- Mempin, R.; Tran, H.; Chen, C.; Gong, H.; Ho, K.K.; Lu, S. Release of extracellular ATP by bacteria during growth. BMC Microbiol. 2013, 13, 301. [Google Scholar] [CrossRef] [Green Version]
- Fan, E.; Peng, J.; Shi, Y.; Ouyang, H.; Xu, Z.; Fu, Z. Quantification of live Gram-positive bacteria via employing artificial antibacterial peptide-coated magnetic spheres as isolation carriers. Microchem. J. 2020, 104643. [Google Scholar] [CrossRef]
- Lomakina, G.Y.; Modestova, Y.A.; Ugarova, N.N. Bioluminescence assay for cell viability. Biochemistry 2015, 80, 701–713. [Google Scholar] [CrossRef] [PubMed]
- Ochromowicz, K.; Hoekstra, E.J. ATP as an Indicator of Microbiological Activity in Tap Water; European Commision Directorate–General Joint Research Centre: Brussels, Belgium, 2005. [Google Scholar]
- Shama, G.; Malik, D.J. The uses and abuses of rapid bioluminescence-based ATP assays. Int. J. Hyg. Environ. Health 2013, 216, 115–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Libudzisz, Z.; Kowal, K.; Łódzka, P. (Eds.) Mikrobiologia Techniczna; Wydaw. PŁ.: Warsaw, Poland, 2000. [Google Scholar]
- Luo, J.; Liu, X.; Tian, Q.; Yue, W.; Zeng, J.; Chen, G.; Cai, X. Disposable bioluminescence-based biosensor for detection of bacterial count in food. Anal. Biochem. 2009, 394, 1–6. [Google Scholar] [CrossRef]
- Ng, L.K.; Taylor, D.E.; Stiles, M.E. Estimation of Campylobacter spp. in broth culture by bioluminescence assay of ATP. Appl. Env. Microbiol. 1985, 49, 730–731. [Google Scholar] [CrossRef] [Green Version]
- Miller, R.; Galston, G. Rapid methods for the detection of yeast and Lactobacillus by ATP bioluminescence. J. Inst. Brew. 1989, 95, 317–319. [Google Scholar] [CrossRef]
- Pistelok, F.; Pohl, A.; Wiera, B.; Stuczyński, T. Using the ATP test in wastewater treatment in the Silesia Province. Environ. Protect. Eng. 2016, 42. [Google Scholar] [CrossRef]
- Nelson, W.H. Physical Methods for Microorganisms Detection; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Roady, L. The role of ATP luminometers in infection control. Infect. Control Hosp. Epidemiol. 2015, 36, 1367. [Google Scholar] [CrossRef] [Green Version]
- Dostalek, P.; Branyik, T. Prospects for rapid bioluminescent detection methods in the food industry—A review. Czech J. Food Sci. 2003, 23, 85–92. [Google Scholar] [CrossRef] [Green Version]
- Larson, E.L.; Aiello, A.E.; Gomez-Duarte, C.; Lin, S.X.; Lee, L.; Della-Latta, P.; Lindhardt, C. Bioluminescence ATP monitoring as a surrogate marker for microbial load on hands and surfaces in the home. Food Microbiol. 2003, 20, 735–739. [Google Scholar] [CrossRef]
- Aycicek, H.; Oguz, U.; Karci, K. Comparison of results of ATP bioluminescence and traditional hygiene swabbing methods for the determination of surface cleanliness at a hospital kitchen. Int. J. Hyg. Environ. Health 2006, 209, 203–206. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, L.B.; Santos, L.R.D.; Rizzo, N.N.; Ferreira, D.; Oliveira, A.P.D.; Levandowski, R.; Nascimento, V.P.D. ATP-bioluminescence and conventional microbiology for hygiene evaluation of cutting room surfaces in poultry slaughterhouse. Acta scientiae veterinariae. Porto Alegre. 2018, 46, 1–6. [Google Scholar]
- Bakke, M.; Suzuki, S. Development of a novel hygiene monitoring system based on the detection of total adenylate (ATP+ ADP+ AMP). J. Food Prot. 2018, 81, 729–737. [Google Scholar] [CrossRef] [PubMed]
- Ziyaina, M.; Govindan, B.N.; Rasco, B.; Coffey, T.; Sablani, S.S. Monitoring shelf life of pasteurized whole milk under refrigerated storage conditions: Predictive models for quality loss. J. Food Sci. 2018, 83, 409–418. [Google Scholar] [CrossRef]
