Digital E. coli Counter: A Microfluidics and Computer Vision-Based DNAzyme Method for the Isolation and Specific Detection of E. coli from Water Samples
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains
2.2. Microfluidics-Based Fluorescence Measurement Set-Up
2.3. Preparation of DNAzyme Sensor
2.4. Counting of Fluorescent Droplets
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- WHO. Drinking-Water. Available online: https://www.who.int/news-room/fact-sheets/detail/drinking-water (accessed on 19 April 2021).
- Sharma, S.; Bhattacharya, A. Drinking water contamination and treatment techniques. Appl. Water Sci. 2017, 7, 1043–1067. [Google Scholar] [CrossRef] [Green Version]
- Banna, M.H.; Imran, S.; Francisque, A.; Najjaran, H.; Sadiq, R.; Rodriguez, M.; Hoorfar, M. Online Drinking Water Quality Monitoring: Review on Available and Emerging Technologies. Crit. Rev. Environ. Sci. Technol. 2014, 44, 1370–1421. [Google Scholar] [CrossRef]
- Storey, M.V.; van der Gaag, B.; Burns, B.P. Advances in on-line drinking water quality monitoring and early warning systems. Water Res. 2011, 45, 741–747. [Google Scholar] [CrossRef] [PubMed]
- Janik, M.; Koba, M.; Celebanska, A.; Bock, W.J.; Smietana, M. Live E. coli bacteria label-free sensing using a microcavity in-line Mach-Zehnder interferometer. Sci. Rep. 2018, 8, 17176. [Google Scholar] [CrossRef]
- Foschi, J.; Turolla, A.; Antonelli, M. Soft sensor predictor of E. coli concentration based on conventional monitoring parameters for wastewater disinfection control. Water Res. 2021, 191, 116806. [Google Scholar] [CrossRef] [PubMed]
- Edberg, S.C.; Rice, E.W.; Karlin, R.J.; Allen, M.J. Escherichia coli: The best biological drinking water indicator for public health protection. J. Appl. Microbiol. 2000, 88, 106s–116s. [Google Scholar] [CrossRef]
- McConnell, E.M.; Morrison, D.; Rincon, M.A.R.; Salena, B.J.; Li, Y.F. Selection and applications of synthetic functional DNAs for bacterial detection. Trac.-Trend. Anal. Chem. 2020, 124, 115785. [Google Scholar] [CrossRef]
- Zhou, Z.Q.; Zhang, Y.Z.; Guo, M.Z.; Huang, K.L.; Xu, W.T. Ultrasensitive magnetic DNAzyme-copper nanoclusters fluorescent biosensor with triple amplification for the visual detection of E. coli O157: H7. Biosens. Bioelectron. 2020, 167, 112475. [Google Scholar] [CrossRef]
- Richter, L.; Janczuk-Richter, M.; Niedziolka-Jonsson, J.; Paczesny, J.; Holyst, R. Recent advances in bacteriophage-based methods for bacteria detection. Drug Discov. Today 2018, 23, 448–455. [Google Scholar] [CrossRef]
- Ma, X.Y.; Ding, W.; Wang, C.; Wu, H.J.; Tian, X.P.; Lyu, M.S.; Wang, S.J. DNAzyme biosensors for the detection of pathogenic bacteria. Sens. Actuator B-Chem. 2021, 331, 129422. [Google Scholar] [CrossRef]
- Liang, G.; Man, Y.; Li, A.; Jin, X.X.; Liu, X.H.; Pan, L.G. DNAzyme-based biosensor for detection of lead ion: A review. Microchem. J. 2017, 131, 145–153. [Google Scholar] [CrossRef]
- Lake, R.J.; Yang, Z.L.; Zhang, J.L.; Lu, Y. DNAzymes as Activity-Based Sensors for Metal Ions: Recent Applications, Demonstrated Advantages, Current Challenges, and Future Directions. Accounts Chem. Res. 2019, 52, 3275–3286. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Zhang, Q.; Brennan, J.D.; Li, Y.F. Graphene-DNAzyme-based fluorescent biosensor for Escherichia coli detection. Mrs. Commun. 2018, 8, 687–694. [Google Scholar] [CrossRef] [Green Version]
- Samani, S.E.; McConnell, E.M.; Chang, D.; Rothenbroker, M.; Filipe, C.D.M.; Li, Y. A Syringe-Based DNAzyme Sensor for Bacterial Detection. Anal. Sens. 2021, 1, 95–100. [Google Scholar]
- Huebner, A.; Sharma, S.; Srisa-Art, M.; Hollfelder, F.; Edel, J.B.; Demello, A.J. Microdroplets: A sea of applications? Lab. Chip. 2008, 8, 1244–1254. [Google Scholar] [CrossRef]
- Zhang, W.; Zheng, K.; Ye, Y.; Ji, J.; Cheng, X.; He, S. Pipette-Tip-Enabled Digital Nucleic Acid Analyzer for COVID-19 Testing with Isothermal Amplification. Anal. Chem. 2021, 93, 15288–15294. [Google Scholar] [CrossRef]
- Leroy, A.; Teixidor, J.; Bertsch, A.; Renaud, P. In-flow electrochemical detection of chemicals in droplets with pyrolysed photoresist electrodes: Application as a module for quantification of microsampled dopamine. Lab. Chip. 2021, 21, 3328–3337. [Google Scholar] [CrossRef]
