Optical Biosensor Platforms Display Varying Sensitivity for the Direct Detection of Influenza RNA
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Synthesis of FEVER MB Probes and Respective Synthetic Targets
2.2. In Silico Inclusivity Test
2.3. FEVER MB Probe-RNA Hybridization Thermodynamics
2.4. Waveguide-Based Optical Biosensor Detection
2.5. Flow Cytometry Bead-Based Detection of Synthetic Influenza A Targets
2.6. Exonuclease Selection
2.7. Statistical Analysis
3. Results
3.1. In Silico Inclusivity Test against Influenza Sequences
3.2. RNA Detection Using Molecular Beacon Probes
3.2.1. Thermal Cycler
3.2.2. Waveguide-Based Optical Biosensor
3.2.3. Flow Cytometer
3.3. RNA Detection Using Exonuclease Selection
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Influenza (Seasonal). Available online: www.who.int/mediacentre/factsheets/fs211/en (accessed on 8 February 2018).
- Henritzi, D.; Hoffmann, B.; Wacheck, S.; Pesch, S.; Herrler, G.; Beer, M.; Harder, T.C. A newly developed tetraplex real-time RT-PCR for simultaneous screening of influenza virus types A, B, C and D. Influenza Other Respir. Viruses 2019, 13, 71–82. [Google Scholar] [CrossRef]
- Long, J.S.; Mistry, B.; Haslam, S.M.; Barclay, W.S. Host and viral determinants of influenza A virus species specificity. Nat. Rev. Microbiol. 2019, 17, 67–81. [Google Scholar] [CrossRef]
- Thompson, W.W.; Shay, D.K.; Weintraub, E.; Brammer, L.; Bridges, C.B.; Cox, N.J.; Fukuda, K. Influenza-associated hospitalizations in the United States. JAMA 2004, 292, 1333–1340. [Google Scholar] [CrossRef]
- Yoon, S.W.; Webby, R.J.; Webster, R.G. Evolution and ecology of influenza A viruses. Curr. Top Microbiol. Immunol. 2014, 385, 359–375. [Google Scholar] [CrossRef] [Green Version]
- Paulson, J.C.; de Vries, R.P. H5N1 receptor specificity as a factor in pandemic risk. Virus Res. 2013, 178, 99–113. [Google Scholar] [CrossRef] [Green Version]
- Reperant, L.A.; Kuiken, T.; Osterhaus, A.D. Adaptive pathways of zoonotic influenza viruses: From exposure to establishment in humans. Vaccine 2012, 30, 4419–4434. [Google Scholar] [CrossRef] [Green Version]
- Courtney, S.J.; Stromberg, Z.R.; Kubicek-Sutherland, J.Z. Nucleic Acid-Based Sensing Techniques for Diagnostics and Surveillance of Influenza. Biosensors 2021, 11, 47. [Google Scholar] [CrossRef]
- Maignan, M.; Viglino, D.; Hablot, M.; Termoz Masson, N.; Lebeugle, A.; Collomb Muret, R.; Mabiala Makele, P.; Guglielmetti, V.; Morand, P.; Lupo, J.; et al. Diagnostic accuracy of a rapid RT-PCR assay for point-of-care detection of influenza A/B virus at emergency department admission: A prospective evaluation during the 2017/2018 influenza season. PLoS ONE 2019, 14, e0216308. [Google Scholar] [CrossRef] [Green Version]
- Vemula, S.V.; Zhao, J.; Liu, J.; Wang, X.; Biswas, S.; Hewlett, I. Current Approaches for Diagnosis of Influenza Virus Infections in Humans. Viruses 2016, 8, 96. [Google Scholar] [CrossRef] [Green Version]
- Centers for Disease Control and Prevention. Information on Rapid Molecular Assays, RT-PCR, and other Molecular Assays for Diagnosis of Influenza Virus Infection. Available online: https://www.cdc.gov/flu/professionals/diagnosis/molecular-assays.htm (accessed on 1 September 2021).
