Screen-Printed Electrodes: Promising Paper and Wearable Transducers for (Bio)Sensing
Abstract
:1. Screen-Printed Paper Electrodes for (Bio)Sensing
2. Screen-Printed Paper Electrochemical (Bio)Sensors
2.1. Environmental Applications
2.2. Clinical Applications
3. Wearable Printed Electrodes for Biosensing Applications
4. General Considerations, Challenges to Face, and Future Prospects
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lamas-Ardisana, P.J.; Casuso, P.; Fernandez-Gauna, I.; Martínez-Paredes, G.; Jubete, E.; Añorga, L.; Cabañero, G.; Grande, H.J. Disposable electrochemical paper-based devices fully fabricated by screen-printing technique. Electrochem. Commun. 2020, 75, 25–28. [Google Scholar] [CrossRef]
- Dungchai, W.; Chailapakul, O.; Henry, C.S. Electrochemical detection for paper-based microfluidics. Anal. Chem. 2009, 81, 5821–5826. [Google Scholar] [CrossRef]
- Dungchai, W.; Chailapakul, O.; Henry, C.S. A low-cost, simple, and rapid fabrication method for paper-based microfluidics using wax screen-printing. Analyst 2011, 136, 77–82. [Google Scholar] [CrossRef]
- Sameenoi, Y.; Nongkai, P.N.; Nouanthavong, S.; Henry, C.S.; Nacapricha, D. One-step polymer screen-printing for microfluidic paper-based analytical device (μPAD) fabrication. Analyst 2014, 139, 6580–6588. [Google Scholar] [CrossRef] [PubMed]
- Cinti, S.; Mazzaracchio, V.; Cacciotti, I.; Moscone, D.; Arduini, F. Carbon black-modified electrodes screen-printed onto paper towel, waxed paper, and parafilm M®. Sensors 2017, 17, 2267. [Google Scholar] [CrossRef] [PubMed]
- Yong, H.; Yan, W.; Jian-Zhong, F.; Wen-Bin, W. Fabrication of paper-based microfluidic analysis devices: A review. RSC Adv. 2015, 5, 78109–78127. [Google Scholar]
- Metters, P.; Houssein, S.M.; Kampouris, D.K.; Banks, C.E. Paper-based electroanalytical sensing platforms. Anal. Methods 2013, 5, 103–110. [Google Scholar] [CrossRef]
- Noviana, E.; McCord, C.P.; Clark, K.M.; Jang, I.; Henry, C.S. Elctrochemical paper-based devices: Sensing approaches and progress toward practical applications. Lab Chip 2020, 20, 9–34. [Google Scholar] [CrossRef]
- Akyazi, T.; Basabe-Desmonts, L.; Benito-Lopez, F. Review on microfluidic paper-based analytical devices towards commercialisation. Anal. Chim. Acta 2018, 1001, 1–17. [Google Scholar] [CrossRef]
- Shriver-Lake, L.C.; Zabetakis, D.; Dressick, W.J.; Stengerand, D.A.; Trammell, S.A. Paper-based electrochemical detection of chlorate. Sensors 2018, 18, 328. [Google Scholar] [CrossRef] [Green Version]
- Colozza, N.; Kehe, K.; Dionisi, G.; Popp, T.; Tsoutsoulopoulos, A.; Steinritz, D.; Moscone, D.; Arduini, F. A wearable origami-like paper-based electrochemical biosensor for sulfur mustard detection. Biosens. Bioelectron. 2019, 129, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Figueredo, F.; González-Pabón, M.J.; Cortón, E. Low cost layer by layer construction of CNT/chitosan flexible paper-based electrodes: A versatile electrochemical platform for point of care and point of need testing. Electroanalysis 2018, 30, 497–508. [Google Scholar] [CrossRef]
- Wang, P.; Wang, M.; Zhou, F.; Yang, G.; Qu, L.; Miao, X. Development of a paper-based, inexpensive, and disposable electrochemical sensing platform for nitrite detection. Electrochem. Commun. 2017, 81, 74–78. [Google Scholar] [CrossRef]
- Pungjunun, K.; Chaiyo, S.; Praphairaksit, N.; Siangproh, W.; Ortner, A.; Kalcher, K.; Chailapakul, O.; Mehmeti, E. Electrochemical detection of NOx gas based on disposable paper-based analytical device using a copper nanoparticles-modified screen-printed graphene electrode. Biosens. Bioelectron. 2019, 143, 111606. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Han, H.; Jang, J.; Cho, S. Fabrication and optimization of conductive paper based on screen printed polyaniline/graphene patterns for nerve agent detection. ACS Omega 2019, 4, 5586–5594. [Google Scholar] [CrossRef]
- Rengaraj, S.; Cruz-Izquierdo, Á.; Scott, J.L.; Di Lorenzo, M. Impedimetric paper-based biosensor for the detection of bacterial contamination in water. Sens. Actuators B 2018, 265, 50–58. [Google Scholar] [CrossRef]
- Channon, R.B.; Yang, Y.; Feibelman, K.M.; Geiss, B.J.; Dandy, D.S.; Henry, C.S. Development of an electrochemical paper-based analytical device for trace detection of virus particles. Anal. Chem. 2018, 90, 7777–7783. [Google Scholar] [CrossRef]
