Recent Progress in Electrochemical Immunosensors
Abstract
:1. Introduction
2. Voltammetric Immunosensors
2.1. Physical Adsorption of Antibodies
2.2. Chemical Immobilization of Antibodies
2.3. Other Methods
3. Amperometric Immunosensors
3.1. Physical Adsorption of Antibodies
3.2. Chemical Immobilization of Antibodies
4. Impedimetric Immunosensors
4.1. Physical Adsorption of Antibodies
4.2. Chemical Immobilization of Antibodies
5. ECL Immunosensors
5.1. Physical Adsorption of Antibodies
5.2. Chemical Immobilization of Antibodies
6. Conclusions and Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Park, M.; Heo, Y.J. Biosensing technologies for chronic diseases. BioChip J. 2021, 15, 1–13. [Google Scholar] [CrossRef]
- Park, M. Orientation control of the molecular recognition layer for improved sensitivity: A review. BioChip J. 2019, 13, 82–94. [Google Scholar] [CrossRef]
- Tu, J.; Torrente-Rodríguez, R.M.; Wang, M.; Gao, W. The era of digital health: A review of portable and wearable affinity biosensors. Adv. Funct. Mater. 2020, 30, 1906713. [Google Scholar] [CrossRef]
- Liu, D.; Wang, J.; Wu, L.; Huang, Y.; Zhang, Y.; Zhu, M.; Wang, Y.; Zhu, Z.; Yang, C. Trends in miniaturized biosensors for point-of-care testing. TrAC Trends Anal. Chem. 2020, 122, 115701. [Google Scholar] [CrossRef]
- Mi, F.; Guan, M.; Hu, C.; Peng, F.; Sun, S.; Wang, X. Application of lectin-based biosensor technology in the detection of foodborne pathogenic bacteria: A review. Analyst 2021, 146, 429–443. [Google Scholar] [CrossRef]
- Lee, D.; Park, K.; Seo, J. Recent advances in anti-inflammatory strategies for implantable biosensors and medical implants. BioChip J. 2020, 14, 48–62. [Google Scholar] [CrossRef] [Green Version]
- Rodovalho, V.; Alves, L.; Castro, A.; Madurro, J.; Brito-Madurro, A.; Santos, A. Biosensors applied to diagnosis of infectious diseases—An update. Austin J. Biosens. Bioelectron. 2015, 1, 10–15. [Google Scholar]
- Han, Y.D.; Chun, H.J.; Yoon, H.C. Low-cost point-of-care biosensors using common electronic components as transducers. BioChip J. 2020, 14, 32–47. [Google Scholar] [CrossRef] [Green Version]
- Harshavardhan, S.; Rajadas, S.E.; Vijayakumar, K.K.; Durai, W.A.; Ramu, A.; Mariappan, R. Electrochemical immunosensors—Working principle, types, scope, applications, and future prospects. In Bioelectrochemical Interface Engineering; Wiley: Hoboken, NJ, USA, 2019; pp. 343–369. [Google Scholar]
- Park, M. Surface display technology for biosensor applications: A review. Sensors 2020, 20, 2775. [Google Scholar] [CrossRef]
- Carrascosa, L.G.; Moreno, M.; Alvarez, M.; Lechuga, L.M. Nanomechanical biosensors: A new sensing tool. TrAC Trends Anal. Chem. 2006, 25, 196–206. [Google Scholar] [CrossRef]
- Lazcka, O.; Del Campo, F.J.; Munoz, F.X. Pathogen detection: A perspective of traditional methods and biosensors. Biosens. Bioelectron. 2007, 22, 1205–1217. [Google Scholar] [CrossRef]
- Deyev, S.; Lebedenko, E. Modern technologies for creating synthetic antibodies for clinical application. Acta Nat. 2009, 1, 32–51. [Google Scholar] [CrossRef]
- Kim, J.K.; Song, H.-M.; Jun, J.W.; Park, H.J.; Lim, E.-S.; Lee, K.; Lee, S.; Kim, S. Clinical studies of Ci-5, Sol-gel encapsulated multiplex antibody microarray for quantitative fluorometric detection of simultaneous five different tumor antigens. BioChip J. 2019, 13, 378–386. [Google Scholar] [CrossRef]
- Kang, J.; Kim, M.-G. Advancements in DNA-assisted Immunosensors. BioChip J. 2020, 14, 18–31. [Google Scholar] [CrossRef] [Green Version]
