Self-Powered Biosensor for Specifically Detecting Creatinine in Real Time Based on the Piezo-Enzymatic-Reaction Effect of Enzyme-Modified ZnO Nanowires
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of ZnO NWs
2.3. Device Fabrication
2.4. Characterization and Measurement
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Choe, W.; Chae, J.D.; Lee, B.H.; Kim, S.H.; Park, S.Y.; Nimse, S.B.; Kim, J.; Warkad, S.D.; Song, K.S.; Oh, A.C.; et al. 9G Test (TM) Cancer/Lung: A Desirable Companion to LDCT for Lung Cancer Screening. Cancers 2020, 12, 3192. [Google Scholar] [CrossRef] [PubMed]
- Song, K.S.; Nimse, S.B.; Warkad, S.D.; Oh, A.C.; Kim, T.; Hong, Y.J. Quantification of CYFRA 21-1 and a CYFRA 21-1-anti-CYFRA 21-1 autoantibody immune complex for detection of early stage lung cancer. Chem. Commun. 2019, 55, 10984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, M.; Heo, Y.J. Biosensing Technologies for Chronic Diseases. Biochip J. 2021, 15, 1–13. [Google Scholar] [CrossRef]
- Kim, J.Y.; Sung, G.Y.; Park, M. Efficient Portable Urea Biosensor Based on Urease Immobilized Membrane for Monitoring of Physiological Fluids. Biomedicines 2020, 8, 596. [Google Scholar] [CrossRef] [PubMed]
- Gao, D.H.; Yang, X.H.; Teng, P.P.; Luo, M.; Zhang, H.X.; Liu, Z.H.; Yang, J.; Li, Z.N.; Wen, X.Y.; Yuan, L.B.; et al. In-fiber optofluidic online SERS detection of trace uremia toxin. Opt. Lett. 2021, 46, 1101–1104. [Google Scholar] [CrossRef]
- Pundir, C.S.; Yadav, S.; Kumar, A. Creatinine sensors. Trends Analyt. Chem. 2013, 50, 42–52. [Google Scholar] [CrossRef]
- Lad, U.; Khokhar, S.; Kale, G.M. Electrochemical Creatinine Biosensors. Anal. Chem. 2008, 80, 7910–7917. [Google Scholar] [CrossRef] [Green Version]
- Wyss, M.; Kaddurah-Daouk, R. Creatine and creatinine metabolism. Physiol. Rev. 2000, 80, 1107–1213. [Google Scholar] [CrossRef]
- Killard, A.J.; Smyth, M.R. Creatinine biosensors: Principles and designs. Trends Biotechnol. 2000, 18, 433–437. [Google Scholar] [CrossRef]
- Panasyuk-Delaney, T.; Mirsky, V.M.; Wolfbeis, O.S. Capacitive creatinine sensor based on a photografted molecularly imprinted polymer. Electroanalysis 2002, 14, 221–224. [Google Scholar] [CrossRef]
- Cholongitas, E.; Marelli, L.; Kerry, A.; Senzolo, M.; Goodier, D.W.; Nair, D.; Thomas, M.; Patch, D.; Burroughs, A.K. Different methods of creatinine measurement significantly affect MELD scores. Liver 2007, 13, 523–529. [Google Scholar] [CrossRef]
- Narayanan, S.; Appletion, H.D. Creatinine—A Review. Clin. Chem. 1980, 26, 1119–1126. [Google Scholar] [CrossRef]
- Cirillo, M.; Laurenzi, M.; Mancini, M.; Zanchetti, A.; De Santo, N.G. Low muscular mass and overestimation of microalbuminuria by urinary albumin/creatinine ratio. Hypertension 2003, 47, 56–61. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.; Zhao, T.M.; Dai, Y.T.; Li, Q.; Fu, H.Y. Flexible nanosensors for non-invasive creatinine detection based on triboelectric nanogenerator and enzymatic reaction. Sens. Actuators A Phys. 2021, 320, 112585. [Google Scholar] [CrossRef]