- Alatraktchi, F.A.; Noori, J.S.; Tanev, G.P.; Mortensen, J.; Dimaki, M.; Johansen, H.K.; Madsen, J.; Molin, S.; Svendsen, W.E. Paper-based sensors for rapid detection of virulence factor produced by Pseudomonas aeruginosa. PLoS ONE 2018, 13, e0194157. [Google Scholar] [CrossRef]
- Adkins, J.A.; Boehle, K.; Friend, C.; Chamberlain, B.; Bisha, B.; Henry, C.S. Colorimetric and electrochemical bacteria detection using printed paper- and transparency-based analytic devices. Anal. Chem. 2017, 89, 3613–3621. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, Z.; Liu, Q.; Liang, H. Electrochemical biotoxicity detection on a microfluidic paper-based analytical device via cellular respiratory inhibition. Talanta 2019, 202, 384–391. [Google Scholar] [CrossRef]
- Arduini, F.; Cinti, S.; Caratelli, V.; Amendola, L.; Palleschi, G.; Moscone, D. Origami multiple paper-based electrochemical biosensors for pesticide detection. Biosens. Bioelectron. 2019, 126, 346–354. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, J.; Liu, G.; Zhang, Z.; Hou, X. Electrochemical sensing of Pb(II) and Cd(II) in decorative material of wood panel using nano-cellulose paper-based electrode modified using graphene/multi-walled carbon nanotubes/bismuth film. Int. J. Electrochem. Sci. 2019, 14, 11253–11266. [Google Scholar] [CrossRef]
- Cinti, S.; Minotti, C.; Moscone, D.; Palleschi, G.; Arduini, F. Fully integrated ready-to-use paper-based electrochemical biosensor to detect nerve agents. Biosens. Bioelectron. 2017, 93, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Calvo, A.; Fernández-Abedul, M.T.; Blanco-López, M.C.; Costa-García, A. Paper-based electrochemical transducer modified with nanomaterials for mercury determination in environmental waters. Sens. Actuators B 2019, 290, 87–92. [Google Scholar] [CrossRef]
- Scala-Benuzzi, M.L.; Raba, J.; Soler-Illia, G.J.A.A.; Schneider, R.J.; Messina, G.A. Novel electrochemical paper-based immunocapture assay for the quantitative determination of ethinyl estradiol in water samples. Anal. Chem. 2018, 90, 77–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jemmeli, D.; Marcoccio, E.; Moscone, D.; Dridi, C.; Arduini, F. Highly sensitive paper-based electrochemical sensor for reagent free detection of bisphenol A. Talanta 2020, 216, 120924. [Google Scholar] [CrossRef]
- Martins, G.V.; Marques, A.C.; Fortunato, E.; Sales, M.G.F. Wax-printed paper-based device for direct electrochemical detection of 3-nitrotyrosine. Electrochim. Acta 2018, 284, 60–68. [Google Scholar] [CrossRef]
- Tomei, M.R.; Cinti, S.; Interino, N.; Manovella, V.; Moscone, D.; Arduini, F. Paper-based electroanalytical strip for user-friendly blood glutathione detection. Sens. Actuators B 2019, 294, 291–297. [Google Scholar] [CrossRef]
- Maier, D.; Laubender, E.; Basavanna, A.; Schumann, S.; Güder, F.; Urban, G.A.; Dincer, C. Toward continuous monitoring of breath biochemistry: A paper based wearable sensor for real-time hydrogen peroxide measurement in simulated breath. ACS Sens. 2019, 4, 2945–2951. [Google Scholar] [CrossRef]
- Amatatongchai, M.; Sitanurak, J.; Sroysee, W.; Sodanat, S.; Chairam, S.; Jarujamrus, P.; Nacapricha, D.; Lieberzeit, P.A. Highly sensitive and selective electrochemical paper-based device using a graphite screen-printed electrode modified with molecularly imprinted polymers coated Fe3O4@Au@SiO2 for serotonin determination. Anal. Chim. Acta 2019, 1077, 255–265. [Google Scholar] [CrossRef]
- Pinyorospathum, C.; Chaiyo, S.; Sae-Ung, P.; Hoven, V.P.; Damsongsang, P.; Siangproh, W.; Chailapakul, O. Disposable paper-based electrochemical sensor using thiol-terminated poly(2-methacryloyloxyethyl phosphorylcholine) for the label-free detection of C-reactive protein. Microchim. Acta 2019, 186, 472. [Google Scholar] [CrossRef] [PubMed]
- Thompson, D.; Pepys, M.M.; Wood, S.P. The physiological structure of human C-reactive protein and its complex with phosphocholine. Structure 1999, 7, 169–177. [Google Scholar] [CrossRef]