- Hasan, A.; Nurunnabi, M.; Morshed, M.; Paul, A.; Polini, A.; Kuila, T.; Al Hariri, M.; Lee, Y.-K.; Jaffa, A.A. Recent advances in application of biosensors in tissue engineering. BioMed Res. Int. 2014, 2014, 307519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thévenot, D.R.; Toth, K.; Durst, R.A.; Wilson, G.S. Electrochemical biosensors: Recommended definitions and classification. Biosens. Bioelectron. 2001, 16, 121–131. [Google Scholar] [CrossRef]
- Hammond, J.L.; Formisano, N.; Estrela, P.; Carrara, S.; Tkac, J. Electrochemical biosensors and nanobiosensors. Essays Biochem. 2016, 60, 69–80. [Google Scholar]
- Li, H.; Liu, X.; Li, L.; Mu, X.; Genov, R.; Mason, A.J. CMOS electrochemical instrumentation for biosensor microsystems: A review. Sensors 2017, 17, 74. [Google Scholar] [CrossRef]
- Juska, V.B.; Pemble, M.E. A critical review of electrochemical glucose sensing: Evolution of biosensor platforms based on advanced nanosystems. Sensors 2020, 20, 6013. [Google Scholar] [CrossRef]
- Zhang, S.; Wright, G.; Yang, Y. Materials and techniques for electrochemical biosensor design and construction. Biosens. Bioelectron. 2000, 15, 273–282. [Google Scholar] [CrossRef]
- Schmidt-Speicher, L.M.; Länge, K. Microfluidic integration for electrochemical biosensor applications. Curr. Opin. Electrochem. 2021, 29, 100755. [Google Scholar] [CrossRef]
- Porada, R.; Jedlińska, K.; Lipińska, J.; Baś, B. Voltammetric sensors with laterally placed working electrodes: A review. J. Electrochem. Soc. 2020, 167, 037536. [Google Scholar] [CrossRef]
- Hussain, G.; Silvester, D.S. Comparison of voltammetric techniques for ammonia sensing in ionic liquids. Electroanalysis 2018, 30, 75–83. [Google Scholar] [CrossRef]
- Amro, A.N. Voltammetric method development for itopride assay in a pharmaceutical formulation. Curr. Pharm. Anal. 2020, 16, 312–318. [Google Scholar] [CrossRef]
- Park, M.; Kim, J.; Kim, K.; Pyun, J.C.; Sung, G.Y. Parylene-coated polytetrafluoroethylene-membrane-based portable urea sensor for real-time monitoring of urea in peritoneal dialysate. Sensors 2019, 19, 4560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.Y.; Sung, G.Y.; Park, M. Efficient portable urea biosensor based on urease immobilized membrane for monitoring of physiological fluids. Biomedicines 2020, 8, 596. [Google Scholar] [CrossRef] [PubMed]
- Pallela, R.; Chandra, P.; Noh, H.-B.; Shim, Y.-B. An amperometric nanobiosensor using a biocompatible conjugate for early detection of metastatic cancer cells in biological fluid. Biosens. Bioelectron. 2016, 85, 883–890. [Google Scholar] [CrossRef] [PubMed]
- Mistry, K.K.; Layek, K.; Mahapatra, A.; RoyChaudhuri, C.; Saha, H. A review on amperometric-type immunosensors based on screen-printed electrodes. Analyst 2014, 139, 2289–2311. [Google Scholar] [CrossRef]
- Ribeiro, S.H.; Alves, L.M.; Flauzino, J.M.; Moço, A.C.; Segatto, M.S.; Silva, J.P.; Borges, L.F.; Madurro, J.M.; Madurro, A.G. Reusable immunosensor for detection of C-reactive protein in human serum. Electroanalysis 2020, 32, 2316–2322. [Google Scholar] [CrossRef]
- Trindade, E.K.; Silva, B.V.; Dutra, R.F. A probeless and label-free electrochemical immunosensor for cystatin C detection based on ferrocene functionalized-graphene platform. Biosens. Bioelectron. 2019, 138, 111311. [Google Scholar] [CrossRef]
- Abad, J.M.; Puertas, S.; Pérez, D.; Sánchez-Espinel, C. Design and development of antibody functionalized gold nanoparticles for biomedical applications. J. Nanosci. Nanotechnol. 2021, 21, 2834–2840. [Google Scholar] [CrossRef]
- Zhou, X.; Yang, L.; Tan, X.; Zhao, G.; Xie, X.; Du, G. A robust electrochemical immunosensor based on hydroxyl pillar [5] arene@ AuNPs@ g-C3N4 hybrid nanomaterial for ultrasensitive detection of prostate specific antigen. Biosens. Bioelectron. 2018, 112, 31–39. [Google Scholar] [CrossRef]