- Guan, H.Y.; Lv, D.; Zhong, T.Y.; Dai, Y.T.; Xing, L.L.; Xue, X.Y.; Zhang, Y.; Zhan, Y. Self-powered, wireless-control, neural-stimulating electronic skin for in vivo characterization of synaptic plasticity. Nano Energy 2020, 67, 104182. [Google Scholar] [CrossRef]
- He, H.X.; Zhao, T.M.; Guan, H.Y.; Zhong, T.Y.; Zeng, H.; Xing, L.L.; Zhang, Y.; Xue, X.Y. A water-evaporation-induced self-charging hybrid power unit for application in the Internet of Things. Sci. Bull. 2019, 64, 1409–1417. [Google Scholar] [CrossRef] [Green Version]
- Dong, T.; Peng, P.; Jiang, F.M. Numerical modeling and analysis of the thermal behavior of NCM lithium-ion batteries subjected to very high C-rate discharge/charge operations. Int. J. Heat Mass Transf. 2018, 117, 261–272. [Google Scholar] [CrossRef]
- Sun, K.; Wei, T.S.; Ahn, B.Y.; Seo, J.Y.; Dillon, S.J.; Lewis, J.A. 3D Printing of Interdigitated Li-Ion Microbattery Architectures. Adv. Mater. 2013, 25, 4539–4543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, M.Y.; Wang, P.H.; Wang, Y.C.; Zhang, S.L.; Wang, A.C.; Zhang, C.L.; Wang, Z.J.; Pan, X.X.; Wang, Z.L. Soft and Robust Spring Based Triboelectric Nanogenerator for Harvesting Arbitrary Directional Vibration Energy and Self-Powered Vibration Sensing. Adv. Energy Mater. 2018, 8, 1702432. [Google Scholar] [CrossRef]
- Surmenev, R.A.; Orlova, T.; Chernozem, R.V.; Ivanova, A.A.; Bartasyte, A.; Mathur, S.; Surmeneva, M.A. Hybrid lead-free polymer-based nanocomposites with improved piezoelectric response for biomedical energy-harvesting applications: A review. Nano Energy 2019, 62, 475–506. [Google Scholar] [CrossRef] [Green Version]
- Shi, Q.F.; Wu, H.; Wang, H.; Wu, H.X.; Lee, C.K. Self-Powered Gyroscope Ball Using a Triboelectric Mechanism. Adv. Energy Mater. 2017, 7, 1701300. [Google Scholar] [CrossRef]
- Guo, H.Y.; Wen, Z.; Zi, Y.L.; Yeh, M.H.; Wang, J.; Zhu, L.P.; Hu, C.G.; Wang, Z.L. A Water-Proof Triboelectric-Electromagnetic Hybrid Generator for Energy Harvesting in Harsh Environments. Adv. Energy Mater. 2015, 6, 1501593. [Google Scholar] [CrossRef]
- Lee, H.; Kim, H.; Kim, D.Y.; Seo, Y. Pure Piezoelectricity Generation by a Flexible Nanogenerator Based on Lead Zirconate Titanate Nanofibers. ACS Omega 2019, 4, 2610–2617. [Google Scholar] [CrossRef] [Green Version]
- Jin, C.R.; Hao, N.J.; Xu, Z.; Trase, I.; Nie, Y.; Dong, L.; Closson, A.; Chen, Z.; Zhang, J.X.J. Flexible piezoelectric nanogenerators using metal-doped ZnO-PVDF films. Sens. Actuators A Phys. 2020, 305, 111912. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.Y.; Wang, J.C.; Liu, X.J.; Yang, L.; Liu, B.D.; Jiang, X. Fabrication of CuO/TiO2/Ti monolithic catalyst for efficient and stable CO oxidation. Adv. Mater. Interfaces 2021, 8, 21004400. [Google Scholar] [CrossRef]
- Kim, M.P.; Um, D.S.; Shin, Y.E.; Ko, H. High-Performance Triboelectric Devices via Dielectric Polarization: A Review. Nanoscale Res. Lett. 2021, 16, 35. [Google Scholar] [CrossRef]