- Mullis, K.B.; Ferre, F.; Gibbs, R.A. The Polymerase Chain Reaction, 1st ed.; Birkhäuser Basel: Basel, Switzerland, 1994; p. 458. [Google Scholar] [CrossRef] [Green Version]
- Muradrasoli, S.; Mohamed, N.; Belak, S.; Czifra, G.; Herrmann, B.; Berencsi, G.; Blomberg, J. Broadly targeted triplex real-time PCR detection of influenza A, B and C viruses based on the nucleoprotein gene and a novel “MegaBeacon” probe strategy. J. Virol. Methods 2010, 163, 313–322. [Google Scholar] [CrossRef]
- Lee, C.C.; Liao, Y.C.; Lai, Y.H.; Lee, C.C.; Chuang, M.C. Recognition of dual targets by a molecular beacon-based sensor: Subtyping of influenza A virus. Anal. Chem. 2015, 87, 5410–5416. [Google Scholar] [CrossRef]
- Adegoke, O.; Kato, T.; Park, E.Y. An ultrasensitive alloyed near-infrared quinternary quantum dot-molecular beacon nanodiagnostic bioprobe for influenza virus RNA. Biosens. Bioelectron. 2016, 80, 483–490. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Tian, J.; He, Y.; Chen, S.; Jiang, Y.; Zhao, Y.; Zhao, S. Protein-binding aptamer assisted signal amplification for the detection of influenza A (H1N1) DNA sequences based on quantum dot fluorescence polarization analysis. Analyst 2013, 138, 4722–4727. [Google Scholar] [CrossRef] [PubMed]
- Tran, T.L.; Nguyen, T.T.; Huyen Tran, T.T.; Chu, V.T.; Thinh Tran, Q.; Tuan Mai, A. Detection of influenza A virus using carbon nanotubes field effect transistor based DNA sensor. Phys. E Low Dimens. Syst. Nanostruct. 2017, 93, 83–86. [Google Scholar] [CrossRef]
- Bonanni, A.; Pividori, M.I.; del Valle, M. Impedimetric detection of influenza A (H1N1) DNA sequence using carbon nanotubes platform and gold nanoparticles amplification. Analyst 2010, 135, 1765–1772. [Google Scholar] [CrossRef] [PubMed]
- Tam, P.D.; Van Hieu, N.; Chien, N.D.; Le, A.T.; Anh Tuan, M. DNA sensor development based on multi-wall carbon nanotubes for label-free influenza virus (type A) detection. J. Immunol. Methods 2009, 350, 118–124. [Google Scholar] [CrossRef]
- Chalklen, T.; Jing, Q.; Kar-Narayan, S. Biosensors Based on Mechanical and Electrical Detection Techniques. Sensors 2020, 20, 5605. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, Y.; Yang, Q.; Yuan, N.; Zhang, W. Review of Electrochemical DNA Biosensors for Detecting Food Borne Pathogens. Sensors 2019, 19, 4916. [Google Scholar] [CrossRef] [Green Version]
- Kubicek-Sutherland, J.Z.; Vu, D.M.; Mendez, H.M.; Jakhar, S.; Mukundan, H. Detection of Lipid and Amphiphilic Biomarkers for Disease Diagnostics. Biosensors 2017, 7, 25. [Google Scholar] [CrossRef] [Green Version]
- Mukundan, H.; Kubicek, J.Z.; Holt, A.; Shively, J.E.; Martinez, J.S.; Grace, K.; Grace, W.K.; Swanson, B.I. Planar optical waveguide-based biosensor for the quantitative detection of tumor markers. Sens. Actuators B Chem. 2009, 138, 453–460. [Google Scholar] [CrossRef]
- Horejsh, D.; Martini, F.; Poccia, F.; Ippolito, G.; Di Caro, A.; Capobianchi, M.R. A molecular beacon, bead-based assay for the detection of nucleic acids by flow cytometry. Nucleic Acids Res. 2005, 33, e13. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Tortola, A.; Prats-Quilez, F.; Gonzalez-Lucas, D.; Banuls, M.J.; Maquieira, A.; Wheeler, G.; Dalmay, T.; Griol, A.; Hurtado, J.; Garcia-Ruperez, J. High sensitivity and label-free oligonucleotides detection using photonic bandgap sensing structures biofunctionalized with molecular beacon probes. Biomed. Opt. Express. 2018, 9, 1717–1727. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Zhang, L.; Lu, L.; Kang, T. Molecular beacon immobilized on graphene oxide for enzyme-free signal amplification in electrochemiluminescent determination of microRNA. Mikrochim. Acta 2019, 186, 142. [Google Scholar] [CrossRef]