- Suresh, L.; Brahman, P.K.; Reddy, K.R.; Bondili, J. Development of an electrochemical immunosensor based on gold nanoparticles incorporated chitosan biopolymer nanocomposite film for the detection of prostate cancer using PSA as biomarker. Enzyme Microb. Technol. 2018, 112, 43–51. [Google Scholar] [CrossRef]
- Zhang, D.; Li, W.; Ma, Z. Improved sandwich-format electrochemical immunosensor based on “smart” SiO2@ polydopamine nanocarrier. Biosens. Bioelectron. 2018, 109, 171–176. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, L.; Liu, X.; Ren, Y.; Xu, K.; Zhang, N.; Sun, X.; Yang, X.; Ren, X.; Wei, Q. A dual-mode PCT electrochemical immunosensor with CuCo2S4 bimetallic sulfides as enhancer. Biosens. Bioelectron. 2020, 163, 112280. [Google Scholar] [CrossRef]
- Amani, J.; Maleki, M.; Khoshroo, A.; Sobhani-Nasab, A.; Rahimi-Nasrabadi, M. An electrochemical immunosensor based on poly p-phenylenediamine and graphene nanocomposite for detection of neuron-specific enolase via electrochemically amplified detection. Anal. Biochem. 2018, 548, 53–59. [Google Scholar] [CrossRef]
- Khoshroo, A.; Mazloum-Ardakani, M.; Forat-Yazdi, M. Enhanced performance of label-free electrochemical immunosensor for carbohydrate antigen 15-3 based on catalytic activity of cobalt sulfide/graphene nanocomposite. Sens. Actuators B Chem. 2018, 255, 580–587. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, Y.; Ding, S.; Fan, J.; Luo, Z.; Liu, K.; Shi, Q.; Liu, W.; Zang, G. A highly sensitive label-free electrochemical immunosensor based on AuNPs-PtNPs-MOFs for nuclear matrix protein 22 analysis in urine sample. J. Electroanal. Chem. 2019, 834, 33–42. [Google Scholar] [CrossRef]
- Assari, P.; Rafati, A.A.; Feizollahi, A.; Joghani, R.A. Fabrication of a sensitive label free electrochemical immunosensor for detection of prostate specific antigen using functionalized multi-walled carbon nanotubes/polyaniline/AuNPs. Mater. Sci. Eng. C 2020, 115, 111066. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.-C.; Liu, C.-H.; Wu, W.-C. Electrochemical immunosensor for serum parathyroid hormone using voltammetric techniques and a portable simulator. Anal. Chim. Acta 2021, 1143, 84–92. [Google Scholar] [CrossRef]
- Jung, Y.; Jeong, J.Y.; Chung, B.H. Recent advances in immobilization methods of antibodies on solid supports. Analyst 2008, 133, 697–701. [Google Scholar] [CrossRef] [PubMed]
- Shamsipur, M.; Emami, M.; Farzin, L.; Saber, R. A sandwich-type electrochemical immunosensor based on in situ silver deposition for determination of serum level of HER2 in breast cancer patients. Biosens. Bioelectron. 2018, 103, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Rauf, S.; Mishra, G.K.; Azhar, J.; Mishra, R.K.; Goud, K.Y.; Nawaz, M.A.H.; Marty, J.L.; Hayat, A. Carboxylic group riched graphene oxide based disposable electrochemical immunosensor for cancer biomarker detection. Anal. Biochem. 2018, 545, 13–19. [Google Scholar] [CrossRef]
- Devi, K.S.; Krishnan, U.M. Microfluidic electrochemical immunosensor for the determination of cystatin C in human serum. Microchim. Acta 2020, 187, 585. [Google Scholar] [CrossRef] [PubMed]
- Kalyani, T.; Sangili, A.; Nanda, A.; Prakash, S.; Kaushik, A.; Jana, S.K. Bio-nanocomposite based highly sensitive and label-free electrochemical immunosensor for endometriosis diagnostics application. Bioelectrochemistry 2021, 139, 107740. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Cai, J.; Li, W.; Gou, X.; Gou, Y.; Li, D.; Hu, F. A novel electrochemical immunosensor based on PG for early screening of depression markers-heat shock protein 70. Biosens. Bioelectron. 2018, 111, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Kim, Y.J.; Shin, I.-S.; Kim, W.-H.; Lee, K.-N.; Seong, W.K. Electrochemical immunoassay based on indium tin oxide activity toward a alkaline phosphatase. BioChip J. 2019, 13, 387–393. [Google Scholar] [CrossRef]