- Magan, N.; Pavlou, A.; Chrysanthakis, I. Milk-sense: A volatile sensing system recognises spoilage bacteria and yeasts in milk. Sens. Actuators B: Chem. 2001, 72, 28–34. [Google Scholar] [CrossRef]
- Law, J.W.F.; Ab Mutalib, N.S.; Chan, K.G.; Lee, L.H. Rapid methods for the detection of foodborne bacterial pathogens: Principles, applications, advantages and limitations. Front. Microbiol. 2015, 5, 770. [Google Scholar] [CrossRef] [Green Version]
- Moore, G.; Griffith, C.; Fielding, L. A comparison of traditional and recently developed methods for monitoring surface hygiene within the food industry: A laboratory study. Dairy Food Environ. Sanit. 2001, 21, 478–488. [Google Scholar]
- Kračmarová, M.; Stiborová, H.; Horáčková, Š.; Demnerová, K. Rapid detection of microbial contamination in UHT milk: Practical application in dairy industry. Czech J. Food Sci. 2018, 36, 357–364. [Google Scholar]
- Jay, J.M.; Loessner, M.J.; Golden, D.A. Modern Food Microbiology; Springer Science & Business Media: Berlin, Germany, 2008. [Google Scholar]
- Russell, S.M. The effect of refrigerated and frozen storage on populations of mesophilic and coliform bacteria on fresh broiler chicken carcasses. Poult. Sci. 1995, 74, 2057–2060. [Google Scholar] [CrossRef]
- Siragusa, G.R.; Cutter, C.N.; Dorsa, W.J.; Koohmaraie, M. Use of a rapid microbial ATP bioluminescence assay to detect contamination on beef and pork carcasses. J. Food Prot. 1995, 58, 770–775. [Google Scholar] [CrossRef]
- Cheng, Y.; Liu, Y.; Huang, J.; Li, K.; Zhang, W.; Xian, Y.; Jin, L. Combining biofunctional magnetic nanoparticles and ATP bioluminescence for rapid detection of Escherichia coli. Talanta 2009, 77, 1332–1336. [Google Scholar] [CrossRef] [PubMed]
- Ajaykumar, V.J.; Mandal, P.K. Modern concept and detection of spoilage in meat and meat products. In Meat Quality Analysis; Academic Press: Cambridge, MA, USA, 2020; pp. 335–349. [Google Scholar]
- Howgate, P. A review of the kinetics of degradation of inosine monophosphate in some species of fish during chilled storage. Int. J. Food Sci. Technol. 2006, 41, 341–353. [Google Scholar] [CrossRef]
- Shim, K. Estimating Postmortem Interval by Bioluminescent Determination of ATP Content in the Muscle of Olive Flounder (Paralichthys olivaceus). J. Food Prot. 2019, 82, 703–709. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, S.; Kuroda, A.; Kato, J.; Ikeda, T.; Takiguchi, N.; Ohtake, H. A sensitive method for detecting AMP by utilizing polyphosphate-dependent ATP regeneration and bioluminescence reactions. Biochem. Eng. J. 2001, 9, 193–197. [Google Scholar] [CrossRef]
- Gram, L. Evaluation of the bacteriological quality of seafood. Int. J. Food Microbiol. 1992, 16, 25–39. [Google Scholar] [CrossRef]
- Chain, V.S.; Fung, D.Y. Comparison of Redigel, Petrifilm, spiral plate system, Isogrid, and aerobic plate count for determining the numbers of aerobic bacteria in selected foods. J. Food Prot. 1991, 54, 208–211. [Google Scholar] [CrossRef]
- Miettinen, H.; Aarnisalo, K.; Salo, S.; Sjöberg, A.M. Evaluation of surface contamination and the presence of Listeria monocytogenes in fish processing factories. J. Food Prot. 2001, 64, 635–639. [Google Scholar] [CrossRef]
- Eed, H.R.; Abdel-Kader, N.S.; El Tahan, M.H.; Dai, T.; Amin, R. Bioluminescence-sensing assay for microbial growth recognition. J. Sens. 2016. [Google Scholar] [CrossRef] [Green Version]
- Sanna, T.; Dallolio, L.; Raggi, A.; Mazzetti, M.; Lorusso, G.; Zanni, A.; Leoni, E. ATP bioluminescence assay for evaluating cleaning practices in operating theatres: Applicability and limitations. BMC Infect. Dis. 2018, 18, 583. [Google Scholar] [CrossRef]