- Moreira, C.M.; Pereira, S.V.; Raba, J.; Bertolino, F.A.; Messina, G.A. Paper-based enzymatic platform coupled to screen printed graphene modified electrode for the fast neonatal screening of phenylketonuria. Clin. Chim. Acta 2018, 486, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Panraksa, Y.; Siangproh, W.; Khampieng, T.; Chailapakul, O.; Apilux, A. Paper-based amperometric sensor for determination of acetylcholinesterase using screen-printed graphene electrode. Talanta 2018, 178, 1017–1023. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Fang, C.; Zeng, R.; Zhao, X.; Zhao, F.; Jiang, Y.; Chen, Z. A disposable paper-based microfluidic immunosensor based on reduced graphene oxide-tetraethylene pentamine/Au nanocomposite decorated carbon screen-printed electrodes. Sens. Actuators B 2017, 252, 44–54. [Google Scholar] [CrossRef]
- Bird, T.G.; Dimitropoulou, P.; Turner, R.M.; Jenks, S.J.; Cusack, P.; Hey, S.; Blunsum, A.; Kelly, S.; Sturgeon, C.; Hayes, P.C.; et al. Alpha-fetoprotein detection of hepatocellular carcinoma leads to a standardized analysis of dynamic AFP to improve screening based detection. PLoS ONE 2016, 11, e0156801. [Google Scholar] [CrossRef] [Green Version]
- Moazeni, M.; Karimzadeh, F.; Kermanpura, A. Peptide modified paper based impedimetric immunoassay with nanocomposite electrodes as a point-of-care testing of Alpha-fetoprotein in human serum. Biosens. Bioelectron. 2018, 117, 748–757. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Li, X.; Gao, X.; Ge, L.; Sun, X.; Li, F. A universal paper-based electrochemical sensor for zero-background assay of diverse biomarkers. ACS Appl. Mater. Interfaces 2019, 11, 15381–15388. [Google Scholar] [CrossRef]
- Rahimi-Mohseni, M.; Raoof, J.B.; Ojani, R.; Aghajanzadeh, T.A.; Hashkavayi, A.B. Development of a new paper based nano-biosensor using the co-catalytic effect of tyrosinase from banana peel tissue (Musa Cavendish) and functionalized silica nanoparticles for voltammetric determination of L-tyrosine. Int. J. Biol. Macromol. 2018, 113, 648–654. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Luo, J.; Liu, J.; Li, X.; Kong, Z.; Jin, H.; Cai, X. Electrochemical integrated paper-based immunosensor modified with multiwalled carbon nanotubes nanocomposites for point-of-care testing of 17β-estradiol. Biosens. Bioelectron. 2018, 107, 47–53. [Google Scholar] [CrossRef]
- Zheng, Y.; Huang, Z.; Zhang, J. Paper-based microfluidic immunoassay for electrochemical detection of B-type natriuretic peptide. Int. J. Electrochem. Sci. 2018, 13, 7246–7254. [Google Scholar] [CrossRef]
- Luo, J.; Kong, Z.; Wang, Y.; Xie, J.; Liu, J.; Jin, H.; Cai, X. Label-free paper-based immunosensor with graphene nanocomposites for electrochemical detection of follicle-stimulating hormone. Conf. Proc. IEEE. Eng. Med. Biol. Soc. 2018, 2018, 2901–2904. [Google Scholar] [CrossRef]
- Boonkaew, S.; Chaiyo, S.; Jampasa, S.; Rengpipat, S.; Siangproh, W.; Chailapakul, O. An origami paper-based electrochemical immunoassay for the C-reactive protein using a screen-printed carbon electrode modified with graphene and gold nanoparticles. Microchim. Acta 2019, 186, 153. [Google Scholar] [CrossRef]
- Pavithra, M.; Muruganand, S.; Parthiban, C. Development of novel paper based electrochemical immunosensor with self-made gold nanoparticle ink and quinone derivate for highly sensitive carcinoembryonic antigen. Sens. Actuators B 2018, 257, 496–503. [Google Scholar] [CrossRef]
- Ruecha, N.; Shin, K.; Chailapakul, O.; Rodthongkum, N. Label-free paper-based electrochemical impedance immunosensor for human interferon gamma detection. Sens. Actuators B 2019, 279, 298–304. [Google Scholar] [CrossRef]
- Fan, Y.; Shi, S.; Ma, J.; Guo, Y. A paper-based electrochemical immunosensor with reduced graphene oxide/thionine/gold nanoparticles nanocomposites modification for the detection of cancer antigen 125. Biosens. Bioelectron. 2019, 135, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Vasantham, S.; Alhans, R.; Singhal, C.; Nagabooshanam, S.; Nissar, S.; Basu, T.; Ray, S.C.; Wadhwa, S.; Narang, J.; Mathur, A. Paper based point of care immunosensor for the impedimetric detection of cardiac troponin I biomarker. Biomed. Microdevices 2020, 22, 6. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Tirado, E.; González-Cortés, A.; Yáñez-Sedeño, P.; Pingarrón, J.M. Electrochemical immunosensor for the determination of the cytokine interferon gamma (IFN-γ) in saliva. Talanta 2020, 211, 120761. [Google Scholar] [CrossRef]
- Cinti, S.; Fiore, L.; Massoud, R.; Cortese, C.; Moscone, D.; Palleschi, G.; Arduini, F. Low-cost and reagent-free paper-based device to detect chloride ions in serum and sweat. Talanta 2018, 179, 186–192. [Google Scholar] [CrossRef]
