The Simultaneous Detection of Multiple Antibiotics in Milk and Pork Based on an Antibody Chip Biosensor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Apparatus
2.3. Preparation of Antibody Chip Biosensors
2.3.1. Preparation of Agarose Substrate
2.3.2. Preparation of the Antibody Chips
2.4. Establishment of Calibration Curve for Antibody Chip Biosensor
2.5. Validation of Antibody Chip Biosensors
3. Results
3.1. Optimization of the Antibody Chip Biosensor Detection System
3.1.1. Optimization of Agarose-Modified Slides
3.1.2. Optimization of Antibody-Chip Substrates
3.1.3. Optimization of Biosensor Spotting Sequence
3.1.4. Optimization of Printing and Immobilization
3.1.5. Optimization of Reagent Concentrations for an Indirect Competitive Assay
3.2. Performance of the Antibody Chip Biosensor
3.2.1. Analysis of Standard Curves and Cross-Reactivity for Biosensors
3.2.2. Sensitivity of Biosensors and Sample Analysis
3.2.3. Stability of the Antibody Chip Biosensor Assay System
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hayer, S.S.; Casanova-Higes, A.; Paladino, E.; Elnekave, E.; Nault, A.; Johnson, T.; Bender, J.; Perez, A.; Alvarez, J. Global Distribution of Extended Spectrum Cephalosporin and Carbapenem Resistance and Associated Resistance Markers in Escherichia coli of Swine Origin—A Systematic Review and Meta-Analysis. Front. Microbiol. 2022, 13, 1684. [Google Scholar] [CrossRef] [PubMed]
- Kovalakova, P.; Cizmas, L.; McDonald, T.J.; Marsalek, B.; Feng, M.B.; Sharma, V.K. Occurrence and toxicity of antibiotics in the aquatic environment: A review. Chemosphere 2020, 251, 126351. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Ying, G.G.; Deng, W.J. Antibiotic Residues in Food: Extraction, Analysis, and Human Health Concerns. J. Agric. Food Chem. 2019, 67, 7569–7586. [Google Scholar] [CrossRef] [PubMed]
- Chantziaras, I.; Boyen, F.; Callens, B.; Dewulf, J. Correlation between veterinary antimicrobial use and antimicrobial resistance in food-producing animals: A report on seven countries. J. Antimicrob. Chemoth. 2014, 69, 827–834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.; Shi, W.Z.; Liu, W.; Li, H.M.; Zhang, W.; Hu, J.R.; Ke, Y.C.; Sun, W.L.; Ni, J.R. A duodecennial national synthesis of antibiotics in China’s major rivers and seas (2005–2016). Sci. Total Environ. 2018, 615, 906–917. [Google Scholar] [CrossRef]
- Stolker, A.A.M.; Brinkman, U.A.T. Analytical strategies for residue analysis of veterinary drugs and growth-promoting agents in food-producing animals—A review. J. Chromatogr. A 2005, 1067, 15–53. [Google Scholar] [CrossRef]
- Rutjens, S.; Croubels, S.; De Baere, S.; Devreese, M. Development and Validation of Liquid Chromatography-Tandem Mass Spectrometry Methods for the Quantification of Cefquinome, Ceftiofur, and Desfuroylceftiofuracetamide in Porcine Feces with Emphasis on Analyte Stability. Molecules 2021, 25, 4598. [Google Scholar] [CrossRef]
- Saxena, S.K.; Rangasamy, R.; Krishnan, A.A.; Singh, D.P.; Uke, S.P.; Malekadi, P.K.; Sengar, A.S.; Mohamed, D.P.; Gupta, A. Simultaneous determination of multi-residue and multi-class antibiotics in aquaculture shrimps by UPLC-MS/MS. Food Chem. 2018, 260, 336–343. [Google Scholar] [CrossRef]
