Development and Evaluation of the Chromatic Behavior of an Intelligent Packaging Material Based on Cellulose Acetate Incorporated with Polydiacetylene for an Efficient Packaging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Manufacturing of the Polydiacetylene Sensor Film
2.3. Optimization of PDA Sensor Films
2.4. Color Analysis of PDA Sensor Films
2.5. Experimental Design
3. Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wyrwa, J.; Barska, A. Innovations in the Food Packaging Market: Active Packaging. Eur. Food Res. Technol. 2017, 243, 1681–1692. [Google Scholar] [CrossRef]
- Yang, S.; Xiao, Y.; Kuo, Y.H. The Supply Chain Design for Perishable Food with Stochastic Demand. Sustainability 2017, 9, 1195. [Google Scholar] [CrossRef] [Green Version]
- Müller, P.; Schmid, M. Intelligent Packaging in the Food Sector: A Brief Overview. Foods 2019, 8, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siegrist, M.; Ung, C.Y.; Zank, M.; Marinello, M.; Kunz, A.; Hartmann, C.; Menozzi, M. Consumers’ Food Selection Behaviors in Three-Dimensional (3D) Virtual Reality. Food Res. Int. 2019. [Google Scholar] [CrossRef]
- Wikström, F.; Verghese, K.; Auras, R.; Olsson, A.; Williams, H.; Wever, R.; Grönman, K.; Kvalvåg, P.M.; Møller, H.; Soukka, R. Packaging Strategies that Save Food: A Research Agenda for 2030. J. Ind. Ecol. 2019. [Google Scholar] [CrossRef]
- Heising, J.K.; Dekker, M.; Bartels, P.V.; Van Boekel, M.A.J.S. Monitoring the Quality of Perishable Foods: Opportunities for Intelligent Packaging. Crit. Rev. Food Sci. Nutr. 2014. [Google Scholar] [CrossRef] [PubMed]
- Araújo, J.M. Oxidação de lípidos em alimentos. In Química de Alimentos Teoria e Prática, 5th ed.; Universidade Federal de Viçosa: Viçosa, Brazil, 2015; pp. 17–20. [Google Scholar]
- Sedlacekova, Z. Food Packaging Materials: Comparison of Materials Used for Packaging Purposes. Bachelor’s Thesis, Metropolia University of Applied Sciences, Helsinki, Finland, 6 November 2017. [Google Scholar]
- Purwaningsih, I.; Surachman, S.; Pratikto, P.; Santoso, I. Influence of packaging element on beverage product marketing. Int. Rev. Manag. Mark. 2019. [Google Scholar] [CrossRef]
- Han, J.W.; Ruiz-Garcia, L.; Qian, J.P.; Yang, X.T. Food Packaging: A Comprehensive Review and Future Trends. Compr. Rev. Food Sci. Food Saf. 2018, 17, 860–877. [Google Scholar] [CrossRef] [Green Version]
- De Oliveira, T.V.; Soares, N.D.F.F.; Coimbra, J.S.D.R.; De Andrade, N.J.; Moura, L.G.; Medeiros, E.A.A.; De Medeiros, H.S. Stability and Sensitivity of Polydiacetylene Vesicles to Detect Salmonella. Sens. Actuators B Chem. 2015. [Google Scholar] [CrossRef]
- Zhou, J.; Yao, D.; Qian, Z.; Hou, S.; Li, L.; Fan, Y. A Methodology for Detecting the Wound State Sensing in Terms of Its Colonization of Pathogenic Bacteria. MethodsX 2018. [Google Scholar] [CrossRef]
- Mills, A.; Yusufu, D. Highly CO2 Sensitive Extruded Fluorescent Plastic Indicator Film Based on HPTS. Analyst 2016. [Google Scholar] [CrossRef] [Green Version]
- Wu, D.; Hou, S.; Chen, J.; Sun, Y.; Ye, X.; Liu, D.; Meng, R.; Wang, Y. Development and Characterization of an Enzymatic Time-Temperature Indicator (TTI) Based on Aspergillus Niger Lipase. Lwt Food Sci. Technol. 2015. [Google Scholar] [CrossRef]
- Zabala, S.; Castán, J.; Martínez, C. Development of a Time-Temperature Indicator (TTI) Label by Rotary Printing Technologies. Food Control 2015. [Google Scholar] [CrossRef]
- Wang, Y.; Lu, L.; Gunasekaran, S. Biosensors and Bioelectronics Biopolymer/gold nanoparticles composite plasmonic thermal history indicator to monitor quality and safety of perishable bioproducts. Biosens. Bioelectron. 2017, 92, 109–116. [Google Scholar] [CrossRef] [Green Version]
- Stefani, R. Development and Evaluation of a Smart Packaging for the Monitoring of Ricotta Cheese Spoilage. MOJ Food Process. Technol. 2015. [Google Scholar] [CrossRef]
- IOF. Intelligent Packaging Technologies. 2020. Available online: https://www.iof2020.eu/latest/news/2018/05/intelligent-packagingtechnologies (accessed on 1 August 2018).