- Chaiyo, S.; Mehmeti, E.; Siangproh, W.; Long Hoang, T.; Phong Nguyen, H.; Chailapakula, O.; Kalcher, K. Non-enzymatic electrochemical detection of glucose with a disposable paper-based sensor using a cobalt phthalocyanine–ionic liquid–graphene composite. Biosens. Bioelectron. 2018, 102, 113–120. [Google Scholar] [CrossRef]
- Núnez-Bajo, E.; Blanco-López, M.C.; Costa-García, A.; Fernández-Abedul, M.T. In situ gold-nanoparticle electrogeneration on gold films deposited on paper for non-enzymatic electrochemical determination of glucose. Talanta 2018, 178, 160–165. [Google Scholar] [CrossRef] [PubMed]
- Scordo, G.; Moscone, D.; Palleschi, G.; Arduini, F. A reagent-free paper-based sensor embedded in a 3D printing device for cholinesterase activity measurement in serum. Sens. Actuators B 2018, 258, 1015–1021. [Google Scholar] [CrossRef]
- Ruiz-Vega, G.; Garcia-Berrocoso, T.; Montaner, J.; Baldrich, E. Paper microfluidics on screen-printed electrodes for simple electrochemical magneto-immunosensor performance. Sens. Actuators B 2019, 298, 126897. [Google Scholar] [CrossRef]
- Teengam, P.; Siangproh, W.; Tuantranont, A.; Henry, C.S.; Vilaivan, T.; Chailapakul, O. Electrochemical paper-based peptide nucleic acid biosensor for detecting human papillomavirus. Anal. Chim. Acta 2017, 952, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Cinti, S.; Proietti, E.; Casotto, F.; Moscone, D.; Arduini, F. Paper-based strips for the electrochemical detection of single and double stranded DNA. Anal. Chem. 2018, 90, 13680–13686. [Google Scholar] [CrossRef] [PubMed]
- Boobphahom, S.; Ruecha, N.; Rodthongkum, N.; Chailapakul, O.; Remcho, V.T. A copper oxide-ionic liquid/reduced graphene oxide composite sensor enabled by digital dispensing: Non-enzymatic paper-based microfluidic determination of creatinine in human blood serum. Anal. Chim. Acta 2019, 1083, 110–118. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Han, G.C.; Xiao, H.; Chen, Z.; Fang, C. A novel 3D paper-based microfluidic electrochemical glucose biosensor based on rGO-TEPA/PB sensitive film. Anal. Chim. Acta 2020, 1096, 34–43. [Google Scholar] [CrossRef]
- Income, K.; Ratnarathorn, N.; Khamchaiyo, N.; Srisuvo, C.; Ruckthong, L.; Dungchai, W. Disposable nonenzymatic uric acid and creatinine sensors using μPAD coupled with screen-printed reduced graphene oxide-gold nanocomposites. Int. J. Anal. Chem. 2019, 3457247. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Luo, J.; Liu, J.; Sun, S.; Xiong, Y.; Ma, Y.; Yan, S.; Yang, Y.; Yin, H.; Cai, X. Label-free microfluidic paper-based electrochemical aptasensor for ultrasensitive and simultaneous multiplexed detection of cancer biomarkers. Biosens. Bioelectron. 2019, 136, 84–90. [Google Scholar] [CrossRef]
- Cao, Q.; Liang, B.; Tu, T.; Wei, J.; Fang, L.; Ye, X. Three-dimensional paper-based microfluidic electrochemical integrated devices (3D-PMED) for wearable electrochemical glucose detection. RSC Adv. 2019, 9, 5674–5681. [Google Scholar] [CrossRef] [Green Version]
- Bandodkar, A.J.; Jeerapan, I.; Wang, J. Wearable chemical sensors: Present challenges and future prospects. ACS Sens. 2016, 1, 464–482. [Google Scholar] [CrossRef]
- Wang, S.; Chinnasamy, T.; Lifson, M.A.; Inci, F.; Demirci, U. Flexible substrate-based devices for point-of-care diagnostics. Trends Biotechnol. 2016, 34, 909–921. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Kumar, R.; Bandodkar, A.J.; Wang, J. Advanced materials for printed wearable electrochemical devices: A review. Adv. Electron. Mater. 2017, 3, 1600260. [Google Scholar] [CrossRef]
- Kim, J.; Jeerapan, I.; Sempionatto, J.R.; Barfidokht, A.; Mishra, R.K.; Campbell, A.S.; Hubble, L.J.; Wang, J. Wearable Bioelectronics: Enzyme-Based Body-Worn Electronic Devices. Acc. Chem. Res. 2018, 51, 2820–2828. [Google Scholar] [CrossRef] [PubMed]
- Hubble, L.J.; Wang, J. Sensing at Your Fingertips: Glove-based wearable chemical sensors. Electroanalysis 2019, 31, 428–436. [Google Scholar] [CrossRef]
- Khan, S.; Ali, S.; Bermak, A. Recent developments in printing flexible and wearable sensing electronics for healthcare applications. Sensors 2019, 19, 1230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tu, J.; Torrente-Rodríguez, R.M.; Wang, M.; Gao, W. The era of digital health: A review of portable and wearable affinity biosensors. Adv. Funct. Mater. 2019, 1906713. [Google Scholar] [CrossRef]
