Neonicotinoid Microsphere Immunosensing for Profiling Applications in Honeybees and Bee-Related Matrices
Abstract
:1. Introduction
2. Materials and Methods
2.1. Instruments
2.2. Chemicals and Reagents
2.3. Coupling of Neonicotinoid–OVA Conjugates to Paramagnetic Microspheres
2.4. Antibody Dilution Factor Optimization
2.5. Sensitivities of the nMIAs
2.6. Determination of Cross-Reactivity
2.7. Preliminary Matrix Validation of the nMIAs
2.8. Preliminary Validation of the Robustness of the nMIAs
3. Results and Discussion
3.1. Assay Optimization
3.2. Assay Sensitivities
3.3. Cross-Reactivity Testing
3.4. Application of the NMIA to Surface Water
3.5. Pre-Validation of the nMIAs for Surface Water Samples
3.6. Application of the nMIAs to Other Bee-Related Matrices
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rader, R.; Bartomeus, I.; Garibaldi, L.A.; Garratt, M.P.; Howlett, B.G.; Winfree, R.; Cunningham, S.A.; Mayfield, M.M.; Arthur, A.D.; Andersson, G.K. Non-Bee Insects Are Important Contributors to Global Crop Pollination. Proc. Natl. Acad. Sci. USA 2016, 113, 146–151. [Google Scholar] [CrossRef] [PubMed]
- Kulhanek, K.; Steinhauer, N.; Rennich, K.; Caron, D.M.; Sagili, R.R.; Pettis, J.S.; Ellis, J.D.; Wilson, M.E.; Wilkes, J.T.; Tarpy, D.R. A National Survey of Managed Honey Bee 2015–2016 Annual Colony Losses in the USA. J. Apic. Res. 2017, 56, 328–340. [Google Scholar] [CrossRef]
- Rundlöf, M.; Andersson, G.K.; Bommarco, R.; Fries, I.; Hederström, V.; Herbertsson, L.; Jonsson, O.; Klatt, B.K.; Pedersen, T.R.; Yourstone, J. Seed Coating with a Neonicotinoid Insecticide Negatively Affects Wild Bees. Nature 2015, 521, 77–80. [Google Scholar] [CrossRef] [PubMed]
- Woodcock, B.A.; Isaac, N.J.; Bullock, J.M.; Roy, D.B.; Garthwaite, D.G.; Crowe, A.; Pywell, R.F. Impacts of Neonicotinoid Use on Long-Term Population Changes in Wild Bees in England. Nat. Commun. 2016, 7, 12459. [Google Scholar] [CrossRef]
- Laycock, I.; Cotterell, K.C.; O’Shea-Wheller, T.A.; Cresswell, J.E. Effects of the Neonicotinoid Pesticide Thiamethoxam at Field-Realistic Levels on Microcolonies of Bombus Terrestris Worker Bumble Bees. Ecotoxicol. Environ. Saf. 2014, 100, 153–158. [Google Scholar] [CrossRef]
- Elbert, A.; Nauen, A. New Applications for Neonicotinoid Insecticides Using Imidacloprid as an Example. In Insect Pest Management: Field and Protected Crops; Horowitz, A.R., Ishaaya, I., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; pp. 29–44. [Google Scholar]
- Tomizawa, M.; Casida, J.E. Selective Toxicity of Neonicotinoids Attributable to Specificity of Insect and Mammalian Nicotinic Receptors. Annu. Rev. Entomol. 2003, 48, 339. [Google Scholar] [CrossRef]
- Jeschke, P.; Nauen, R.; Beck, M.E. Nicotinic Acetylcholine Receptor Agonists: A Milestone for Modern Crop Protection. Angew. Chem. Int. Ed. 2013, 52, 9464–9485. [Google Scholar] [CrossRef]
- Williams, G.R.; Troxler, A.; Retschnig, G.; Roth, K.; Yañez, O.; Shutler, D.; Neumann, P.; Gauthier, L. Neonicotinoid Pesticides Severely Affect Honey Bee Queens. Sci. Rep. 2015, 5, 14621. [Google Scholar] [CrossRef]