- Gaudin, V.; Rault, A.; Hedou, C.; Soumet, C.; Verdon, E. Strategies for the screening of antibiotic residues in eggs: Comparison of the validation of the classical microbiological method with an immunobiosensor method. Food Addit. Contam. A 2017, 34, 1510–1527. [Google Scholar] [CrossRef]
- Nagel, O.; Molina, M.P.; Althaus, R. Microbiological system in microtitre plates for detection and classification of antibiotic residues in milk. Int. Dairy J. 2013, 32, 150–155. [Google Scholar] [CrossRef]
- Bohn, T.; Pellet, T.; Boscher, A.; Hoffmann, L. Developing a microbiological growth inhibition screening assay for the detection of 27 veterinary drugs from 13 different classes in animal feedingstuffs. Food Addit. Contam. A 2013, 30, 1870–1887. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.Z.; Zhang, X.Y.; Wang, Z.H.; Jiang, H.Y.; Lv, Z.Q.; Shen, J.Z.; Xia, G.L.; Wen, K. Universal simultaneous multiplex ELISA of small molecules in milk based on dual luciferases. Anal. Chim. Acta 2018, 1001, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Li, H.F.; Xiya, S.Q.; Zhang, X.Y.; Li, C.L.; Dong, B.L.; Mujtaba, M.G.; Wei, Y.J.; Liang, X.; Yu, X.Z.; Wen, K.; et al. Generic Hapten Synthesis, Broad-Specificity Monoclonal Antibodies Preparation, and Ultrasensitive ELISA for Five Antibacterial Synergists in Chicken and Milk. J. Agric. Food Chem. 2018, 66, 11170–11179. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.N.; Liu, L.Q.; Song, S.S.; Kuang, H.; Xu, C.L. Establishment of a monoclonal antibody-based indirect enzyme-linked immunosorbent assay for the detection of trimethoprim residues in milk, honey, and fish samples. Food Agric. Immunol. 2016, 27, 830–840. [Google Scholar] [CrossRef] [Green Version]
- Yu, W.B.; Chen, Y.P.; Knauer, M.; Dietrich, R.; Martlbauer, E.; Jiang, X.Y. Microfluidic Chip-Based Immunoassay for Reliable Detection of Cloxacillin in Poultry. Food Anal. Method 2016, 9, 3163–3169. [Google Scholar] [CrossRef]
- Liu, Y.C.; Wang, Q.; Jiang, W.; Chen, Y.J.; Zhao, X.Y.; Jing, Z.Y.; Zhang, M. Simultaneous Determination of Malachite Green, Diethylstilbestrol, Medroxyprogesterone, and 3-Amino-2-Oxazolidone in Synbranchoid Eels by a Protein Microarray Method. Food Anal. Method 2015, 8, 1058–1066. [Google Scholar] [CrossRef]
- Meyer, V.K.; Meloni, D.; Olivo, F.; Martlbauer, E.; Dietrich, R.; Niessner, R.; Seidel, M. Validation Procedure for Multiplex Antibiotic Immunoassays Using Flow-Based Chemiluminescence Microarrays. Methods Mol. Biol. 2017, 1518, 195–212. [Google Scholar]
- O’Mahony, J.; Moloney, M.; McConnell, R.I.; Benchikh, E.O.; Lowry, P.; Furey, A.; Danaher, M. Simultaneous detection of four nitrofuran metabolites in honey using a multiplexing biochip screening assay. Biosens. Bioelectron. 2011, 26, 4076–4081. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, N.; Ning, B.A.; Liu, M.; Lv, Z.; Sun, Z.Y.; Peng, Y.; Chen, C.C.; Li, J.W.; Gao, Z.X. Simultaneous and rapid detection of six different mycotoxins using an immunochip. Biosens. Bioelectron. 2012, 34, 44–50. [Google Scholar] [CrossRef]
- Zhao, Y.J.; Tang, M.M.; Liao, Q.B.; Li, Z.M.; Li, H.; Xi, K.; Tan, L.; Zhang, M.; Xu, D.K.; Chen, H.Y. Disposable MoS2-Arrayed MALDI MS Chip for High-Throughput and Rapid Quantification of Sulfonamides in Multiple Real Samples. ACS Sens. 2018, 3, 806–814. [Google Scholar] [CrossRef]