- Kim, J.; Campbell, A.S.; Esteban-Fernández de Ávila, B.; Wang, J. Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 2019, 37, 389–406. [Google Scholar] [CrossRef]
- Sempionatto, J.R.; Jeerapan, I.; Krishnan, S.; Wang, J. Wearable chemical sensors: Emerging systems for on-body analytical chemistry. Anal. Chem. 2020, 92, 378–396. [Google Scholar] [CrossRef]
- Kim, J.; Campbell, A.S.; Wang, J. Wearable non-invasive epidermal glucose sensors: A review. Talanta 2018, 177, 163–170. [Google Scholar] [CrossRef]
- Campbell, A.S.; Kim, J.; Wang, J. Wearable electrochemical alcohol biosensors. Curr. Opin. Electrochem. 2018, 10, 126–135. [Google Scholar] [CrossRef] [PubMed]
- Ciui, B.; Martin, A.; Mishra, R.K.; Nakagawa, T.; Dawkins, T.J.; Lyu, M.; Cristea, C.; Sandulescu, R.; Wang, J. Chemical sensing at the robot fingertips: Toward automated taste discrimination in food samples. ACS Sens. 2018, 3, 2375–2384. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Li, J.; Cao, D.; Zhang, G.; Li, J.; Li, K.; Yang, Y.; Wang, W.; Jin, Y.; Sun, R.; et al. Recent advancements in flexible and stretchable electrodes for electromechanical sensors: Strategies, materials, and features. ACS Appl. Mater. Interfaces 2017, 9, 12147–12164. [Google Scholar] [CrossRef] [PubMed]
- Heikenfeld, J.; Jajack, A.; Rogers, J.; Gutruf, P.; Tian, L.; Pan, T.; Li, R.; Khine, M.; Kim, J.; Wang, J.; et al. Wearable sensors: Modalities, challenges, and prospects. Lab Chip 2018, 18, 217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, W.; Ota, H.; Kiriya, D.; Takei, K.; Javey, A. Flexible electronics toward wearable sensing. Acc. Chem. Res. 2019, 52, 523–533. [Google Scholar] [CrossRef]
- Song, Y.; Min, J.; Gao, W. Wearable and implantable electronics: Moving toward precision therapy. ACS Nano 2019, 13, 12280–12286. [Google Scholar] [CrossRef]
- Stoppa, M.; Chiolerio, A. Wearable electronics and smart textiles: A critical review. Sensors 2014, 14, 11957–11992. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.; Li, X.; Lv, H.; Wang, W.; Zhi, C.; Li, H. Integration designs toward new-generation wearable energy supply-sensor systems for real-time health monitoring: A minireview. InfoMat 2020, in press. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, H.; Zhao, W.; Zhang, M.; Qin, H.; Xie, Y. Screen-printed electrodes: Promising paper and wearable transducers for (bio)sensing. Sensors 2018, 18, 645. [Google Scholar] [CrossRef] [Green Version]
- Guk, K.; Han, G.; Lim, J.; Jeong, K.; Kang, T.; Lim, E.-K.; Jung, J. Evolution of wearable devices with real-time disease monitoring for personalized healthcare. Nanomaterials 2019, 9, 813. [Google Scholar] [CrossRef] [Green Version]
- Ciui, B.; Martin, A.; Mishra, R.K.; Brunetti, B.; Nakagawa, T.; Dawkins, T.J.; Lyu, M.; Cristea, C.; Sandulescu, R.; Wang, J. Wearable wireless tyrosinase bandage and microneedle sensors: Toward melanoma screening. Adv. Healthcare Mater. 2018, 7, 1701264. [Google Scholar] [CrossRef] [PubMed]
- Mishra, R.K.; Martín, A.; Nakagawa, T.; Barfidokht, A.; Lu, X.; Sempionatto, J.R.; Lyu, K.M.; Karajic, A.; Musameh, M.M.; Kyratzis, I.L.; et al. Detection of vapor-phase organophosphate threats using wearable conformable integrated epidermal and textile wireless biosensor systems. Biosens. Bioelectron. 2018, 101, 227–234. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Sempionatto, J.R.; Imani, S.; Hartel, M.C.; Barfidokht, A.; Tang, G.; Campbell, A.S.; Mercier, P.P.; Wang, J. Simultaneous monitoring of sweat and interstitial fluid using a single wearable biosensor platform. Adv. Sci. 2018, 5, 1800880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mannoor, M.S.; Tao, H.; Clayton, J.D.; Sengupta, A.; Kaplan, D.L.; Naik, R.R.; Verma, N.; Omenetto, F.G.; McAlpine, M.C. Graphene-based wireless bacteria detection on tooth enamel. Nat. Commun. 2012, 3, 763. [Google Scholar] [CrossRef]
- Sempionatto, J.R.; Brazaca, L.C.; García-Carmona, L.; Bolat, G.; Campbell, A.S.; Martin, A.; Tang, G.; Shah, R.; Mishra, R.K.; Kim, J.; et al. Eyeglasses-based tear biosensing system: Non-invasive detection of alcohol, vitamins and glucose. Biosens. Bioelectron. 2019, 137, 161–170. [Google Scholar] [CrossRef]
- Mishra, R.K.; Sempionatto, J.R.; Li, Z.; Brown, C.; Galdino, N.M.; Shah, R.; Liu, S.; Hubble, L.J.; Bagot, K.; Tapert, S.; et al. Simultaneous detection of salivary Δ9-tetrahydrocannabinol and alcohol using a wearable electrochemical ring sensor. Talanta 2020, 211, 120757. [Google Scholar] [CrossRef] [PubMed]