- Akayama, A.; Minamida, I. Discovery of a New Systemic Insecticide, Nitenpyram and Its Insecticidal Properties. In Nicotinoid Insecticides and the Nicotinic Acetylcholine Receptor; Springer: Tokyo, Japan, 1999; pp. 127–148. [Google Scholar]
- Wu, M.; Cai, J.; Jinyue, Y.; Dai, B.; Lu, Y. Study of Imidaclothiz Residues in Cabbage and Soil by HPLC with UV Detection. Bull. Environ. Contam. Toxicol. 2010, 84, 289–293. [Google Scholar] [CrossRef]
- Shao, X.; Liu, Z.; Xu, X.; Li, Z.; Qian, X. Overall Status of Neonicotinoid Insecticides in China: Production, Application and Innovation. J. Pestic. Sci. 2013, 38, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Wakita, T.; Kinoshita, K.; Yamada, E.; Yasui, N.; Kawahara, N.; Naoi, A.; Nakaya, M.; Ebihara, K.; Matsuno, H.; Kodaka, K. The Discovery of Dinotefuran: A Novel Neonicotinoid. Pest Manag. Sci. 2003, 59, 1016–1022. [Google Scholar] [CrossRef]
- Tsvetkov, N.; Samson-Robert, O.; Sood, K.; Patel, H.; Malena, D.; Gajiwala, P.; Maciukiewicz, P.; Fournier, V.; Zayed, A. Chronic Exposure to Neonicotinoids Reduces Honey Bee Health Near Corn Crops. Science 2017, 356, 1395–1397. [Google Scholar] [CrossRef]
- Henry, M.; Beguin, M.; Requier, F.; Rollin, O.; Odoux, J.-F.; Aupinel, P.; Aptel, J.; Tchamitchian, S.; Decourtye, A. A Common Pesticide Decreases Foraging Success and Survival In Honey Bees. Science 2012, 336, 348–350. [Google Scholar] [CrossRef]
- Piiroinen, S.; Botías, C.; Nicholls, E.; Goulson, D. No effect of Low-Level Chronic Neonicotinoid Exposure on Bumblebee Learning and Fecundity. PeerJ 2016, 4, e1808. [Google Scholar] [CrossRef]
- Stanley, D.A.; Raine, N.E. Bumblebee Colony Development Following Chronic Exposure to Field-Realistic Levels of the Neonicotinoid Pesticide Thiamethoxam Under Laboratory Conditions. Sci. Rep. 2017, 7, 8005. [Google Scholar] [CrossRef]
- Codling, G.; Al Naggar, Y.; Giesy, J.P.; Robertson, A.J. Concentrations of Neonicotinoid Insecticides in Honey, Pollen and Honey Bees (Apis mellifera L.) In Central Saskatchewan, Canada. Chemosphere 2016, 144, 2321–2328. [Google Scholar] [CrossRef]
- Mitchell, E.A.; Mulhauser, B.; Mulot, M.; Mutabazi, A.; Glauser, G.; Aebi, A. A Worldwide Survey of Neonicotinoids in Honey. Science 2017, 358, 109–111. [Google Scholar] [CrossRef]
- Niell, S.; Jesús, F.; Pérez, N.; Pérez, C.; Pareja, L.; Abbate, S.; Carrasco-Letelier, L.; Díaz, S.; Mendoza, Y.; Cesio, V. Neonicotinoids Transference from the Field to the Hive By Honey Bees: Towards a Pesticide Residues Biomonitor. Sci. Total Environ. 2017, 581, 25–31. [Google Scholar] [CrossRef]
- Goulson, D. An Overview of the Environmental Risks Posed by Neonicotinoid Insecticides. J. Appl. Ecol. 2013, 50, 977–987. Available online: https://www.jstor.org/stable/24031367 (accessed on 14 May 2022). [CrossRef]
- European Commission Implementing Regulation (EU) 2018/784 of 29 May 2018. Amending Implementing Regulation (EU) No. 540/2011 as Regards the Conditions of Approval of the Active Substance Clothianidin. Off. J. Eur. Union 2018, 132, 35–39.
- European Commission Implementing Regulation (EU) 2018/783 of 29 May 2018. Amending Implementing Regulation (EU) No 540/2011 as Regards the Conditions of Approval of the Active Substance Imidacloprid. Off. J. Eur. Union 2018, 132, 31–34.