- Kuswandi, B. Nanobiosensors for Detection of Micropollutants. Environ. Chem. Sustain. World 2018, 125–158. [Google Scholar] [CrossRef]
- Berti, R.C.; Santos, D.C. Importância do controle de qualidade na indústria alimentícia: Prováveis medidas para evitar contaminação por resíduos de limpeza em bebida UHT. Atas Ciências Saúde 2016, 4, 23–28. [Google Scholar]
- Carioca, L.J. Sensor Colorimétrico à Base de Polidiacetileno Para Detecção de Agrotóxicos em Água. Master’s Thesis, Universidade Federal de Viçosa, Viçosa, Brazil, 2017. [Google Scholar]
- De Souza, L.C.; de Paula Rezende, J.; dos Santos Pires, A.C.; da Silva, L.H.M.; da Silva, M.D.C.H.; Castrillon, E.D.C.; de Andrade, N.J. Polydiacetylene/Triblock Copolymer Nanoblend Applied as a Sensor for Micellar Casein: A Thermodynamic Approach. Food Chem. 2016, 197, 841–847. [Google Scholar] [CrossRef]
- Soares, N.D.F.F.; Freitas, P.A.V.; Soares, R.R. Polydiacetylene (PDA) as Tool for the Development of Biosensors to Apply in Analytical Field. J. Anal. Pharm. Res. 2018. [Google Scholar] [CrossRef]
- Mohammad, A.; Naheed, S.; Abdullah, M.; Jawaid, M.; Indarti, E.; Wanrosli, W. Preparation and characterization of nanocomposite films from oil palm pulp nanocellulose/poly (Vinyl alcohol) by casting method. Carbohydr. Polym. 2018, 191, 103–111. [Google Scholar]
- Park, H.M.; Misra, M.; Drzl, L.T.; Mohanty, A.K. “Green” Nanocomposites from cellulose acetate bioplastic and clay: Effect of eco-friendly triethyl citrate plasticizer. Biomacromolecules 2004, 5, 2281–2288. [Google Scholar] [CrossRef]
- Norte, A.R.; Inácio, A.B.; Chauca, M.C.; Souza, T.I.M.; Silva, J.F.C.M. Avaliação de Parâmetros de Qualidade de Mortadelas Adquiridos No Comércio Local de Janaúba. Rev. Bras. Prod. Agroind. 2016. [Google Scholar] [CrossRef] [Green Version]
- Silva, T.M.; Nunes, G.D.; Carvalho, E.S.; Silva, D.J.; Marques, A.T. Influência do uso de chips de carvalho no conteúdo de compostos fenólicos e colocoloração do vinho tropical cv. Syrah. An Jorn. Iniciação Científica Embrapa Semiárido 2018, 4, 351–356. (In Brazilian) [Google Scholar]
- Ribeiro, J.S.; Peralta, S.L.; Salgado, V.E.; Lund, R.G. In situ evaluation of color stability and hardness’ decrease of resin-based composites. J. Esthet. Restor. Dent. 2017, 29, 356–361. [Google Scholar] [CrossRef]
- Luchese, C.L.; Garrido, T.; Spada, J.C.; Tessaro, I.C.; de la Caba, K. Development and Characterization of Cassava Starch Films Incorporated with Blueberry Pomace. Int. J. Biol. Macromol. 2018. [Google Scholar] [CrossRef]
- López, M.L.A. Nuevas Estrategias Para Sensores Opticos de Dióxido de Carbono de Gas. Master’s Thesis, Universidad de Granada, Granada, Spain, 2017. [Google Scholar]
- Shimomura, K.M.; Munhoz, D.R.; Bernardo, M.P.; Moreira, F.K.; Mattoso, L.H. Propriedades mecânicas e anti-UV de filmes de alginato produzidos por casting contínuo. Embrapa Instrum. Workshop Nanotecnol. Apl. Agronegócio 2017, 1, 52–55. [Google Scholar]