- Won, S.-Y.; Chandra, P.; Hee, T.S.; Shim, Y.-B. Simultaneous detection of antibacterial sulfonamides in a microfluidic device with amperometry. Biosens. Bioelectron. 2013, 39, 204–209. [Google Scholar] [CrossRef]
- Chandra, P.; Noh, H.-B.; Won, M.-S.; Shim, Y.-B. Detection of daunomycin using phosphatidylserine and aptamer co-immobilized on Au nanoparticles deposited conducting polymer. Biosens. Bioelectron. 2011, 26, 4442–4449. [Google Scholar] [CrossRef]
- Mahato, K.; Kumar, S.; Srivastava, A.; Maurya, P.K.; Singh, R.; Chandra, P. Electrochemical immunosensors. In Handbook of Immunoassay Technologies; Elsevier: Amsterdam, The Netherlands, 2018; pp. 359–414. [Google Scholar]
- Lim, S.A.; Ahmed, M.U. Chapter 1—Introduction to immunosensors. In Immunosensors; The Royal Society of Chemistry: Cambridge, UK, 2019; pp. 1–20. [Google Scholar]
- Chutichetpong, P.; Cheeveewattanagul, N.; Srilohasin, P.; Rijiravanich, P.; Chaiprasert, A.; Surareungchai, W. Rapid screening drug susceptibility test in tuberculosis using sandwich electrochemical immunosensor. Anal. Chim. Acta 2018, 1025, 108–117. [Google Scholar] [CrossRef]
- Yan, Q.; Yang, Y.; Tan, Z.; Liu, Q.; Liu, H.; Wang, P.; Chen, L.; Zhang, D.; Li, Y.; Dong, Y. A label-free electrochemical immunosensor based on the novel signal amplification system of AuPdCu ternary nanoparticles functionalized polymer nanospheres. Biosens. Bioelectron. 2018, 103, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Yang, Y.; Ma, C.; Song, Y.; Qiao, X.; Hong, C. A sandwich-type electrochemical immunosensor for ultrasensitive detection of multiple tumor markers using an electrical signal difference strategy. Talanta 2020, 219, 121322. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Y.; Lv, H.; Feng, J.; Gao, Z.; Wang, P.; Dong, Y.; Liu, Q.; Zhao, Z. Sandwich-type electrochemical immunosensor based on Au@ Ag supported on functionalized phenolic resin microporous carbon spheres for ultrasensitive analysis of α-fetoprotein. Biosens. Bioelectron. 2018, 106, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zhang, S.; Jia, Y.; Li, Y.; Wang, P.; Liu, Q.; Xu, Z.; Li, X.; Dong, Y. Sandwich-type electrochemical immunosensor for sensitive detection of CEA based on the enhanced effects of Ag NPs@ CS spaced Hemin/rGO. Biosens. Bioelectron. 2019, 126, 785–791. [Google Scholar] [CrossRef] [PubMed]
- Yola, M.L.; Atar, N. Amperometric galectin-3 immunosensor-based gold nanoparticle-functionalized graphitic carbon nitride nanosheets and core–shell Ti-MOF@ COFs composites. Nanoscale 2020, 12, 19824–19832. [Google Scholar] [CrossRef]
- Yan, Q.; Cao, L.; Dong, H.; Tan, Z.; Hu, Y.; Liu, Q.; Liu, H.; Zhao, P.; Chen, L.; Liu, Y. Label-free immunosensors based on a novel multi-amplification signal strategy of TiO2-NGO/Au@ Pd hetero-nanostructures. Biosens. Bioelectron. 2019, 127, 174–180. [Google Scholar] [CrossRef]
- Martínez-Periñán, E.; Sánchez-Tirado, E.; González-Cortés, A.; Barderas, R.; Sánchez-Puelles, J.M.; Martínez-Santamaría, L.; Campuzano, S.; Yáñez-Sedeño, P.; Pingarrón, J. Amperometric determination of endoglin in human serum using disposable immunosensors constructed with poly (pyrrolepropionic) acid-modified electrodes. Electrochim. Acta 2018, 292, 887–894. [Google Scholar] [CrossRef]
- Ehzari, H.; Samimi, M.; Safari, M.; Gholivand, M.B. Label-free electrochemical immunosensor for sensitive HER2 biomarker detection using the core-shell magnetic metal-organic frameworks. J. Electroanal. Chem. 2020, 877, 114722. [Google Scholar] [CrossRef]
- Hou, Y.-H.; Wang, J.-J.; Jiang, Y.-Z.; Lv, C.; Xia, L.; Hong, S.-L.; Lin, M.; Lin, Y.; Zhang, Z.-L.; Pang, D.-W. A colorimetric and electrochemical immunosensor for point-of-care detection of enterovirus 71. Biosens. Bioelectron. 2018, 99, 186–192. [Google Scholar] [CrossRef]