- EFSA. Evaluation of the Data on Clothianidin, Imidacloprid and Thiamethoxam for the Updated Risk Assessment to Bees for Seed Treatments and Granules in the EU; EFSA Supporting Publications: Parma, Italy, 2018; Volume 15, pp. 2397–8325. [Google Scholar] [CrossRef] [Green Version]
- Abdourahime, H.; Anastassiadou, M.; Arena, M.; Auteri, D.; Barmaz, S.; Brancato, A.; Brocca, D.; Bura, L.; Carrasco Cabrera, L. Peer Review of the Pesticide Risk Assessment of the Active Substance Thiacloprid. EFSA J. 2019, 17, e05595. [Google Scholar] [PubMed]
- EU Pesticides Database. Available online: https://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/mrls/?event=search.pr (accessed on 16 July 2022).
- Gbylik-Sikorska, M.; Sniegocki, T.; Posyniak, A. Determination of Neonicotinoid Insecticides and Their Metabolites in Honey Bee and Honey by Liquid Chromatography Tandem Mass Spectrometry. J. Chromatogr. B 2015, 990, 132–140. [Google Scholar] [CrossRef] [PubMed]
- Zhai, X.; Zhang, H.; Zhang, M.; Yang, X.; Gu, C.; Zhou, G.; Zhao, H.; Wang, Z.; Dong, A.; Wang, J. A Rapid Electrochemical Monitoring Platform for Sensitive Determination of Thiamethoxam Based on Β–Cyclodextrin-Graphene Composite. Environ. Toxicol. Chem. 2017, 36, 1991–1997. [Google Scholar] [CrossRef]
- Srinivasan, S.; Nesakumar, N.; Rayappan, J.B.B.; Kulandaiswamy, A.J. Electrochemical Detection of Imidacloprid Using Cu–rGO Composite Nanofibers Modified Glassy Carbon Electrode. Bull. Environ. Contam. Toxicol. 2020, 104, 449–454. [Google Scholar] [CrossRef]
- El-Akaad, S.; Mohamed, M.A.; Abdelwahab, N.S.; Abdelaleem, E.A.; De Saeger, S.; Beloglazova, N. Capacitive Sensor Based on Molecularly Imprinted Polymers for Detection of the Insecticide Imidacloprid in Water. Sci. Rep. 2020, 10, 14479. [Google Scholar] [CrossRef]
- Zhao, S.; Dong, J.; Jeong, H.-J.; Okumura, K.; Ueda, H. Rapid Detection of the Neonicotinoid Insecticide Imidacloprid Using a Quenchbody Assay. Anal. Bioanal. Chem. 2018, 410, 4219–4226. [Google Scholar] [CrossRef]
- Yang, L.; Sun, H.; Wang, X.; Yao, W.; Zhang, W.; Jiang, L. An Aptamer Based Aggregation Assay for the Neonicotinoid Insecticide Acetamiprid Using Fluorescent Upconversion Nanoparticles and DNA Functionalized Gold Nanoparticles. Microchim. Acta 2019, 186, 308. [Google Scholar] [CrossRef]
- Wang, D.; Liu, Y.; Xu, Z.; Ji, Y.; Si, X.; Lin, T.; Liu, H.; Liu, Z. Generic Imprinted Fiber Array Strategy for High-Throughput and Ultrasensitive Simultaneous Determination of Multiple Neonicotinoids. Food Chem. 2022, 382, 132407. [Google Scholar] [CrossRef]
- Kim, H.J.; Shelver, W.L.; Li, Q.X. Monoclonal Antibody-Based Enzyme-Linked Immunosorbent Assay for the Insecticide Imidacloprid. Anal. Chim. Acta 2004, 509, 111–118. [Google Scholar] [CrossRef]
- Watanabe, E.; Miyake, S. Direct Determination of Neonicotinoid Insecticides in an Analytically Challenging Crop Such as Chinese Chives Using Selective ELISAs. J. Environ. Sci. Health B 2018, 53, 707–712. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, Y.; Zhang, T.; Chang, Y.; Wang, S.; Zou, R.; Zhu, G.; Shen, L.; Guo, Y. Quantum Dots-Based Immunochromatographic Strip for Rapid and Sensitive Detection of Acetamiprid in Agricultural Products. Front. Chem. 2019, 7, 76. [Google Scholar] [CrossRef]