- Li, W.Q.; Shen, H.Y.; Hong, Y.H.; Zhang, Y.; Yuan, F.; Zhang, F. Simultaneous determination of 22 cephalosporins drug residues in pork muscle using liquid chromatography-tandem mass spectrometry. J. Chromatogr. B 2016, 1022, 298–307. [Google Scholar] [CrossRef]
- Zhou, W.F.; Yang, M.; Li, S.P.; Zhu, J.S. Surface plasmon resonance imaging validation of small molecule drugs binding on target protein microarrays. Appl. Surf. Sci. 2018, 450, 328–335. [Google Scholar] [CrossRef]
- Angenendt, P.; Glokler, J.; Murphy, D.; Lehrach, H.; Cahill, D.J. Toward optimized antibody microarrays: A comparison of current microarray support materials. Anal. Biochem. 2002, 309, 253–260. [Google Scholar] [CrossRef]
- Belleville, E.; Dufva, M.; Aamand, J.; Bruun, L.; Christensen, C.B.V. Quantitative assessment of factors affecting the sensitivity of a competitive immunomicroarray for pesticide detection. Biotechniques 2003, 35, 1044–1051. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, H.; Hanasaki, M.; Isojima, T.; Takeuchi, H.; Shiroya, T.; Kawaguchi, H. Enhancement of sensitivity of SPR protein microarray using a novel 3D protein immobilization. Colloid Surf. B 2009, 70, 259–265. [Google Scholar] [CrossRef] [PubMed]
- Kusnezow, W.; Jacob, A.; Walijew, A.; Diehl, F.; Hoheisel, J.D. Antibody microarrays: An evaluation of production parameters. Proteomics 2003, 3, 254–264. [Google Scholar] [CrossRef] [PubMed]
- Bang-Ce, Y.; Songyang, L.; Peng, Z.; Xiao-hong, L. Simultaneous detection of sulfamethazine, streptomycin, and tylosin in milk by microplate-array based SMM–FIA. Food Chem. 2008, 106, 797–803. [Google Scholar] [CrossRef]
- Zhong, L.; Zhang, W.; Zer, C.; Ge, K.; Gao, X.; Kernstine, K.H. Protein microarray: Sensitive and effective immunodetection for drug residues. BMC Biotechnol. 2010, 10, 12. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.C.; Das, C.; Ledden, B.; Sun, Q.; Nguyen, C.; Kumar, S. Evaluation of disposable microfluidic chip design for automated and fast Immunoassays. Biomicrofluidics 2017, 11, 014115. [Google Scholar] [CrossRef] [Green Version]
- Chen, A.L.; Wang, G.Q.; Cao, Q.; Wang, Y.; Zhang, Z.H.; Sun, Y.M.; Wang, H.; Xu, C.Y.; Zhou, Q.; Han, P.; et al. Development of an Antibody Hapten-Chip System for Detecting the Residues of Multiple Antibiotic Drugs. J. Forensic Sci. 2009, 54, 953–960. [Google Scholar] [CrossRef]
- Peng, J.; Cheng, G.; Huang, L.; Wang, Y.; Hao, H.; Peng, D.; Liu, Z.; Yuan, Z. Development of a direct ELISA based on carboxy-terminal of penicillin-binding protein BlaR for the detection of beta-lactam antibiotics in foods. Anal. Bioanal. Chem. 2013, 405, 8925–8933. [Google Scholar] [CrossRef]
- Knecht, B.G.; Strasser, A.; Dietrich, R.; Martlbauer, E.; Niessner, R.; Weller, M.G. Automated microarray system for the simultaneous detection of antibiotics in milk. Anal. Chem. 2004, 76, 646–654. [Google Scholar] [CrossRef]
- Wutz, K.; Niessner, R.; Seidel, M. Simultaneous determination of four different antibiotic residues in honey by chemiluminescence multianalyte chip immunoassays. Microchim. Acta 2011, 173, 1–9. [Google Scholar] [CrossRef]
Antibody Chip | Coating Concentration (µg/mL) | Antibody Concentration (µg/mL) |
---|---|---|
Cefalexin | 6 | 0.60 |
Ceftiofur | 32 | 0.48 |
Neomycin | 16 | 1.20 |
Gentamicin | 20 | 0.85 |