- Razzino, C.A.; Serafín, V.; Gamella, M.; Pedrero, M.; Montero-Calle, A.; Barderas, R.; Calero, M.; Lobo, A.O.; Yáñez-Sedeño, P.; Campuzano, S. An electrochemical immunosensor using gold nanoparticles-PAMAM-nanostructured screen-printed carbon electrodes for tau protein determination in plasma and brain tissues from Alzheimer patients. Biosens. Bioelectron. 2020, 163, 112238. [Google Scholar] [CrossRef]
- Guan, J.-G.; Miao, Y.-Q.; Zhang, Q.-J. Impedimetric biosensors. J. Biosci. Bioeng. 2004, 97, 219–226. [Google Scholar] [CrossRef]
- Bhand, S.; Bacher, G. Impedimetric sensors in environmental analysis: An overview. In Environmental, Chemical and Medical Sensors; Elsevier: Amsterdam, The Netherlands, 2018; pp. 67–85. [Google Scholar]
- Manzoor, S.; Husain, S.; Somvanshi, A.; Fatema, M. Investigation of relaxation phenomenon in lanthanum orthoferrite extracted through complex impedance and electric modulus spectroscopy. J. Appl. Phys. 2020, 128, 064101. [Google Scholar] [CrossRef]
- Prodromidis, M.I. Impedimetric immunosensors—A review. Electrochim. Acta 2010, 55, 4227–4233. [Google Scholar] [CrossRef]
- Le, H.T.N.; Kim, J.; Park, J.; Cho, S. A review of electrical impedance characterization of cells for label-free and real-time assays. BioChip J. 2019, 13, 295–305. [Google Scholar]
- Castizo-Olier, J.; Irurtia, A.; Jemni, M.; Carrasco-Marginet, M.; Fernandez-Garcia, R.; Rodriguez, F.A. Bioelectrical impedance vector analysis (BIVA) in sport and exercise: Systematic review and future perspectives. PLoS ONE 2018, 13, e0197957. [Google Scholar]
- Grossi, M.; Riccò, B. Electrical impedance spectroscopy (EIS) for biological analysis and food characterization: A review. J. Sens. Sens. Syst. 2017, 6, 303–325. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Tang, Q.; Zhang, Y.; Wang, J.; Stimming, U.; Lee, A.A. Identifying degradation patterns of lithium ion batteries from impedance spectroscopy using machine learning. Nat. Commun. 2020, 11, 1706. [Google Scholar] [CrossRef]
- Aydin, E.B.; Aydin, M.; Sezginturk, M.K. Advances in electrochemical immunosensors. Adv. Clin. Chem. 2019, 92, 1–57. [Google Scholar]
- Han, E.; Li, X.; Zhang, Y.; Zhang, M.; Cai, J.; Zhang, X. Electrochemical immunosensor based on self-assembled gold nanorods for label-free and sensitive determination of Staphylococcus aureus. Anal. Biochem. 2020, 611, 113982. [Google Scholar] [CrossRef]
- Malla, P.; Chen, G.-C.; Liao, H.-P.; Liu, C.-H.; Wu, W.-C. Label-free parathyroid hormone immunosensor using nanocomposite modified carbon electrode. J. Electroanal. Chem. 2021, 880, 114917. [Google Scholar] [CrossRef]
- Nawaz, M.H.; Hayat, A.; Catanante, G.; Latif, U.; Marty, J.L. Development of a portable and disposable NS1 based electrochemical immunosensor for early diagnosis of dengue virus. Anal. Chim. Acta 2018, 1026, 1–7. [Google Scholar] [CrossRef]
- Nessark, F.; Eissa, M.; Baraket, A.; Zine, N.; Nessark, B.; Zouaoui, A.; Bausells, J.; Errachid, A. Capacitance polypyrrole-based impedimetric immunosensor for interleukin-10 cytokine detection. Electroanalysis 2020, 32, 1795–1806. [Google Scholar] [CrossRef]
- Sadighbayan, D.; Sadighbayan, K.; Tohid-Kia, M.R.; Khosroushahi, A.Y.; Hasanzadeh, M. Development of electrochemical biosensors for tumor marker determination towards cancer diagnosis: Recent progress. TrAC Trends Anal. Chem. 2019, 118, 73–88. [Google Scholar] [CrossRef]
- Aydın, M.; Aydın, E.B.; Sezgintürk, M.K. A highly selective electrochemical immunosensor based on conductive carbon black and star PGMA polymer composite material for IL-8 biomarker detection in human serum and saliva. Biosens. Bioelectron. 2018, 117, 720–728. [Google Scholar] [CrossRef] [PubMed]