- Wang, S.; Liu, Y.; Jiao, S.; Zhao, Y.; Guo, Y.; Wang, M.; Zhu, G. Quantum-Dot-Based Lateral Flow Immunoassay for Detection of Neonicotinoid Residues in Tea Leaves. J. Agric. Food Chem. 2017, 65, 10107–10114. [Google Scholar] [CrossRef]
- Peters, J.; Cardall, A.; Haasnoot, W.; Nielen, M.W.F. 6-Plex Microsphere Immunoassay with Imaging Planar Array Detection for Mycotoxins in Barley. Analyst 2014, 139, 3968–3976. [Google Scholar] [CrossRef]
- Guo, Y.; Tian, J.; Liang, C.; Zhu, G.; Gui, W. Multiplex Bead-Array Competitive Immunoassay for Simultaneous Detection of Three Pesticides in Vegetables. Microchim. Acta 2013, 180, 387–395. [Google Scholar] [CrossRef]
- Zou, R.; Guo, Y.; Chen, Y.; Zhao, Y.; Zhao, L.; Zhu, G.; Liu, Y.; Peters, J.; Guo, Y. Computer-Aided Profiling of a Unique Broad-Specific Antibody and Its Application to an Ultrasensitive Fluoroimmunoassay for Five N-Methyl Carbamate Pesticides. J. Hazard. Mater. 2022, 426, 127845. [Google Scholar] [CrossRef]
- Angeloni, S.; Cordes, R.; Dunbar, S.; Garcia, C.; Gibson, G.; Martin, C.; Stone, V. xMAP Cookbook: A Collection of Methods and Protocols for Developing Multiplex Assays with Xmap Technology; Luminex: Austin, TX, USA, 2016; pp. 18–37. [Google Scholar]
- Guidelines for the Validation of Screening Methods for Residues of Veterinary Medicines (Initial Validation and Transfer) Community Reference Laboratories Residues (CRLs) 20/1/2010. Available online: https://food.ec.europa.eu/system/files/2016-10/cs_vet-med-residues_guideline_validation_screening_en.pdf (accessed on 11 September 2022).
- Chang, Y.; Chen, Y.; Jiao, S.; Lu, X.; Fang, Y.; Liu, Y.; Zhao, Y.; Zhan, X.; Zhu, G.; Guo, Y. A Novel Full-length IgG Recombinant Antibody Highly Specific to Clothianidin and Its Application in Immunochromatographic Assay. Biosensors 2022, 12, 233. [Google Scholar] [CrossRef]
- Ye, L.; Wu, X.; Xu, L.; Zheng, Q.; Kuang, H. Preparation of an Anti-Thiamethoxam Monoclonal Antibody for Development of an Indirect Competitive Enzyme-Linked Immunosorbent Assay and A Colloidal Gold Immunoassay. Food Agric. Immunol. 2018, 29, 1173–1183. [Google Scholar] [CrossRef]
- Kim, H.J.; Liu, S.; Keum, Y.S.; Hwang, E.C.; Li, Q.X. Improved Enzyme-Linked Immunosorbent Assay for the Insecticide Imidacloprid. In Environmental Fate and Effects of Pesticides. J. Am. Chem. Soc. 2003, 853, 30–45. [Google Scholar]
- Hirakawa, Y.; Yamasaki, T.; Harada, A.; Iwasa, S.; Narita, H.; Miyake, S. Development of an Immunosensor Based on Surface Plasmon Resonance for Simultaneous Residue Analysis of Three Pesticides—Boscalid, Clothianidin, and Nitenpyram—In Vegetables. Anal. Sci. 2018, 34, 533–539. [Google Scholar] [CrossRef]
- Jiao, Z.H.; Hou, S.L.; Kang, X.M.; Yang, X.P.; Zhao, B. Recyclable Luminescence Sensor for Dinotefuran in Water by Stable Cadmium–Organic Framework. Anal. Chem. 2021, 93, 6599–6603. [Google Scholar] [CrossRef]