- Farris, L.; Habteselassie, M.Y.; Perry, L.; Chen, Y.; Turco, R.; Reuhs, B.; Applegate, B. Luminescence techniques for the detection of bacterial pathogens. In Principles of Bacterial Detection: Biosensors, Recognition Receptors and Microsystems; Springer: New York, NY, USA, 2008; pp. 213–230. [Google Scholar]
- Turner, D.E.; Daugherity, E.K.; Altier, C.; Maurer, K.J. Efficacy and limitations of an ATP-based monitoring system. J. Am. Assoc. Lab. Anim. Sci. 2010, 49, 190–195. [Google Scholar]
Pathogenic Sources | Food Matrix | Symptoms and Illnesses | References |
---|---|---|---|
Staphylococcus aureus | Unpasteurized Milk and Cheese Products | Food Poisoning | Khare et al. [34] Mostafa et al. [35] |
Bacillus cereus | Dairy Products, Dry Foods, Rice, Egg Products | Diarrhea, Vomiting | Grutsch et al. [36] Griffiths and Schraft [37] |
E. coli O157:H7 | Meat Products and Milk | Diarrheal Diseases and Producing of Shiga Toxins | Xu et al. [38] Kramarenko et al. [39] |
Vibrio parahaemolyticus | Seafood | Diarrhea | Letchumanan et al. [40] Jiang et al. [41] |
E. coli O26 | Ground Beef | Stomach Cramps, Bloody Diarrhea, Vomiting and High Fever | Ma et al. [42] Amagliani et al. [43] |
Salmonella enteritidis | Meats, Eggs, Fruits, Vegetables | Vomiting, Diarrhea, Cramps, Fever | Sharma [44] Paramithiotis et al. [45] |
Vibrio parahaemolyticus Vibrio cholerae | Freshwater Fish and Shellfish | Severe Diarrhea, Cholera | Li et al. [46] Baron et al. [47] |
Klebsiella pneumoniae | Fresh Fruits and Vegetables | Pneumonia | Mesbah Zekar et al. [48] Ghafur et al. [49] |
Campylobacter jejuni | Meat, Poultry | Postinfectious Reactive Arthritis | Riley [50] Skarp et al. [51] |
Clostridium perfringens | Poultry Meat | Human Gastrointestinal Diseases | Hamad et al. [52] Rouger et al. [53] |
Clostridium botulinum | Uncooked Food, Canned Foods | Botulism | Aston and Beeching [54] Yadav et al. [55] |
Listeria monocytogenes | Lentil Salad | Gastroenteritis and Invasive Infection | Drali et al. [56] Vojkovska et al. [57] |
Shigella sp. | Poor Water Supply | Watery Diarrhea Mixed with Blood and Mucous | Nisa et al. [58] Shafqat et al. [59] |
hepatitis E virus | Rabbit Meat | Liver Disease | Bigoraj et al. [60] Kaiser et al. [61] |
Salmonella | Fresh Vegetables | Gastroenteritis | Yang et al. [62] Saw et al. [63] |
Microbiological Approaches | Detection Limit (Log CFU/mL) | Time Consumed | References |
---|---|---|---|
Viable Cell Counting | Unlimited | days | Rajapaksha et al. [9] González-Ferrero et al. [69] |
Microscopy | Unlimited | min | Sakamoto et al. [70] Mobed et al. [71] |
Absorbance | 8–9 | Immediate | Hazan et al. [72] Ikonen et al. [73] |
Enzyme Linked Immunosorbence | 2.83–3 | 3 h | Shen et al. [74] Preechakasedkit et al. [75] |
Staining with Fluorescence Dyes | 3–4 | 26 min | Guo et al. [76] Annenkov et al. [77] |
Start Growth Time | 1.60–2.60 | h | Hazan et al. [72] |
Flow Cytometry | 4–8 | h | Ou et al. [78] Adan et al. [79] |
Methylene Blue Dye Reduction Test | 7 | h | Bapat et al. [80] Pawar et al. [81] |
Isothermal Microcalorimeters | >2 | 5–7 h | Fricke et al. [82] Broga et al. [83] |
Laser-Induced Breakdown Spectroscopy (LIBS) | 1 | 3 min | Multari et al. [84] Moncayo et al. [85] |
Fourier Transform Infrared (FT-IR) Spectroscopy | 5.3 | 60 s | Ellis et al. [86] Johler et al. [87] |
Nanoprobe-ATP | 2–6 | 20 min | Xu et al. [88] |
Type of Sensor | Contaminant | Food Items | Detection Limit | Consuming Times | Reference |
---|---|---|---|---|---|
Optical Biosensor | |||||