- Aydın, E.B.; Aydın, M.; Sezgintürk, M.K. Electrochemical immunosensor based on chitosan/conductive carbon black composite modified disposable ITO electrode: An analytical platform for p53 detection. Biosens. Bioelectron. 2018, 121, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Aydın, M.; Aydın, E.B.; Sezgintürk, M.K. A disposable immunosensor using ITO based electrode modified by a star-shaped polymer for analysis of tumor suppressor protein p53 in human serum. Biosens. Bioelectron. 2018, 107, 1–9. [Google Scholar] [CrossRef]
- Aydın, E.B.; Aydın, M.; Sezgintürk, M.K. Fabrication of electrochemical immunosensor based on acid-substituted poly (pyrrole) polymer modified disposable ITO electrode for sensitive detection of CCR4 cancer biomarker in human serum. Talanta 2021, 222, 121487. [Google Scholar] [CrossRef]
- Aydın, E.B.; Aydın, M.; Sezgintürk, M.K. Highly selective and sensitive sandwich immunosensor platform modified with MUA-capped GNPs for detection of spike Receptor Binding Domain protein: A precious marker of COVID 19 infection. Sens. Actuators B Chem. 2021, 345, 130355. [Google Scholar] [CrossRef]
- Simão, E.P.; Frías, I.A.; Andrade, C.A.; Oliveira, M.D. Nanostructured electrochemical immunosensor for detection of serological alkaline phosphatase. Colloids Surf. B. Biointerfaces 2018, 171, 413–418. [Google Scholar] [CrossRef]
- Vasantham, S.; Alhans, R.; Singhal, C.; Nagabooshanam, S.; Nissar, S.; Basu, T.; Ray, S.C.; Wadhwa, S.; Narang, J.; Mathur, A. Paper based point of care immunosensor for the impedimetric detection of cardiac troponin I biomarker. Biomed. Microdevices 2020, 22, 6. [Google Scholar] [CrossRef]
- Babamiri, B.; Bahari, D.; Salimi, A. Highly sensitive bioaffinity electrochemiluminescence sensors: Recent advances and future directions. Biosens. Bioelectron. 2019, 142, 111530. [Google Scholar] [CrossRef]
- Li, L.; Chen, Y.; Zhu, J.J. Recent advances in electrochemiluminescence analysis. Anal. Chem. 2017, 89, 358–371. [Google Scholar] [CrossRef]
- Richter, M.M. Electrochemiluminescence (ecl). Chem. Rev. 2004, 104, 3003–3036. [Google Scholar] [CrossRef] [PubMed]
- Zhuo, Y.; Wang, H.J.; Lei, Y.M.; Zhang, P.; Liu, J.L.; Chai, Y.Q.; Yuan, R. Electrochemiluminescence biosensing based on different modes of switching signals. Analyst 2018, 143, 3230–3248. [Google Scholar] [CrossRef]
- Bard, A.J. Electrogenerated Chemiluminescence; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Hu, L.; Xu, G. Applications and trends in electrochemiluminescence. Chem. Soc. Rev. 2010, 39, 3275–3304. [Google Scholar] [CrossRef]
- Fähnrich, K.A.; Pravda, M.; Guilbault, G.G. Recent applications of electrogenerated chemiluminescence in chemical analysis. Talanta 2001, 54, 531–559. [Google Scholar] [CrossRef]
- Pyati, R.; Richter, M.M. ECL—Electrochemical luminescence. Ann. Rep. Sect. C Phys. Chem. 2007, 103, 12–78. [Google Scholar] [CrossRef]
- Muzyka, K. Current trends in the development of the electrochemiluminescent immunosensors. Biosens. Bioelectron. 2014, 54, 393–407. [Google Scholar] [CrossRef]
- Miao, W. Electrogenerated chemiluminescence and its biorelated applications. Chem. Rev. 2008, 108, 2506–2553. [Google Scholar] [CrossRef]
- Marquette, C.A.; Blum, L.J. Electro-chemiluminescent biosensing. Anal. Bioanal. Chem. 2008, 390, 155–168. [Google Scholar] [CrossRef] [PubMed]
- Forster, R.J.; Bertoncello, P.; Keyes, T.E. Electrogenerated chemiluminescence. Annu. Rev. Anal. Chem. 2009, 2, 359–385. [Google Scholar] [CrossRef] [Green Version]
- Bronstein, I.; Olesen, C.E. Detection methods using chemiluminescence. In Molecular Methods for Virus Detection; Elsevier: Amsterdam, The Netherlands, 1995; pp. 147–174. [Google Scholar]