- Han, S.X.; Jia, X.; Ma, J.L.; Zhu, Q. Molecular beacons: A novel optical diagnostic tool. Arch. Immunol. Ther. Exp. 2013, 61, 139–148. [Google Scholar] [CrossRef]
- Li, P.-E.; Davenport, K.; Flynn, M.; Hu, B.; Lo, C.-C.; Jackson, E.P.; Shakya, M.; Xu, Y.; Gans, J.; Chain, P.S. A public website for the automated assessment and validation of SARS-CoV-2 diagnostic PCR assays. Bioinformatics 2020, 37, 1024–1025. [Google Scholar] [CrossRef]
- Li, B.; Kadura, I.; Fu, D.-J.; Watson, D.E. Genotyping with TaqMAMA. Genomics 2004, 83, 311–320. [Google Scholar] [CrossRef]
- Kubicek-Sutherland, J.Z.; Vu, D.M.; Noormohamed, A.; Mendez, H.M.; Stromberg, L.R.; Pedersen, C.A.; Hengartner, A.C.; Klosterman, K.E.; Bridgewater, H.A.; Otieno, V.; et al. Direct detection of bacteremia by exploiting host-pathogen interactions of lipoteichoic acid and lipopolysaccharide. Sci. Rep. 2019, 9, 6203. [Google Scholar] [CrossRef] [Green Version]
- Mukundan, H.; Xie, H.; Price, D.; Kubicek-Sutherland, J.Z.; Grace, W.K.; Anderson, A.S.; Martinez, J.S.; Hartman, N.; Swanson, B.I. Quantitative multiplex detection of pathogen biomarkers on multichannel waveguides. Anal. Chem. 2010, 82, 136–144. [Google Scholar] [CrossRef]
- Attwood, S.J.; Choi, Y.; Leonenko, Z. Preparation of DOPC and DPPC Supported Planar Lipid Bilayers for Atomic Force Microscopy and Atomic Force Spectroscopy. Int. J. Mol. Sci. 2013, 14, 3514. [Google Scholar] [CrossRef] [Green Version]
- Martinez, J.S.; Grace, W.K.; Grace, K.M.; Hartman, N.; Swanson, B.I. Pathogen detection using single mode planar optical waveguides. J. Mater. Chem. 2005, 15, 4639–4647. [Google Scholar] [CrossRef]
- Mukundan, H.; Kumar, S.; Price, D.N.; Ray, S.M.; Lee, Y.J.; Min, S.; Eum, S.; Kubicek-Sutherland, J.; Resnick, J.M.; Grace, W.K.; et al. Rapid detection of Mycobacterium tuberculosis biomarkers in a sandwich immunoassay format using a waveguide-based optical biosensor. Tuberculosis 2012, 92, 407–416. [Google Scholar] [CrossRef] [Green Version]
- Jakhar, S.; Sakamuri, R.; Vu, D.; Dighe, P.; Stromberg, L.R.; Lilley, L.; Hengartner, N.; Swanson, B.I.; Moreau, E.; Dorman, S.E.; et al. Interaction of amphiphilic lipoarabinomannan with host carrier lipoproteins in tuberculosis patients: Implications for blood-based diagnostics. PLoS ONE 2021, 16, e0243337. [Google Scholar] [CrossRef]
- Vu, D.M.; Sakamuri, R.M.; Waters, W.R.; Swanson, B.I.; Mukundan, H. Detection of Lipomannan in Cattle Infected with Bovine Tuberculosis. Anal. Sci. 2017, 33, 457–460. [Google Scholar] [CrossRef] [Green Version]
- Kale, R.R.; Mukundan, H.; Price, D.N.; Harris, J.F.; Lewallen, D.M.; Swanson, B.I.; Schmidt, J.G.; Iyer, S.S. Detection of intact influenza viruses using biotinylated biantennary S-sialosides. J. Am. Chem. Soc. 2008, 130, 8169–8171. [Google Scholar] [CrossRef]
- Mukundan, H.; Xie, H.; Anderson, A.S.; Grace, W.K.; Shively, J.E.; Swanson, B.I. Optimizing a waveguide-based sandwich immunoassay for tumor biomarkers: Evaluating fluorescent labels and functional surfaces. Bioconjug. Chem. 2009, 20, 222–230. [Google Scholar] [CrossRef] [PubMed]
- Ling, L.; Kaplan, S.E.; Lopez, J.C.; Stiles, J.; Lu, X.; Tang, Y.-W. Parallel validation of three molecular devices for simultaneous detection and identification of influenza A and B and respiratory syncytial viruses. J. Clin. Microbiol. 2018, 56, e01691-17. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, B.V.; Cordeiro, T.A.R.; Oliveira e Freitas, G.R.; Ferreira, L.F.; Franco, D.L. Biosensors for the detection of respiratory viruses: A review. Talanta Open 2020, 2, 100007. [Google Scholar] [CrossRef]