Chemiluminescence | Listeria monocytogenes | Milk | 1.1 log CFU/mL | 40 min | Shang et al. [125] |
Colorimetric | Cronobacter sakazakii | Powdered Infant | 3.85 log CFU/mL | 30 min | Kim et al. [126] Shukla et al. [127] |
localized Surface Plasmon Resonance (LSPR) | Salmonella typhimurium | Pork Meat | 4 log CFU/mL | 30–35 min | Oh et al. [128] |
Interferometric | Escherichia coli | Buffer | 0.34 log CFU/mL | 2 h | Zaraee et al. [129] Janik [130] |
Surface Plasmon Resonance (SPR) | Pseudomonas | Water | 7.09 log CFU/mL | 25 min | Mudgal et al. [131] Zhang et al. [132] |
Mechanical Biosensor | |||||
Multi-Channel Series Piezoelectric Guartz Crystal (MSPQC) | Mycobacterium tuberculosis | Buffer | 1 log CFU/mL | 1 day | Ren et al. [133] He et al. [134] |
Quartz Crystal Microbalance (QCM) | Salmonella | Milk | 2 log CFU/mL | 10 min | Ozalp et al. [135] Farka et al. [136] |
QCM | Campylobacter jejuni | Poultry | 1.30 log CFU/mL | 30 min | Wang et al. [137] Masdor et al. [138] |
QCM | Staphylococcus aureus | Buffer | 7.41 log CFU/mL | 1 day | Pohanka [139] Noi et al. [140] |
Electrochemical | |||||
Potentiometric | Staphylococcus aureus | Pig skin | 2.90 log CFU/mL | 2 min | Zelada-Guillén et al. [141] Arora et al. [142] |
Impedimetric | Salmonella Typhimurium | Apple Juice | 0.47 log CFU/mL | 45 min | Sheikhzadeh et al. [143] Bagheryan et al. [144] |
Amperometric | Streptococcus agalactiae | Fish | 1–7 log CFU/mL | 90 min | Vásquez et al. [145] Arachchillaya [146] |
Electrochemical Chemiluminescence (ELC) Biosensors | |||||
Aptamer-Based ECL Sensors | Escherichia coli | Luria–Bertani Broth | 0.17 CFU/mL | 40 min | Hao et al. [147] |
ECL Immunosensor | Vibrio parahaemolyticus | Seafood | 0.69 log CFU/mL | 1 h | Sha et al. [148] |
Paper-Based Bipolar electrode ECL | Listeria monocytogenes | Buffer | 10 copies/μL | 10 s | Liu and Zhou [149] |
Photoelectrochemical Biosensors | |||||
label-Free Photoelectrochemical Aptasensor | Bisphenol | Milk | 0.5 nM | 90 s | Qiao et al. [150] |
Tungsten Disulfide (WS2) Nanosheet-Based Photoelectrochemical | Chloramphenicol | Milk Powder | 3.6 pM | 105 min | Zhou et al. [151] |
Visible-Light Photoelectrochemical Aptasensing | Sulfadimethoxine | Milk | 0.55 nM | 50 s | Okoth et al. [152] |
Microorganisms | ATP (fg/Cell) | References |
---|---|---|
Campylobacter jejuni | 1.7 | Ng et al. [172] |
Yeast | 100 | Miller and Galston [173] |
Lactobacillus sp. | 2.0–2.2 | Libudzisz and Kowal [170] |
Pseudomonas fluorescens | 0.6 | Pistelok et al. [174] |
Escherichia coli | 1 | Libudzisz and Kowal [170] |
Bacteria Mixture | 1 | Miller and Galston [173] |
Lactobacillus acidophilus | 0.33 | Nelson [175] |
Campylobacter coli | 2.1 | Ng et al. [172] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, A.A.; Altemimi, A.B.; Alhelfi, N.; Ibrahim, S.A. Application of Biosensors for Detection of Pathogenic Food Bacteria: A Review. Biosensors 2020, 10, 58. https://doi.org/10.3390/bios10060058
Ali AA, Altemimi AB, Alhelfi N, Ibrahim SA. Application of Biosensors for Detection of Pathogenic Food Bacteria: A Review. Biosensors. 2020; 10(6):58. https://doi.org/10.3390/bios10060058
Chicago/Turabian StyleAli, Athmar A., Ammar B. Altemimi, Nawfal Alhelfi, and Salam A. Ibrahim. 2020. "Application of Biosensors for Detection of Pathogenic Food Bacteria: A Review" Biosensors 10, no. 6: 58. https://doi.org/10.3390/bios10060058
APA StyleAli, A. A., Altemimi, A. B., Alhelfi, N., & Ibrahim, S. A. (2020). Application of Biosensors for Detection of Pathogenic Food Bacteria: A Review. Biosensors, 10(6), 58. https://doi.org/10.3390/bios10060058