- Payne, M.E.; Zamarayeva, A.; Pister, V.I.; Yamamoto, N.A.D.; Arias, A.C. Printed, flexible lactate sensors: Design considerations before performing on-body measurements. Sci. Rep. 2019, 9, 13720. [Google Scholar] [CrossRef] [PubMed]
- Bandodkar, A.J.; O’Mahony, A.M.; Ramírez, J.; Samek, I.A.; Anderson, S.M.; Windmiller, J.R.; Wang, J. Solid-state Forensic Finger sensor for integrated sampling and detection of gunshot residue and explosives: Towards ‘Lab-on-a-finger’. Analyst 2013, 138, 5288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sempionatto, J.R.; Khorshed, A.A.; Ahmed, A.; De Loyola e Silva, A.N.; Barfidokht, A.; Yin, L.; Goud, K.Y.; Mohamed, M.A.; Bailey, E.; May, J.; et al. Epidermal enzymatic biosensors for sweat vitamin C: Toward personalized nutrition. ACS Sens. 2020, 5, 1804–1813. [Google Scholar] [CrossRef]
- Mishra, R.K.; Barfidokht, A.; Karajic, A.; Sempionatto, J.R.; Wang, J.; Wang, J. Wearable potentiometric tattoo biosensor for on-body detection of G-type nerve agents simulants. Sens. Actuator B Chem. 2018, 273, 966–972. [Google Scholar] [CrossRef]
Configuration | Technique and Method | Detection | Analyte/Sample | Analytical Characteristics | Ref. |
---|---|---|---|---|---|
Origami gas-sensing paper-based with CuNPs/SPGE | Gas absorption and electrocatalytic oxidation of NO2 reduced form in the presence of CuNPs | DPV (nitrite) | NOx/air, exhaust gases from cars | 0.03 vppm | [14] |
Origami paper based multiple biosensor with BChE, AP or Tyr | Detection of TCh, 1-naphthol or 1,2-benzoquinone | Differential amperometry | paraoxon, 2,4-DCPA, atrazine | L.R: 2–100 ppb LOD: 2 ppb | [21] |
PANI/G/PEO/p(VB-co-VA-co-VAc) on cellulosic paper | Conductive paper with printed sensor patterns | Resistance changes | nerve gas (DMMP) | L.R.: 3–30,000 ppb LOD: 3 ppb | [15] |
ChOx/PB/CBNPs/office paper SPE | Inhibition of ChOx activity | Amperometry (H2O2) | Sulphur mustard (Yprite) | L.R: 1–4 mM LOD: 0.9 mM | [11] |
Microfluidic device with chromatographic paper/CE | BQ mediated E. coli respiration | Amperometry (HQ) | pesticides/soils, vegetables | LOD: 37.5 μg g−1 (triazolone) | [20] |
G/AuNPs/mixed cellulose ester filter paper | Direct electrochemical oxidation | DPV (NO2−) | nitrite/waters | L.R: 0.3–720 μM LOD: 0.1 μM | [13] |
CNTs/Chit/SDS/cellulosic paper with electrodeposited Bi | Anodic stripping previous accumulation at −1.2 V for 240 s | SWASV | Pb2+/waters | L.R: 10–200 ppb LOD: 6.74 ppb | [12] |
G/CNTs/ionic liquid/cellulosic paper with electroplated Bi | Anodic stripping previous accumulation at −1.3 V for 300 s | SWASV | Cd2+, Pb2+/wood | L.R: 1–50 μg L−1 LOD: 0.2 μg L−1 | [22] |
[PMo11VO40]5−/Whatman #4 filter paper/SPE | Direct electrochemical reduction | CV | ClO3−/soil | L.R: 0.312–2.5 mg mL−1 LOD: 0.15 mg mL−1 | [10] |
CB/Prussian Blue paper-based SPE | Reagent-free nitrocellulose membrane with enzyme substrate BTCh | Differential amperometry | nerve agents (paraoxon) | L.R: up to 25 μg L−1 LOD: 3 μg L−1 | [23] |
CNFs or rGO/AuNPs | Whatman Grade 1 cellulose paper modified by ink (bottom side) and nanomaterials (upper side) | LSV after preconcentration at +0.2 V vs Ag for 600 s | Hg(II)/river waters | L.R: up to 1.2 μM LOD: 30 nM | [24] |
SiNs/paper/rGO/SPCE | Paper-based immunocapture assay with anti-EE2 | SWV | EE2/ waters | L.R: 0.5–120 ng L−1 LOD: 0.1 ng L−1 | [25] |
carbon black ink/filter paper SPE | Direct electrochemical oxidation | SWV | BPA/waters | L.R: 0.1–0.9; 1–50 μM LOD: 0.03 μM | [26] |
Configuration | Technique and Method | Detection | Analyte/Sample | AnalyticalCharacteristics | Ref. |
---|---|---|---|---|---|
Fe(CN)63−/banana peel tissue/SN-MPTS/paper | L-Tyr oxidation catalyzed by tyrosinase and mediated by Fe(CN)63− | DPV | L-Tyr/plasma | L.R: 0.05–600 μM LOD: 0.02 μM | [39] |
MWCNTs/THI/AuNPs/SPE | Label-free microfluidic paper based immunosensor with immobilized anti-E2 | DPV (THI) | 17β-estradiol (E2)/serum | L.R: 0.01–100 ng mL−1 LOD: 10 pg mL−1 | [40] |
(NH2-G)/THI/AuNPs/SPE | Label-free microfluidic paper based immunosensor with immobilized anti-BNP | Amperometry | BNP/serum | L.R: 0.05–30 ng mL−1 LOD: 12 pg mL−1 | [41] |
rGO/THI/AuNPs/SPE | Label-free microfluidic paper based immunosensor with immobilized anti-FSH | DPV (THI) | FSH/serum | L.R: 1–100 mIU mL−1 LOD: 1 mIU mL−1 | [42] |