Sulfonamides | 10 | 1.40 |
Antibiotics | LOD (µg/L) | IC50 (µg/L) | Linear Ranges (µg/L) | MRLs (µg/kg) |
---|---|---|---|---|
CLX | 0.84 | 2.54 ± 0.22 | 0.625–10 | 100 |
CRO | 0.64 | 2.15 ± 0.30 | 0.625–10 | 100 |
N | 0.51 | 1.97 ± 0.32 | 0.625–10 | 150 |
GM | 4.30 | 15.60 ± 1.01 | 5–80 | 100 |
SM2 | 0.99 | 4.55 ± 0.47 | 1.5–24 | 100 |
Analytes | Cross-Reactivity Rates (CR, %) | ||||
---|---|---|---|---|---|
CLX-Mab | CRO-Mab | N-Mab | GM-Mab | SM2-Mab | |
CLX | 100.0 | – | – | – | – |
CFR | 122.8 | – | – | – | – |
CE | 99.1 | – | – | – | – |
CRO | – 1 | 100.0 | – | – | – |
EFT | – | 109.4 | – | – | – |
DFC | – | 92.1 | – | – | – |
CTX | – | 9.7 | – | – | – |
CQO | – | 5.3 | – | – | – |
N | – | – | 100.0 | – | – |
AK | – | – | 72.7 | – | – |
PRM | – | – | 143.7 | – | – |
GM | – | – | – | 100.0 | – |
SC | – | – | – | 36.3 | – |
SM2 | – | – | – | – | 100.0 |
SMM | – | – | – | – | 496.8 |
SD | – | – | – | – | 525.0 |
SMD | – | – | – | – | 641.7 |
SPD | – | – | – | – | 64.0 |
SPZ | – | – | – | – | 172.4 |
SMP | – | – | – | – | 70.2 |
ST | – | – | – | – | 156.1 |
SDM′ | – | – | – | – | 1155.0 |
SM1 | – | – | – | – | 330.0 |
SM2′ | – | – | – | – | 243.2 |
SQ | – | – | – | – | 121.6 |
SDM | – | – | – | – | 87.2 |
SMZ | – | – | – | – | 18.5 |
SMTZ | – | – | – | – | 11.8 |
Drug | Samples | Recovery (%) | CVintra-assay (%, n 1 = 3) | Recovery (%) | CVinter-assay (%, n = 9) | LOD (µg/kg or µg/L) | LOQ (µg/kg or µg/L) |
---|---|---|---|---|---|---|---|
CLX, CFR, CE | milk | 83.5–113.6 | ≤12.9 | 87.8–105.3 | ≤9.7 | 19.7–21.0 | 27.9–28.3 |
pork | 84.1–105.0 | ≤9.7 | 87.8–96.7 | ≤8.6 | 19.0–21.3 | 26.0–28.8 | |
CRO, EFT, DFC | milk | 81.6–113.0 | ≤10.4 | 85.9–106.0 | ≤9.3 | 20.2–21.9 | 28.4–31.2 |
pork | 83.6–110.0 | ≤9.2 | 87.9–101.2 | ≤9.3 | 17.9–20.6 | 25.0–28.2 | |
N, AK, PRM | milk | 84.2–110.2 | ≤10.3 | 90.3–104.7 | ≤8.8 | 13.2–23.9 | 18.5–30.7 |
pork | 84.6–107.4 | ≤11.9 | 89.2–97.5 | ≤9.2 | 12.9–23.6 | 17.7–29.9 | |
GM | milk | 85.9–109.3 | ≤10.4 | 93.4–100.6 | ≤8.5 | 15.4 | 22.7 |
pork | 86.7–110.2 | ≤9.2 | 92.7–102.8 | ≤9.1 | 15.1 | 21.5 | |
SM2, SD, SMD, SDM′, SM1, SPD, SPZ | milk | 85.8–113.1 | ≤10.8 | 90.8–105.5 | ≤11.6 | 17.4–21.0 | 22.1–31.1 |
pork | 83.7–108.2 | ≤10.5 | 88.3–105.3 | ≤9.9 | 17.5–20.4 | 21.8–28.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, J.; Wei, N.; Wu, S.; Li, H.; Yin, X.; Si, Y.; Li, L.; Peng, D. The Simultaneous Detection of Multiple Antibiotics in Milk and Pork Based on an Antibody Chip Biosensor. Biosensors 2022, 12, 578. https://doi.org/10.3390/bios12080578
Xiao J, Wei N, Wu S, Li H, Yin X, Si Y, Li L, Peng D. The Simultaneous Detection of Multiple Antibiotics in Milk and Pork Based on an Antibody Chip Biosensor. Biosensors. 2022; 12(8):578. https://doi.org/10.3390/bios12080578
Chicago/Turabian StyleXiao, Jiaxu, Nana Wei, Shuangmin Wu, Huaming Li, Xiaoyang Yin, Yu Si, Long Li, and Dapeng Peng. 2022. "The Simultaneous Detection of Multiple Antibiotics in Milk and Pork Based on an Antibody Chip Biosensor" Biosensors 12, no. 8: 578. https://doi.org/10.3390/bios12080578
APA StyleXiao, J., Wei, N., Wu, S., Li, H., Yin, X., Si, Y., Li, L., & Peng, D. (2022). The Simultaneous Detection of Multiple Antibiotics in Milk and Pork Based on an Antibody Chip Biosensor. Biosensors, 12(8), 578. https://doi.org/10.3390/bios12080578