- Wang, R.C.; Lin, Y.C.; Chen, P.T.; Chen, H.C.; Chiu, W.T. Anomalous output performance enhancement of RGO-based triboelectric nanogenerators by Cu-bonding. Nano Energy 2021, 86, 106126. [Google Scholar] [CrossRef]
- Li, S.Y.; Fan, Y.; Chen, H.Q.; Nie, J.H.; Liang, Y.X.; Tao, X.L.; Zhang, J.; Chen, X.Y.; Fu, E.G.; Wang, Z.L. Manipulating the triboelectric surface charge density of polymers by low-energy helium ion irradiation/implantation. Energy Environ. Sci. 2020, 13, 896–907. [Google Scholar] [CrossRef]
- Li, J.; Zhang, X.L.; Yang, B.; Zhang, C.; Xu, T.T.; Chen, L.X.; Yang, L.; Jin, X.; Liu, B.D. Template approach large-layered non-layer Ga-group two-dimensional crystals from printed skin of liquid gallium. Mater. Chem. Phys. 2021, 33, 4568–4577. [Google Scholar]
- Liu, N.J.; Chu, L.; Ahmad, W.; Hu, R.Y.; Luan, R.F.; Liu, W.; Yang, J.; Ma, Y.H.; Li, X.A. Low-pressure treatment of CuSCN hole transport layers for enhanced carbon-based perovskite solar cells. J. Power Sources 2021, 499, 229970. [Google Scholar] [CrossRef]
- Ma, Y.H.; Zhang, Y.W.; Zhang, H.Y.; Lv, H.; Hu, R.Y.; Liu, W.; Wang, S.L.; Jiang, M.; Chu, L.; Zhang, J.; et al. Effective carrier transport tuning of CuOx quantum dots hole interfacial layer for high-performance inverted perovskite solar cell. Appl. Surf. Sci. 2021, 547, 149117. [Google Scholar] [CrossRef]
- Xiang, C.H.; Liu, C.R.; Hao, C.L.; Wang, Z.K.; Che, L.F.; Zhou, X.F. A self-powered acceleration sensor with flexible materials based on triboelectric effect. Nano Energy 2017, 31, 469–477. [Google Scholar] [CrossRef]
- Luo, X.X.; Zhu, L.P.; Wang, Y.C.; Li, J.Y.; Nie, J.J.; Wang, Z.L. A Flexible Multifunctional Triboelectric Nanogenerator Based on MXene/PVA Hydrogel. Adv. Funct. Mater. 2021, 2104928. [Google Scholar] [CrossRef]
- Ashiba, H.; Oyamada, C.; Hosokawa, K.; Ueno, K.; Fujimaki, M. Sensitive Detection of C-Reactive Protein by One-Step Method Based on a Waveguide-Mode Sensor. Biosensors 2020, 20, 3258. [Google Scholar] [CrossRef]
- Mao, Y.P.; Zhu, Y.S.; Zhao, T.M.; Jia, C.J.; Bian, M.Y.; Li, X.X.; Liu, Y.G.; Liu, B.D. A Portable and Flexible Self-Powered Multifunctional Sensor for Real-Time Monitoring in Swimming. Biosensors 2021, 11, 147. [Google Scholar] [CrossRef] [PubMed]
- Xue, X.Y.; Qu, Z.; Fu, Y.M.; Yu, B.W.; Xing, L.L.; Zhang, Y. Self-powered electronic-skin for detecting glucose level in body fluid basing on piezo-enzymatic-reaction coupling process. Nano Energy 2016, 26, 148–156. [Google Scholar] [CrossRef]
- Zhao, T.M.; Fu, Y.M.; He, H.X.; Dong, C.Y.; Zhang, L.L.; Zeng, H.; Xing, L.L.; Xue, X.Y. Self-powered gustation electronic skin for mimicking taste buds based on piezoelectric-enzymatic reaction coupling process. Nanotechnology 2018, 29, 075501. [Google Scholar] [CrossRef] [PubMed]
- Mao, Y.P.; Shen, M.L.; Liu, B.; Xing, L.L.; Chen, S.; Xue, X.Y. Self-Powered Piezoelectric-Biosensing Textiles for the Physiological Monitoring and Time-Motion Analysis of Individual Sports. Sensors 2019, 19, 3310. [Google Scholar] [CrossRef] [Green Version]