- Verveniotis, E.; Okawa, Y.; Watanabe, K.; Taniguchi, T.; Taniguchi, T.; Osada, M.; Joachim, C.; Aono, M. Self-Sensitization and Photo-Polymerization of Diacetylene Molecules Self-Assembled on a Hexagonal-Boron Nitride Nanosheet. Polymers 2018, 10, 206. [Google Scholar] [CrossRef] [Green Version]
- Medeiros, H.S. Uso de Sensor de Polidiacetileno Para Detecção de Contaminantes Químicos e Microbiológicos em Água Potabilizada Para Consumo Humano. Master’s Thesis, Universidade Federal de Viçosa, Viçosa, Brazil, 2016. [Google Scholar]
- Baar, J.; Paschová, Z.; Cermak, P.; Wimmer, R. Color changes of various wood species in response to moisture. Wood Fiber Sci. 2019, 51, 119–131. [Google Scholar] [CrossRef]
- Šuligoj, A.; Pliekhova, O.; Vodišek, N.; Mihelčič, M.; Surca, A.K.; Kunič, R.; Šubic, B.; Starman, J.; Ugovšek, A.; Štangar, U.L. Field Test of Self-Cleaning Zr-Modified-TiO2-SiO2 Films on Glass with a Demonstration of Their Anti-Fogging Effect. Materials 2019, 12, 2196. [Google Scholar] [CrossRef] [Green Version]
- Poliszko, N.; Kowalczewski, P.Ł.; Rybicka, I.; Kubiak, P.; Poliszko, S. The Effect of Pumpkin Flour on Quality and Acoustic Properties of Extruded Corn Snacks. J. Fur Verbrauch. Leb. 2019. [Google Scholar] [CrossRef] [Green Version]
- Wei, M.; Liu, J.; Xia, Y.; Feng, F.; Liu, W.; Zheng, F. A Polydiacetylene-Based Fluorescence Assay for the Measurement of Lipid Membrane Affinity. RSC Adv. 2015. [Google Scholar] [CrossRef]
- Yapor, J.P.; Alharby, A.; Gentry-Weeks, C.; Reynolds, M.M.; Alam, A.K.M.M.; Li, Y.V. Polydiacetylene Nanofiber Composites as a Colorimetric Sensor Responding to Escherichia Coli and pH. ACS Omega 2017. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.E.; Yan, J.; Jiang, J.; Liu, X.; Tian, C.; Xu, J.; Yuan, M.S.; Han, X.; Wang, J. Polydiacetylene Liposomes with Phenylboronic Acid Tags: A Fluorescence Turn-on Sensor for Sialic Acid Detection and Cell-Surface Glycan Imaging. Nanoscale 2018. [Google Scholar] [CrossRef]
- Chen, X.; Zhou, G.; Peng, X.; Yoon, J. Biosensors and chemosensors based on the optical responses of polydiacetylenes. Chem. Soc. Rev. 2012, 41, 4610–4630. [Google Scholar] [CrossRef]
- Park, J.H.; Choi, H.; Cui, C.; Ahn, D.J. Capillary-Driven Sensor Fabrication of Polydiacetylene-on-Silica Plate in 30 Seconds: Facile Utilization of π-Monomers with C18- to C25-Long Alkyl Chain. ACS Omega 2017. [Google Scholar] [CrossRef]
- Park, J.H.; Ahn, D.J. Fabrication of sensory structure based on poly (ethylene glycol)-diacrylate hydrogel embedding polydiacetylene. Korean J. Chem. Eng. 2017, 34, 2092–2095. [Google Scholar] [CrossRef]
- De Oliveira, C.P.; de Fátima Ferreira Soares, N.; de Carvalho Teixeira, A.V.N.; de Oliveira Filho, T.V. Biomimetic System Characterization: PH-Induced Chromatic Transition and Nanostructural Transformation of Polydiacetyle and Dimyristoylphosphatidylcholine Vesicles Under PH Variation Using Dynamic Light Scattering (DLS) Technique. J. Food Chem. Nanotechnol. 2019, 5, 65–69. [Google Scholar] [CrossRef] [Green Version]