- Fang, S.; Zhang, B.; Ren, K.W.; Cao, M.M.; Shi, H.Y.; Wang, M.H. Development of a Sensitive Indirect Competitive Enzyme-Linked Immunosorbent Assay (ic-ELISA) Based on the Monoclonal Antibody for the Detection of the Imidaclothiz Residue. J. Agric. Food Chem. 2011, 59, 1594–1597. [Google Scholar] [CrossRef]
- Ding, Y.; Chen, H.; Yang, Q.; Feng, L.; Hua, X.; Wang, M. A Fluorescence Polarization Immunoassay for Detection of Thiacloprid in Environmental and Agricultural Samples. RSC Adv. 2019, 9, 36825–36830. [Google Scholar] [CrossRef] [PubMed]
- Mahai, G.; Wan, Y.; Xia, W.; Yang, S.; He, Z.; Xu, S. Neonicotinoid Insecticides in Surface Water from the Central Yangtze River, China. Chemosphere 2019, 229, 452–460. [Google Scholar] [CrossRef] [PubMed]
- David, A.; Botías, C.; Abdul-Sada, A.; Nicholls, E.; Rotheray, E.L.; Hill, E.M.; Goulson, D. Widespread Contamination of Wildflower and Bee-Collected Pollen with Complex Mixtures of Neonicotinoids and Fungicides Commonly Applied to Crops. Environ. Int. 2016, 88, 169–178. [Google Scholar] [CrossRef] [PubMed]
- Capela, N.; Xu, M.; Simões, S.; Azevedo-Pereira, H.M.V.S.; Peters, J.; Sousa, J.P. Exposure and Risk Assessment of Acetamiprid in Honey Bee Colonies Under a Real Exposure Scenario in Eucalyptus sp. Landscapes. Sci Total Environ. 2022, 840, 156485. [Google Scholar] [CrossRef] [PubMed]
Neonicotinoid | Abbreviation 1 | Manufacturer(s) 2 | Year Introduced 3 |
---|---|---|---|
Imidacloprid | Imi | Bayer CropScience AG | 1992 |
Thiacloprid | Thc | Bayer CropScience AG | 2003 |
Thiamethoxam | Thm | Syngenta AG | 1997 |
Nitenpyram | Nit | Sumitomo Chemical Takeda Agro Company | 1995 |
Acetamiprid | Ace | Nippon Soda | 1999 |
Clothianidin | Clo | Sumitomo Chemical Takeda Agro Company/Bayer CropScience AG | 2003 |
Dinotefuran | Din | Mitsui Chemicals | 2004 |
Imidaclothiz | Imc | Nantong Jiangshan Agrochemical & Chemical Co. Ltd. | 2006 |
Neonicotinoid | LOD | Method | Reference | |
---|---|---|---|---|
Imidacloprid | 0.01 ng/mL | nMIA | Current study | |
Acetamiprid | 0.01 ng/mL | |||
Thiacloprid | 0.02 ng/mL | |||
Clothianidin | 0.02 ng/mL | |||
Thiamethoxam | 0.003 ng/mL | |||
Dinotefuran | 2.95 ng/mL | |||
Nitenpyram | 0.09 ng/mL | |||
Imidaclothiz | 0.07 ng/mL | |||
Imidacloprid | 0.5 ng/mL | Quantum dots-based lateral flow immunoassay | Wang et al. 2017 | [37] |
Imidaclothiz | 0.5 ng/mL | |||
Clothianidin | 2.9 ng/mL | |||
Clothianidin | 2.5 ng/mL | Recombinant antibody immunochromatographic assay | Chang et al. 2022 | [43] |
Thiamethoxam | 79 ng/mL | Electrochemical monitoring platform using graphene carbon electrodes | Zhai et al. 2017 | [28] |
Thiamethoxam | 0.5 ng/mL | Indirect competitive ELISA | Ye et al. 2018 | [44] |
Imidacloprid | 1300 ng/mL | Molecular imprinted polymer-based sensor | El-Akaad et al. 2020 | [30] |
Imidacloprid | 10 ng/mL | Rapid detection Quenchbody (scFv) assay | Zhao et al. 2018 | [31] |
Imidacloprid | 0.03 ng/mL | Direct competitive ELISA | Kim et al. 2003 | [45] |
Acetamiprid | 0.1 ng/mL | Quantum dots-based immunochromatographic assay | Liu et al. 2019 | [36] |
Acetamiprid | 24 ng/mL | Fluorescent aptamer-based aggregation assay | Yang et al. 2018 | [32] |