- Lenz, K.D.; Jakhar, S.; Chen, J.W.; Anderson, A.S.; Purcell, D.C.; Ishak, M.O.; Harris, J.F.; Akhadov, L.E.; Kubicek-Sutherland, J.Z.; Nath, P.; et al. A centrifugal microfluidic cross-flow filtration platform to separate serum from whole blood for the detection of amphiphilic biomarkers. Sci. Rep. 2021, 11, 5287. [Google Scholar] [CrossRef]
- Dalal, A.; Mohan, H.; Prasad, M.; Pundir, C. Detection methods for influenza A H1N1 virus with special reference to biosensors: A review. Biosci. Rep. 2020, 40, BSR20193852. [Google Scholar]
- Stromberg, Z.R.; Theiler, J.; Foley, B.T.; Myers y Gutiérrez, A.; Hollander, A.; Courtney, S.J.; Gans, J.; Deshpande, A.; Martinez-Finley, E.J.; Mitchell, J.; et al. Fast Evaluation of Viral Emerging Risks (FEVER): A computational tool for biosurveillance, diagnostics, and mutation typing of emerging viral pathogens. MedRxiv 2021. [Google Scholar] [CrossRef]
- Nobusawa, E.; Sato, K. Comparison of the mutation rates of human influenza A and B viruses. J. Virol. 2006, 80, 3675–3678. [Google Scholar] [CrossRef] [Green Version]
- Graf, E.H.; Simmon, K.E.; Tardif, K.D.; Hymas, W.; Flygare, S.; Eilbeck, K.; Yandell, M.; Schlaberg, R. Unbiased detection of respiratory viruses by use of RNA sequencing-based metagenomics: A systematic comparison to a commercial PCR panel. J. Clin. Microbiol. 2016, 54, 1000–1007. [Google Scholar] [CrossRef] [Green Version]
- Balgi, G.; Leckband, D.E.; Nitsche, J.M. Transport effects on the kinetics of protein-surface binding. Biophys. J. 1995, 68, 2251–2260. [Google Scholar] [CrossRef] [Green Version]
- Betters, D.M. Use of Flow Cytometry in Clinical Practice. J. Adv. Pract. Oncol. 2015, 6, 435–440. [Google Scholar] [CrossRef] [PubMed]
- Jaye, D.L.; Bray, R.A.; Gebel, H.M.; Harris, W.A.C.; Waller, E.K. Translational Applications of Flow Cytometry in Clinical Practice. J. Immunol. 2012, 188, 4715. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Liu, X.; Liu, D.; Li, F.; Wang, L.; Liu, S. Ultrasensitive Electrochemical DNA Biosensor Fabrication by Coupling an Integral Multifunctional Zirconia-Reduced Graphene Oxide-Thionine Nanocomposite and Exonuclease I-Assisted Cleavage. Front. Chem. 2020, 8, 521. [Google Scholar] [CrossRef] [PubMed]
- Lan, Y.; Qin, G.; Wei, Y.; Wang, L.; Dong, C. Exonuclease I-assisted fluorescence aptasensor for tetrodotoxin. Ecotoxicol. Environ. Saf. 2020, 194, 110417. [Google Scholar] [CrossRef]
- Chen, X.; Li, T.; Tu, X.; Luo, L. Label-free fluorescent aptasensor for thrombin detection based on exonuclease I assisted target recycling and SYBR Green I aided signal amplification. Sens. Actuators B Chem. 2018, 265, 98–103. [Google Scholar] [CrossRef]
- Avci-Adali, M.; Paul, A.; Wilhelm, N.; Ziemer, G.; Wendel, H.P. Upgrading SELEX technology by using lambda exonuclease digestion for single-stranded DNA generation. Molecules 2009, 15, 1–11. [Google Scholar] [CrossRef]
- Li, D.; Li, Y.; Luo, F.; Qiu, B.; Lin, Z. Ultrasensitive Homogeneous Electrochemiluminescence Biosensor for a Transcription Factor Based on Target-Modulated Proximity Hybridization and Exonuclease III-Powered Recycling Amplification. Anal. Chem. 2020, 92, 12686–12692. [Google Scholar] [CrossRef]
- Lu, X.; Fan, Z. RecJf exonuclease-assisted fluorescent self-assembly aptasensor for supersensitive detection of pesticides in food. J. Lumin. 2020, 226, 117469. [Google Scholar] [CrossRef]