- Villareal, Y.D.; Mejía, D.F.; Osorio, O.M.; Gerón, A.F. Efeito da pasteurização sobre características sensoriais e vitamina c em suco de frutas. Biotecnol. Sect. Agropecu. Agroind. 2013, 11, 66–75. [Google Scholar]
- Sarkar, S. Microbiological Considerations: Pasteurized Milk. Int. J. Dairy Sci. 2015. [Google Scholar] [CrossRef] [Green Version]
- Souza, R.S.; De Favero, D.M. Efeito do tempo de pasteurização da cerveja sobre a redução da carga microbiológica e inativação da enzima invertase na etapa de pasteurização da cerveja. Rev. Mundi Meio Ambient. Agrárias 2017. (In Brazilian) [Google Scholar] [CrossRef] [Green Version]
- Peng, J.; Tang, J.; Barrett, D.M.; Sablani, S.S.; Anderson, N.; Powers, J.R. Thermal pasteurization of ready-to-eat foods andvegetables: Critical factors for process design and effects on quality. Crit. Rev. Food Sci. 2017, 57, 2970–2995. [Google Scholar] [CrossRef]
Experimental Range and Levels of the Independent Variables | ||||||
---|---|---|---|---|---|---|
Variables | Symbol Codes | Range and Levels | ||||
−2 | −1 | 0 | +1 | 2 | ||
PDA (mg) | X1 | 0.00 | 17.39 | 30.00 | 42.61 | 60.00 |
TRC (%) | X2 | 0.00 | 7.22 | 12.50 | 17.78 | 25.00 |
Incubation Temperature (°C) | X3 | 0.00 | 28.00 | 50.00 | 71.00 | 100.00 |
UV (min) | X4 | 1.00 | 18.00 | 30.00 | 43.00 | 60.00 |
pH | X5 | 1.00 | 4.00 | 7.00 | 9.00 | 11.00 |
Equation | R2 | |
---|---|---|
L* | 68.40 + 0.36 X1 + 3.97 X2 − 0.04 X12 − 0.19 X22 | 84.67 |
a* | 14.90 − 1.27 X1 − 0.38 X4 + 0.02 X12 + 0.02 X1 X4 | 87.94 |
b* | 18.16 + 0.01 X1 − 1.61 X2 − 0.03 X12 + 0.06 X1 X2 | 84.81 |
L*f | 79.30 − 0.05 X1 + 2.71 X2 − 0.04 X12 − 0.19 X22 + 0.05 X1 X2 | 82.99 |
a*f | U−21.34 + 0.73 X1 + 1.31 X2 + 0.01 X12 − 0.06 X1 X2 | 74.68 |
b*f | 9.11 + 0.34 X1 − 1.01 X2 − 0.02 X2 + 0.04 X1 X2 | 81.66 |
E* | 8.42 + 7.59 X1 + 2.01 X4 X2 − 1.91 X4 X3 | 66.14 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ardila-Diaz, L.D.; Oliveira, T.V.d.; Soares, N.d.F.F. Development and Evaluation of the Chromatic Behavior of an Intelligent Packaging Material Based on Cellulose Acetate Incorporated with Polydiacetylene for an Efficient Packaging. Biosensors 2020, 10, 59. https://doi.org/10.3390/bios10060059
Ardila-Diaz LD, Oliveira TVd, Soares NdFF. Development and Evaluation of the Chromatic Behavior of an Intelligent Packaging Material Based on Cellulose Acetate Incorporated with Polydiacetylene for an Efficient Packaging. Biosensors. 2020; 10(6):59. https://doi.org/10.3390/bios10060059
Chicago/Turabian StyleArdila-Diaz, Lina D., Taíla V. de Oliveira, and Nilda de F. F. Soares. 2020. "Development and Evaluation of the Chromatic Behavior of an Intelligent Packaging Material Based on Cellulose Acetate Incorporated with Polydiacetylene for an Efficient Packaging" Biosensors 10, no. 6: 59. https://doi.org/10.3390/bios10060059
APA StyleArdila-Diaz, L. D., Oliveira, T. V. d., & Soares, N. d. F. F. (2020). Development and Evaluation of the Chromatic Behavior of an Intelligent Packaging Material Based on Cellulose Acetate Incorporated with Polydiacetylene for an Efficient Packaging. Biosensors, 10(6), 59. https://doi.org/10.3390/bios10060059