- Hsieh, K.; Mach, K.E.; Zhang, P.; Liao, J.C.; Wang, T.H. Combating Antimicrobial Resistance via Single-Cell Diagnostic Technologies Powered by Droplet Microfluidics. Acc. Chem. Res. 2021. [Google Scholar] [CrossRef]
- Kang, D.K.; Ali, M.M.; Zhang, K.X.; Huang, S.S.; Peterson, E.; Digman, M.A.; Gratton, E.; Zhao, W.A. Rapid detection of single bacteria in unprocessed blood using Integrated Comprehensive Droplet Digital Detection. Nat. Commun. 2014, 5, 6427. [Google Scholar] [CrossRef] [Green Version]
- Wen, X.T.; Chen, F.Y.; Lin, Y.X.; Zhu, H.; Yuan, F.; Kuang, D.Y.; Jia, Z.H.; Yuan, Z.K. Microbial Indicators and Their Use for Monitoring Drinking Water Quality—A Review. Sustainability 2020, 12, 2249. [Google Scholar] [CrossRef] [Green Version]
- Kaushik, A.M.; Hsieh, K.; Chen, L.; Shin, D.J.; Liao, J.C.; Wang, T.H. Accelerating bacterial growth detection and antimicrobial susceptibility assessment in integrated picoliter droplet platform. Biosens. Bioelectron. 2017, 97, 260–266. [Google Scholar] [CrossRef]
- Zaouri, N.; Cui, Z.F.; Peinetti, A.S.; Lu, Y.; Hong, P.Y. DNAzyme-based biosensor as a rapid and accurate verification tool to complement simultaneous enzyme-based media for E. coli detection. Environ. Sci.-Water Res. 2019, 5, 2260–2268. [Google Scholar] [CrossRef]
- Zhang, Y.; Hong, P.Y.; LeChevallier, M.W.; Liu, W.T. Phenotypic and Phylogenetic Identification of Coliform Bacteria Obtained Using 12 Coliform Methods Approved by the US Environmental Protection Agency. Appl. Environ. Microb. 2015, 81, 6012–6023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yap, P.Y.; Trau, D. Direct E. coli Cell Count at OD600. Available online: https://tipbiosystems.com/wp-content/uploads/2020/05/AN102-E.coli-Cell-Count_2019_04_25.pdf (accessed on 18 December 2021).
- Aguirre, S.D.; Ali, M.M.; Salena, B.J.; Li, Y. A sensitive DNA enzyme-based fluorescent assay for bacterial detection. Biomolecules 2013, 3, 563–577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. Lect. Notes Comput. Sci. 2016, 9905, 21–37. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Cui, C.; Chen, S.; Yang, H.; Shen, P. The direct electrocatalysis of Escherichia coli through electroactivated excretion in microbial fuel cell. Electrochem. Commun. 2008, 10, 293–297. [Google Scholar] [CrossRef]
- Grigorov, E.; Kirov, B.; Marinov, M.B.; Galabov, V. Review of Microfluidic Methods for Cellular Lysis. Micromachines 2021, 12, 498. [Google Scholar] [CrossRef]
- Cozma, I.; McConnell, E.M.; Brennan, J.D.; Li, Y.F. DNAzymes as key components of biosensing systems for the detection of biological targets. Biosens. Bioelectron. 2021, 177, 112972. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rauf, S.; Tashkandi, N.; de Oliveira Filho, J.I.; Oviedo-Osornio, C.I.; Danish, M.S.; Hong, P.-Y.; Salama, K.N. Digital E. coli Counter: A Microfluidics and Computer Vision-Based DNAzyme Method for the Isolation and Specific Detection of E. coli from Water Samples. Biosensors 2022, 12, 34. https://doi.org/10.3390/bios12010034
Rauf S, Tashkandi N, de Oliveira Filho JI, Oviedo-Osornio CI, Danish MS, Hong P-Y, Salama KN. Digital E. coli Counter: A Microfluidics and Computer Vision-Based DNAzyme Method for the Isolation and Specific Detection of E. coli from Water Samples. Biosensors. 2022; 12(1):34. https://doi.org/10.3390/bios12010034
Chicago/Turabian StyleRauf, Sakandar, Nouran Tashkandi, José Ilton de Oliveira Filho, Claudia Iluhí Oviedo-Osornio, Muhammad S. Danish, Pei-Ying Hong, and Khaled N. Salama. 2022. "Digital E. coli Counter: A Microfluidics and Computer Vision-Based DNAzyme Method for the Isolation and Specific Detection of E. coli from Water Samples" Biosensors 12, no. 1: 34. https://doi.org/10.3390/bios12010034
APA StyleRauf, S., Tashkandi, N., de Oliveira Filho, J. I., Oviedo-Osornio, C. I., Danish, M. S., Hong, P. -Y., & Salama, K. N. (2022). Digital E. coli Counter: A Microfluidics and Computer Vision-Based DNAzyme Method for the Isolation and Specific Detection of E. coli from Water Samples. Biosensors, 12(1), 34. https://doi.org/10.3390/bios12010034