- Patel, S.S.; Molnar, M.Z.; Tayek, J.A.; Ix, J.H.; Noori, N.; Benner, D.; Heymsfield, S.; Kopple, J.D.; Kovesdy, C.P.; Kalantar-Zadeh, K. Serum creatinine as a marker of muscle mass in chronic kidney disease: Results of a cross-sectional study and review of literature. J. Cachexia Sarcopenia Muscle 2013, 4, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Colombo, M.; McGurnaghan, S.J.; Blackbourn, L.A.K.; Dalton, R.N.; Dunger, D.; Bell, S.; Petrie, J.R.; Green, F.; MacRury, S.; McKnight, J.A.; et al. Comparison of serum and urinary biomarker panels with albumin/creatinine ratio in the prediction of renal function decline in type 1 diabetes. Diabetologia 2020, 63, 788–798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, W.X.; He, H.X.; Zhang, L.L.; Dong, C.Y.; Zeng, H.; Dai, Y.T.; Xing, L.L.; Zhang, Y.; Xue, X.Y. A Self-Powered Wearable Noninvasive Electronic-Skin for Perspiration Analysis Based on Piezo-Biosensing Unit Matrix of Enzyme/ZnO Nanoarrays. ACS Appl. Mater. Interfaces 2017, 9, 29526–29537. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.M.; Wang, Q.; Du, A. High piezo-photocatalytic efficiency of H2 production by CuS/ZnO. Mater. Lett. 2021, 294, 129752. [Google Scholar] [CrossRef]
- Vendruscolo, M.; Dobson, C.M. Dynamic visions of enzymatic reactions. Science 2006, 313, 1586–1587. [Google Scholar] [CrossRef] [PubMed]
Limit of Detection | Limit of Quantification | Size | Power Supply | Portability | |
---|---|---|---|---|---|
ACON U120smart | 0.08 mM | 0.08–2.56 mM | 27 × 18 × 14 cm | External power | Not portable |
On Call CMU060 | 0.08 mM | 0.08–2.56 mM | 14 × 13 × 4 cm | External power | Not portable |
This work | 1 × 10−5 mM | 1 × 10−5–1 × 10−1 mM | 2 × 3 × 0.2 mm | Self-powered | Portable |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Zi, G.; Liu, J.; Song, Y.; Zhao, X.; Wang, Q.; Zhao, T. Self-Powered Biosensor for Specifically Detecting Creatinine in Real Time Based on the Piezo-Enzymatic-Reaction Effect of Enzyme-Modified ZnO Nanowires. Biosensors 2021, 11, 342. https://doi.org/10.3390/bios11090342
Wang M, Zi G, Liu J, Song Y, Zhao X, Wang Q, Zhao T. Self-Powered Biosensor for Specifically Detecting Creatinine in Real Time Based on the Piezo-Enzymatic-Reaction Effect of Enzyme-Modified ZnO Nanowires. Biosensors. 2021; 11(9):342. https://doi.org/10.3390/bios11090342
Chicago/Turabian StyleWang, Meng, Guangting Zi, Jiajun Liu, Yutong Song, Xishan Zhao, Qi Wang, and Tianming Zhao. 2021. "Self-Powered Biosensor for Specifically Detecting Creatinine in Real Time Based on the Piezo-Enzymatic-Reaction Effect of Enzyme-Modified ZnO Nanowires" Biosensors 11, no. 9: 342. https://doi.org/10.3390/bios11090342
APA StyleWang, M., Zi, G., Liu, J., Song, Y., Zhao, X., Wang, Q., & Zhao, T. (2021). Self-Powered Biosensor for Specifically Detecting Creatinine in Real Time Based on the Piezo-Enzymatic-Reaction Effect of Enzyme-Modified ZnO Nanowires. Biosensors, 11(9), 342. https://doi.org/10.3390/bios11090342