- Li, Q.; Zhou, D.; Pan, J.; Liu, Z.; Chen, J. Ultrasensitive and simple fluorescence biosensor for detection of the mecA gene of Staphylococcus aureus by using an exonuclease III-assisted cascade signal amplification strategy. Analyst 2018, 143, 5670–5675. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Yu, S.; Shang, J.; Chen, Y.; Wang, Q.; Liu, X.; Wang, F. Construction of an Exonuclease III-Propelled Integrated DNAzyme Amplifier for Highly Efficient microRNA Detection and Intracellular Imaging with Ultralow Background. Anal. Chem. 2020, 92, 15069–15078. [Google Scholar] [CrossRef] [PubMed]
- Weng, X.; Xu, X.; Huang, P.; Liu, Z.; Liu, A.; Chen, W.; Lin, X. Detection of Epidermal Growth Factor Receptor Gene Status via a DNA Electrochemical Biosensor Based on Lambda Exonuclease-assisted Signal Amplification. Anal. Sci. 2020, 36, 697–702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
FEVER Probe | FEVER Probe Sequence | RNA Target Sequences |
---|---|---|
IAV | 5′-/5Alexa532N/CGCGATGAGGAGTGCCTGATTAATGATCCCTGGGTTTA/BiodT/CGCG/3BHQ-1/-3′ | Match: UAAGCAAAACCCAGGGAUCAUUAAUCAGGCACUCCUCAAUUGC (13,710.3 g/mol) |
Mismatch: UAAGCAAAACCCAGGGAUCGUUAAUCAGGCACUCCUCAAUUGC (13,726.3 g/mol) | ||
IBV | 5′-/5Alexa532N/CGCGATGAGGGAATGCCAAGAACCATAGCATGGATGGA/BiodT/CGCG/3BHQ-1/-3′ | Match: UUUGGACCAUCCAUGCUAUGGUUCUUGGCAUUCCCUCAAUUAC (13,549 g/mol) |
Mismatch: UUUGGACCAUCCAUGCUAUGUUUCUUGGCAUUCCCUCAAUUAC (13,510 g/mol) |
Probe Name | Probe Sequence |
---|---|
CP_IAV_Exo | /5Biosg/GGCTTCAAGGAACGAG TCATTGGTGTTCGCGAACTGGGTAGTATCGAGCGCTGTGAACATCGGAGGAGTGCCTGATTAATGATCCCTGGGTTT |
CP_fwd | GAGTCATTCCCGACCGTACTATGATAC |
CP_rev | CGTTGTTGCACGAGGGTACTAC |
Rep_F3_IAV | /5Alex532N/CGCTCGATACTACCCAGTT*C*G |
Assay | Recall a | Total No. Sequences Analyzed | No. Sequences with Perfect Match | No. Sequences with 1 Mismatch | No. Sequences with 2 Mismatches | No. Sequences that Failed b |
---|---|---|---|---|---|---|
FEVER_IAV | 96.21% | 73,854 | 49,634 | 18,615 | 2,804 | 2,801 |
U.S. CDC IAV | 91.30% | 85,087 | 66,614 | 10,544 | 524 | 7405 |
FEVER_IBV | 99.58% | 11,507 | 9502 | 1618 | 339 | 48 |
U.S. CDC IBV | 97.86% | 12,956 | 11,649 | 982 | 48 | 277 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Courtney, S.J.; Stromberg, Z.R.; Myers y Gutiérrez, A.; Jacobsen, D.; Stromberg, L.R.; Lenz, K.D.; Theiler, J.; Foley, B.T.; Gans, J.; Yusim, K.; et al. Optical Biosensor Platforms Display Varying Sensitivity for the Direct Detection of Influenza RNA. Biosensors 2021, 11, 367. https://doi.org/10.3390/bios11100367
Courtney SJ, Stromberg ZR, Myers y Gutiérrez A, Jacobsen D, Stromberg LR, Lenz KD, Theiler J, Foley BT, Gans J, Yusim K, et al. Optical Biosensor Platforms Display Varying Sensitivity for the Direct Detection of Influenza RNA. Biosensors. 2021; 11(10):367. https://doi.org/10.3390/bios11100367
Chicago/Turabian StyleCourtney, Samantha J., Zachary R. Stromberg, Adán Myers y Gutiérrez, Daniel Jacobsen, Loreen R. Stromberg, Kiersten D. Lenz, James Theiler, Brian T. Foley, Jason Gans, Karina Yusim, and et al. 2021. "Optical Biosensor Platforms Display Varying Sensitivity for the Direct Detection of Influenza RNA" Biosensors 11, no. 10: 367. https://doi.org/10.3390/bios11100367
APA StyleCourtney, S. J., Stromberg, Z. R., Myers y Gutiérrez, A., Jacobsen, D., Stromberg, L. R., Lenz, K. D., Theiler, J., Foley, B. T., Gans, J., Yusim, K., & Kubicek-Sutherland, J. Z. (2021). Optical Biosensor Platforms Display Varying Sensitivity for the Direct Detection of Influenza RNA. Biosensors, 11(10), 367. https://doi.org/10.3390/bios11100367