rGO-TEPA/AuNPs/SPE | Microfluidic paper-based immunosensor with immobilized anti-AFP; HRP-GNRs-dAb as signal probe | SWV (H2O2/OPD) | AFP/serum | L.R: 0.01–100 ng mL−1 LOD: 0.005 ng mL−1 | [35] |
L-Cys-AuNPs/G/SPE | Label-free origami paper based immunosensor with immobilized anti-CRP | EIS (Fe(CN)63−/4−) | CRP/serum | L.R: 50–105 ng mL−1 LOD: 15 ng mL−1 | [43] |
Q-MA/SPGE | Label-free microfluidic paper based immunosensor with immobilized anti-CEA | DPV | CEA/serum | L.R: 1–100 ng mL−1 LOD: 0.33 ng mL−1 | [44] |
DPA/Ag/G/SPCE | Microfluidic plastic-paper based immunosensor with immobilized anti-AFP | EIS | AFP | L.R: 1–104 ng mL−1 LOD: 1 ng mL−1 | [37] |
OPANI/G/SPE | Label-free microfluidic paper based immunosensor with immobilized anti-IFN-γ | EIS (Fe(CN)63−/4−) | IFN-γ/serum | L.R: 5–103 pg mL−1 LOD: 3.4 pg mL−1 | [45] |
rGO/THI/AuNPs | Label-free microfluidic paper based immunosensor with immobilized anti-CA125 | DPV (THI) | CA125/serum | L.R: 0.1–200 U mL−1 LOD: 0.01 U mL−1 | [46] |
cMWCNTs/cellulose paper/SPE | Label-free paper based immunosensor with immobilized anti-cTnI | EIS (Fe(CN)63−/4−) | cTnI/serum | L.R: 0.05–50 ng mL−1 LOD: 0.05 ng mL−1 | [47] |
Fe3O4@AuNPs@SiO2 MIP /Whatman paper/CPE | 3D-ePAD Direct oxidation | LSV | serotonin/capsules, urine | L.R: 0.01–1,000 mM LOD: 0.002 mM | [30] |
C/Ag/paper/SPE | Label-free detection, current decrease | SWV | 3-nitrotyrosine | L.R: 500 nM–1 mM LOD: 49.2 nM | [27] |
Patterned waxed paper screen-printed with silver ink | Electrochemical oxidation in the presence of silver | CV | chloride/serum, sweat | L.R: up to 200 mM LOD: 1 mM | [49] |
Prussian Blue/paper/SPEs | Differential current measurements | amperometry | H2O2/simulated exhaled breath | L.R: 5–320 μM LOD: — | [29] |
Prussian Blue/C black/wax patterned wax filter paper | Thiol-disulfide exchange reaction | Amperometry +0.3 V | glutathione | L.R: up to 10 mM LOD: 60 μM | [28] |
CoPc/G/IL/paper/SPCE | Non-enzymatic detection | Amperometry +0.7 V | glucose/serum, honey, wine | L.R: 0.01–1.3–5.0 mM LOD: 0.67 μM | [50] |
AuNPs/porous paper/SPE | Non-enzymatic detection | CV | glucose | L.R: 0.01–5 mM LOD: 6 μM | [51] |
ATCh/G/Ag/AgCl ink/wax printing paper | ATCh hydrolysis by AChE giving TCh directly oxidized | Amperometry/TCh | AChE | L.R: 0.1–15 U mL−1 LOD: 0.1 U mL−1 | [34] |
PheDH/paper/ERGO/SPCE | Phe hydrolysis by PheDH in the presence of NAD+ | Amperometry/NADH | Phe/neonatal blood | L.R: 1–600 μM LOD: 0.2 μM | [33] |
paper-based wax printing/CB/SPCE | BTCh as substrate of BChE | Amperometry/TCh/PB | BChE activity/serum | L.R: up to 12 IU /mL LOD: 0.5 IU/mL | [52] |
MBs/paper microfluidic/SPCE | On-chip single-step magneto-immunoassay with cAb-MBs and poly-HRP-biotin-dAb | Amperometry/H2O2/TMB | MMP-9/plasma | L.R: 0.03–2 ng mL−1 LOD: 0.01 ng mL−1 | [53] |
AQ-PNA/G-PANI/paper/SPCE | PNA-DNA duplexes obstruct electron transfer from AQ label | SWV/AQ | HPV/DNA from SiHa cell line | L.R: 10–200 nM LOD: 2.3 nM | [54] |
MB-tagged TFO/AuNPs/paper/SPCE | filter and copy papers compared for detection of ssDNA or dsDNA | SWV/MB | HIV/serum | L.R: 3–3,000 nM LOD: 3 nM ssDNA; | [55] |
CuO/IL/ERGO/SPCE/PAD | CuO/IL delivered from a HP D300 digital dispenser | Amperometry | Creatinine/human serum | L.R: 0.01–2.0 μM LOD: 0.22 μM | [56] |
GOx-rGO-TEPA/PB-paper/SPE | 3D paper-based microfluidic SPE | Amperometry H2O2/PB | Glucose/human sweat, blood | L.R: 0.1–25 mM LOD: 25 μM | [57] |
rGO/AuNPs-paper-SPE | Wax-patterning on filter paper Whatman No1; rGO prepared from GO and dopamine | SWV | uric acid/urine | L.R: 2.5–1,000 μM LOD: 0.74 μM | [58] |
Wax printed amino-functional graphene (NG)/THI/AuNPs and PB/PEDOT/AuNPs/SPE PADs | Label-free aptasensors | DPV | CEA, NSE/serum | L.R: 0.01–500 ng mL−1 (CEA); 0.05–500 ng mL−1 (NSE); LOD: 2 pg mL−1 (CEA); 10 pg mL−1 (NSE) | [59] |
Wax screen printing patterns on cellulose paper/Nafion/Chit/GOx/PB/SPE | 3D paper-based microfluidic SPE | Amperometry H2O2/PB | glucose/sweat | L.R.: up to 1.9 mM LOD: 5 μM | [60] |
Type of Wearable Sensor | Methodology | Analyte | Detection Technique | LOD | Application, Samples and Assay Time | Ref. |
---|---|---|---|---|---|---|
Flexible, wearable lactate sweat sensor | Biosensors using LOx and TTF | Lactate | Chrono-amperometry | — | Detection in artificial sweat | [87] |