Nitenpyram | 7.3 ng/mL | Surface plasmon resonance immunosensor | Hirakawa et al. 2018 | [46] |
Dinotefuran | 2090 ng/mL | Luminescence sensor by stable cadmium–organic framework | Jiao et al. 2021 | [47] |
Imidaclothiz | 17.8 ng/mL | Indirect competitive ELISA | Fang et al. 2011 | [48] |
Thiacloprid | 2.43 ng/mL | Fluorescence polarization immunoassay | Ding et al. 2019 | [49] |
Neonicotinoids | Imi Assay | Ace Assay | Clo Assay | Thc Assay | Thm Assay | |||||
---|---|---|---|---|---|---|---|---|---|---|
LOD | IC50 | LOD | IC50 | LOD | IC50 | LOD | IC50 | LOD | IC50 | |
Imidacloprid | 0.01 | 0.07 | - | 101 | - | - | 0.15 | 41.7 | - | - |
Acetamiprid | 0.07 | 0.81 | 0.02 | 0.26 | - | - | 0.01 | 0.19 | - | - |
Clothianidin | 0.02 | 0.11 | 733 | 1107 | 0.19 | 1.9 | 2.32 | 29.5 | 0.45 | 32.0 |
Thiacloprid | 0.05 | 0.47 | 0.66 | 2.1 | - | - | 0.02 | 0.06 | - | - |
Thiamethoxam | 7.59 | 454.3 | - | - | - | - | - | - | 0.003 | 0.01 |
Dinotefuran | 12.80 | 292 | - | - | 2.95 | 5.8 | 104.6 | - | - | - |
Nitenpyram | 0.09 | 0.67 | - | - | - | - | 93.9 | - | - | - |
Imidaclothiz | 0.04 | 0.11 | - | - | - | - | 2.7 | 23.88 | - | - |
Neonicotinoid | Matrix | Imi Assay | Ace Assay | Clo Assay | Thc Assay | Thm Assay |
---|---|---|---|---|---|---|
Imidacloprid | Pollen | 10 ng/g | 100 ng/g | |||
Honey | 10 ng/g | 100 ng/g | ||||
Bee | 10 ng/g | 100 ng/g | ||||
Acetamiprid | Pollen | 100 ng/g | 10 ng/g | 10 ng/g | ||
Honey | 100 ng/g | 10 ng/g | 10 ng/g | |||
Bee | 100 ng/g | 10 ng/g | 10 ng/g | |||
Clothianidin | Pollen | 10 ng/g | 100 ng/g | |||
Honey | 10 ng/g | 100 ng/g | ||||
Bee | 10 ng/g | 100 ng/g | ||||
Thiacloprid | Pollen | 100 ng/g | 10 ng/g | 10 ng/g | ||
Honey | 100 ng/g | 10 ng/g | 10 ng/g | |||
Bee | 100 ng/g | 10 ng/g | 10 ng/g | |||
Thiamethoxam | Pollen | 10 ng/g | ||||
Honey | 10 ng/g | |||||
Bee | 10 ng/g | |||||
Dinotefuran | Pollen | 100 ng/g | ||||
Honey | 100 ng/g | |||||
Bee | 100 ng/g | |||||
Nitenpyram | Pollen | 10 ng/g | ||||
Honey | 10 ng/g | |||||
Bee | 10 ng/g | |||||
Imidaclothiz | Pollen | 10 ng/g | ||||
Honey | 10 ng/g | |||||
Bee | 10 ng/g |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, M.; Portier, L.; Bovee, T.; Zhao, Y.; Guo, Y.; Peters, J. Neonicotinoid Microsphere Immunosensing for Profiling Applications in Honeybees and Bee-Related Matrices. Biosensors 2022, 12, 792. https://doi.org/10.3390/bios12100792
Xu M, Portier L, Bovee T, Zhao Y, Guo Y, Peters J. Neonicotinoid Microsphere Immunosensing for Profiling Applications in Honeybees and Bee-Related Matrices. Biosensors. 2022; 12(10):792. https://doi.org/10.3390/bios12100792
Chicago/Turabian StyleXu, Mang, Liza Portier, Toine Bovee, Ying Zhao, Yirong Guo, and Jeroen Peters. 2022. "Neonicotinoid Microsphere Immunosensing for Profiling Applications in Honeybees and Bee-Related Matrices" Biosensors 12, no. 10: 792. https://doi.org/10.3390/bios12100792
APA StyleXu, M., Portier, L., Bovee, T., Zhao, Y., Guo, Y., & Peters, J. (2022). Neonicotinoid Microsphere Immunosensing for Profiling Applications in Honeybees and Bee-Related Matrices. Biosensors, 12(10), 792. https://doi.org/10.3390/bios12100792