- Shipkova, M.; Vogeser, M.; Ramos, P.A.; Verstraete, A.G.; Orth, M.; Schneider, C.; Wallemacq, P. Multi-center analytical evaluation of a novel automated tacrolimus immunoassay. Clin. Biochem. 2014, 47, 1069–1077. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Yang, A.; Luo, W.; Liu, H.; Liu, X.; Zhao, W. Ultrasensitive detection of cyclin D1 by a self-enhanced ECL immunosensor based on Bi 2 S 3 quantum dots. Analyst 2021, 146, 2057–2064. [Google Scholar] [CrossRef]
- Du, D.; Shu, J.; Guo, M.; Haghighatbin, M.A.; Yang, D.; Bian, Z.; Cui, H. Potential-resolved differential electrochemiluminescence immunosensor for cardiac troponin I based on MOF-5-wrapped CdS quantum dot nanoluminophores. Anal. Chem. 2020, 92, 14113–14121. [Google Scholar] [CrossRef]
- Wang, H.; Chai, Y.; Li, H.; Yuan, R. Sensitive electrochemiluminescent immunosensor for diabetic nephropathy analysis based on tris (bipyridine) ruthenium (II) derivative with binary intramolecular self-catalyzed property. Biosens. Bioelectron. 2018, 100, 35–40. [Google Scholar] [CrossRef]
- Yang, H.; Wang, H.; Xiong, C.; Chai, Y.; Yuan, R. Highly sensitive electrochemiluminescence immunosensor based on ABEI/H2O2 system with PFO dots as enhancer for detection of kidney injury molecule-1. Biosens. Bioelectron. 2018, 116, 16–22. [Google Scholar] [CrossRef]
- Zheng, X.; Mo, G.; He, Y.; Qin, D.; Jiang, X.; Mo, W.; Deng, B. An electrochemiluminescence immunosensor based on ZnSe@ ZnS QDs composite for CEA detection in human serum. J. Electroanal. Chem. 2019, 844, 132–141. [Google Scholar] [CrossRef]
- Lian, X.; Feng, Z.; Tan, R.; Mi, X.; Tu, Y. Direct electrochemiluminescent immunosensing for an early indication of coronary heart disease using dual biomarkers. Anal. Chim. Acta 2020, 1110, 82–89. [Google Scholar] [CrossRef]
- Qin, D.; Jiang, X.; Mo, G.; Feng, J.; Deng, B. Boron nitride quantum dots as electrochemiluminescence coreactants of rGO@ Au@ Ru–SiO2 for label-free detection of AFP in human serum. Electrochim. Acta 2020, 335, 135621. [Google Scholar] [CrossRef]
- Khan, M.S.; Ameer, H.; Chi, Y. Label-free and ultrasensitive electrochemiluminescent immunosensor based on novel luminophores of Ce2Sn2O7 nanocubes. Anal. Chem. 2021, 93, 3618–3625. [Google Scholar] [CrossRef] [PubMed]
- Babamiri, B.; Hallaj, R.; Salimi, A. Ultrasensitive electrochemiluminescence immunosensor for determination of hepatitis B virus surface antigen using CdTe@ CdS-PAMAM dendrimer as luminescent labels and Fe3O4 nanoparticles as magnetic beads. Sens. Actuators B Chem. 2018, 254, 551–560. [Google Scholar] [CrossRef]
- Fang, D.; Zhang, S.; Dai, H.; Lin, Y. An ultrasensitive ratiometric electrochemiluminescence immunosensor combining photothermal amplification for ovarian cancer marker detection. Biosens. Bioelectron. 2019, 146, 111768. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Jiang, W.; Zhou, Y.; Yin, H.; Ai, S. Electrochemiluminescence immunosensor for 5-hydroxymethylcytosine detection based on PAMAM-nanosilver-nitrogen doped graphene nanocomposite. J. Electroanal. Chem. 2020, 877, 114646. [Google Scholar] [CrossRef]
- Yang, C.; Guo, Q.; Lu, Y.; Zhang, B.; Nie, G. Ultrasensitive “signal-on” electrochemiluminescence immunosensor for prostate-specific antigen detection based on novel nanoprobe and poly (indole-6-carboxylic acid)/flower-like Au nanocomposite. Sens. Actuators B Chem. 2020, 303, 127246. [Google Scholar] [CrossRef]
Methods | Immunoaffinity Layer | Analyte | LOD | Detection Range | Ref. |
---|---|---|---|---|---|
DPV | GO/tryamine/Ab 1 | CRP | 1.25 µg/L (LOQ) | 1.09–100 µg/L | [30] |
AuNP/Ab | PSA | 0.12 pg/mL | 0.0005–10.00 ng/mL | [33] | |
Graphene/PPD/AuNP/Ab | NSE | 0.3 ng/mL | 1–1000 ng/mL | [37] | |
CoS2-graphene/AuNP/Ab | CA15-3 | 0.03 U/mL | 0.1–150 U/mL | [38] | |
Graphene/MOFs/Ab | NMP22 | 1.7 pg/mL | 0.005–20 ng/mL | [39] | |