Bendable bandage and microneedle based sensors | In the presence of the surface TYR biomarker, its catechol substrate, immobilized on the transducer surface is rapidly converted to benzoquinone | TYR (Melanome biomarker) | Chono-amperometry | — | Melanoma screening in skin and tissues/Tyr-containing agarose phantom gel and porcine skin in less than 4 min (2 min of incubation and 100 s for the measurement) | [81] |
Tattoo-like flexible iontophoretic platform integrated with electrochemical biosensors | Parallel operation of reverse iontophoretic ISF extraction across the skin and iontophoretic delivery of the sweat-inducing pilocarpine into the skin at separate locations and GOx and AOx-based biosensors | Glucose and alcohol | Chrono-amperometry | — | Simultaneous and real-time determination of alcohol and glucose levels on demand localized sampled sweat and ISF biofluids | [83] |
Flexible epidermal tattoo and textile-based electrochemical biosensors | OPH-based skin- and textile-worn biosensors for continuous vapor-phase detection of OP threats integrated with a soft, flexible, skin-conforming electronic interface | Vapor-phase detection of OP nerve agents. | SWV | 12 mg L−1 in terms of OP air density | Continuous and real-time vapor-phase detection of MPOx | [82] |
Tattoo paper biosensor | Epidermal OPH–pH biosensor printed onto a temporary tattoo paper coated with PANi (for monitoring the proton release during the enzymatic hydrolysis of DFP by OPH) and with a PVA-acrylamide hydrogel which ensures surface distribution of the target DFP vapors | DFP in both liquid and vapor phases | Potentiometry | — | Real-time detection of DFP in both liquid and vapor phases | [90] |
Eyeglasses platform for biosensing in tears | Enclosing the electrochemical biosensor within a microfluidic chamber, with the supporting electronics embedded onto the eyeglasses’ inner frame | Ethanol, glucose and multiple vitamins (B2, C and B6) | Chronoamperometry (ethanol and glucose) SWV (vitamins) | — | Real-time detection of alcohol intake and glucose and vitamins in human subjects | [85] |
Ring-based dual sensing platform | Wireless electronic board embedded into a ring platform, along with a printed dual-sensor electrode cap comprising a voltammetric THC sensor based on a MWCNTs/carbon electrode and an amperometric alcohol biosensor based on a Prussian-blue transducer, coated with AOx/chitosan reagent layer | THC and ethanol | SWV (THC) and chrono-amperometry (ethanol) | THC: 0.5 μM; alcohol: 0.2 mM | Simultaneous detection of THC and ethanol in undiluted saliva sample within 3 min | [86] |
Finger devices printed on the robotic glove | Robotic assisted automated taste sweetness, sourness, and spiciness discrimination in food samples | Glucose, ascorbic acid, and capsaicin. | Chrono-amperometry (ethanol and glucose) SWV (vitamins) | — | Ascorbic acid in orange juice, cola, lemon juice, sports drink, and pineapple juice; Glucose in: apple cider, sugar-free sports drink, cola, sugar-free energy drink, and apple juice; Capsaicin in: green chili extract, coffee, red paprika extract, watermelon juice and red pepper extract | [72] |
Flexible printable tattoo electrodes | Flexible AAOx enzymatic biosensing tattoo patch fabricated on a polyurethane substrate and combined with a localized iontophoretic sweat stimulation system | Ascorbic acid | Chronoamperometry (Oxygen cosustrate depletion) | — | Sweat from subjects taking varying amounts of commercial vitamin C pills or vitamin C-rich beverages | [89] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yáñez-Sedeño, P.; Campuzano, S.; Pingarrón, J.M. Screen-Printed Electrodes: Promising Paper and Wearable Transducers for (Bio)Sensing. Biosensors 2020, 10, 76. https://doi.org/10.3390/bios10070076
Yáñez-Sedeño P, Campuzano S, Pingarrón JM. Screen-Printed Electrodes: Promising Paper and Wearable Transducers for (Bio)Sensing. Biosensors. 2020; 10(7):76. https://doi.org/10.3390/bios10070076
Chicago/Turabian StyleYáñez-Sedeño, Paloma, Susana Campuzano, and José Manuel Pingarrón. 2020. "Screen-Printed Electrodes: Promising Paper and Wearable Transducers for (Bio)Sensing" Biosensors 10, no. 7: 76. https://doi.org/10.3390/bios10070076
APA StyleYáñez-Sedeño, P., Campuzano, S., & Pingarrón, J. M. (2020). Screen-Printed Electrodes: Promising Paper and Wearable Transducers for (Bio)Sensing. Biosensors, 10(7), 76. https://doi.org/10.3390/bios10070076