MWCNT/PANI/AuNP/Ab | PSA | 0.5 pg/mL | 1.66 ag/mL–1.3 ng/mL | [40] | |
APTMS-Fe3O4/Ab | HER2 | 20 fg/mL | 5 ×10−4–50 ng/mL | [43] | |
GO–COOH/Ab | Mucin1 | 0.04 U/mL | 0.1–2 U/mL | [44] | |
GO–CS/Ab | CysC | 0.0078 mg/mL | 1–10 mg/mL | [45] | |
Graphene/Antigen | HSP70 | 0.02 ng/mL | 0.0448–100 ng/mL | [47] | |
DPV SWV | MWCNT/AuNP/Ab | PTH | 886 fg/mL 65 fg/mL | 1–300 pg/mL | [41] |
SWV | AF-GO/PEI/Ab | CysC | 0.03 ng/mL | 0.1–1000 ng/mL | [31] |
CS/AuNP/Ab | PSA | 0.001 ng/mL | 1–18 ng/mL | [34] | |
PANI/AuNP/Ab | PSA | 1.25 fg/mL | 0.01–100 ng/mL | [35] | |
CS-MWCNT-Fe3O4/Ab | CA19-9 | 0.163 pg/mL | 0.001–100 ng/mL | [46] | |
SWV Amperometry | Au/Ab | procalcitonin | 82.6 fg/mL 95.4 fg/mL | 0.0001–50 ng/mL | [36] |
CV | Avidin/biotinylated Ab | MMP-9 Apo-A4 | 0.21 ng/mL 6.6 ng/mL | 0.4–100 ng/mL 10–100 ng/mL | [48] |
Amperometry | Ab | MPT64 | 0.43 ng/mL | 0.3–50 ng/mL 50–1000 ng/mL | [53] |
N-GQD/AuPdCu/Ab | HBsAg | 3.3 fg/mL | 10 fg/mL–50 ng/mL | [54] | |
PtAg/Ab | CEA AFP | 0.0005 ng/mL 0.001 ng/mL | 0.001–40 ng/mL 0.005–100 ng/mL | [55] | |
AuNP/Ab | AFP | 6.7 fg/mL | 20 fg/mL–100 ng/mL | [56] | |
AuNP/Ab | CEA | 6.7 fg/mL | 20 fg/mL–200 ng/mL | [57] | |
g-C3N4/AuNP/Ab | galectin-3 | 25.0 fg/mL | 0.0001–20.0 ng/mL | [58] | |
TiO2-rGO/AuNR@Pd/Ab | HE4Ag | 13.33 fM | 40 fM–60 nM | [59] | |
pPPA/Ab | Endoglin | 140 pg/mL | 0.18–20 ng/mL | [60] | |
Fe3O4@TMU-21/MWCNT/Ab | HER2 | 0.3 pg/mL | 1.0 pg/mL–100 ng/mL | [61] | |
AuNP/Ab | EV71 | 0.01 ng/mL | 0.1–600 ng/mL | [62] | |
AuNP-PAMAM/Ab | tau | 1.7 pg/mL | 6–5000 pg/mL | [63] | |
EIS | PDDA/PSS/AuNR/Ab | S. aureus | 2.4 × 102 CFU/mL | 1.8 × 103–1.8 × 107 CFU/mL | [73] |
BSA/Ab | NS1 | 0.3 ng/mL | 1–200 ng/mL | [75] | |
SPy-PPy/Ab | IL-10 | 0.347 pg/mL | 1–50 pg/mL | [76] | |
PHA/Ab | IL-8 | 7.5 fg/mL | 0.025–3 pg/mL | [77] | |
PGMA-CB/Ab | IL-8 | 3.3 fg/mL | 0.01–3 pg/mL | [78] | |
Chitosan-CB | P53 | 3 fg/mL | 0.01–2 pg/mL | [79] | |
PGMA/Ab | P53 | 7 fg/mL | 0.02–4 pg/mL | [80] | |
PPy-COOH/Ab | CCR4 | 6.4 fg/mL | 0.02–8 pg/mL | [81] | |
AuNP-SAM/Ab | SARS-CoV-2 | 0.577 fg/mL | 0.002–100 pg/mL | [82] | |
MWCNT–AuNP/Ab | ALP | 0.25 IU/L | 0.5–600 IU/L | [83] | |
MWCNT-COOH/Ab | cTnI | 0.05 ng/mL | 0.05–50 ng/mL | [84] | |
EIS CV | MWCNT–AuNP/Ab | PTH | 0.033 pg/mL 0.092 pg/mL | 1–300 pg/mL | [74] |
ECL | PDA-AgNP/Ab | Cyclin D1 | 6.34 fg/mL | 10 fg/mL–1 μg/mL | [99] |
CdSQD@MOF-5/AgNP-Ab | cTnI | 5.01 fg/mL | 0.01–1000 pg/mL | [100] | |
AuNP/Ab | Col IV | 0.17 pg/mL | 0.5 pg/mL–7.2 ng/mL | [101] | |
AuNP/Ab | KIM-1 | 16.7 fg/mL | 50 fg/mL–1 ng/mL | [102] | |
AuNP/Ab | CEA | 0.029 pg/mL | 0.0001–100 ng/mL | [103] | |
APTMS/Au–Co NPs/Ab | LDL Ox-LDL | 0.256 pg/mL 0.330 pg/mL | 0.420–100 pg/mL 0.5–60 pg/mL | [104] | |
rGO@AuNP@RU-SiO2/Ab | AFP | 0.03 pg/mL | 0.0001–100 ng/mL | [105] | |
Ce2Sn2O7-AuNP/Ab | CEA | 0.53 pg/mL | 0.001–70 ng/mL | [106] | |
Fe3O4/Ab | HBsAg | 0.80 fg/mL | 3 fg/mL–0.3 ng/mL | [107] | |
g-C3N4@SiO2/Ab | HE4 | 3.3×× 10−6 ng/mL | 1.0×× 10−5–10 ng/mL | [108] | |
MWCNT/Ab | 5hmC | 2.47 pM | 10 pM–30 nM | [109] | |
AuNP/PICA/Ab | PSA | 0.44 pg/mL | 0.001–100 ng/mL | [110] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.; Park, M. Recent Progress in Electrochemical Immunosensors. Biosensors 2021, 11, 360. https://doi.org/10.3390/bios11100360
Kim J, Park M. Recent Progress in Electrochemical Immunosensors. Biosensors. 2021; 11(10):360. https://doi.org/10.3390/bios11100360
Chicago/Turabian StyleKim, JeeYoung, and Min Park. 2021. "Recent Progress in Electrochemical Immunosensors" Biosensors 11, no. 10: 360. https://doi.org/10.3390/bios11100360
APA StyleKim, J., & Park, M. (2021). Recent Progress in Electrochemical Immunosensors. Biosensors, 11(10), 360. https://doi.org/10.3390/bios11100360