State-of-the-Art Advances of Nanomedicine for Diagnosis and Treatment of Bladder Cancer
Abstract
:1. Introduction
2. The Current Diagnostic Methods
3. The Current Therapies
4. Nanotechnology in Diagnosis
4.1. Nanotechnology in Light-Based Imaging
4.2. Nanotechnology in Urine Test
5. Nanotechnology in Treatment
5.1. Nano-Formulations for Chemotherapy
5.2. Nano-Formulations for Immune Therapy
5.3. Nano-Formulations for Targeted Therapy
5.4. Nano-Formulations for Light-Based Therapy
5.5. Nano-Formulations for Sonodynamic Therapy
6. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AIE | Aggregation induced emission |
AIE | Aggregation-induced emission |
AIEgen | AIE luminogens |
ALA | 5-aminolevulinic acid |
AMPK | Adenosine phosphate activated protein kinase |
AP | Penetratin |
ATF | Amino-terminal fragment |
AUC | Area under curve |
AuNRs | Embedded gold nanorods |
BCG | Bacillus calmette–guérin |
BCG-CWS | BCG cell wall skeleton |
BSA | Bovine serum albumin |
Cat | Catechin |
Cd | Cadmium |
CD47 | Cytokine |
Ce6 | Chlorin e6 |
Chl | Chlorophy |
CI | Confidence interval |
CS | Chitosan |
CT | Computer tomography |
CWS-NP | BCG-CWS nanoparticle |
Dox | Doxorubicin |
DTX | Docetaxel |
EGFR | Epidermal growth factor |
ELISA | Enzyme linked immunosorbent assay |
ELISA | Enzyme linked immunosorbent assay; |
EphA2 | Ephrin receptor A2 |
EPR | Enhanced permeability and retention |
FAP | Fibronectin attach protein |
FCS | Fluorinated chitosan |
FDA | Food and Drug Administration |
FGFR | Fibroblast growth factor receptors |
FISH | Fluorescence in situ hybridization |
GC regimen | Gemcitabine cisplatin/carboplatin |
GEM | Gemcitabine |
GO | Graphene oxide |
GP | B-glycerophosphate |
HA | Hyaluronic acid |
HAase | Hyaluronidase |
HLA | Hexaminolaevulinic acid |
HSA | Human serum albumin |
IAP | Integrin-associated protein |
IONs | Iron oxide nanoparticles |
LEEL | Liposome evaporated emulsified lipid |
LK | Lumbrokinase |
mAb | Monoclonal antibody |
Met | Metformin |
MIBC | Muscle-invasive bladder cancer |
MMC | Mitomycin |
Mn | Manganese |
MNP | Magnetic nanoparticles |
MPI | Polybia-mastoparan I |
MRI | Magnetic resonance imaging |
mRNA | Messenger RNA |
MVAC | Methotrexate, vinblastine, doxorubicin and cisplatin |
NCCN | National comprehensive cancer network |
NIR | Near infrared ray |
NIR-II | Near-infrared-II |
NK cell | Natural kill cell |
NMIBC | Non-muscle-invasive bladder cancer |
NSs | Nanosupensions |
NTZ | Nitazoxanide |
OEGMA | Polyethylene glycol ester |
PAMAM | Poly amidoamine |
PCI | Photochemical internalization |
PCI | Photochemical internalization |
PD-1/L1 | Programmed cell death 1 |
PD-L1 | Programmed cell death 1 ligand 1 |
PDT | Photodynamic therapy |
PDX | Xenograft |
PEG | Polyethylene glycol |
PET / CT | Positron emission tomography computed tomography |
PLGA | Poly (lactic-co-glycolic acid) |
PS | Photosensitizers |
PSCA | Prostate stem cell antigen |
PTT | Photothermal therapy |
PTX | Paclitaxel |
QD | Quantum dot |
ROC | Receiver operating characteristic |
ROS | Reactive oxygen species |
SDT | Sonodynamic therapy |
Se | Selenium |
SI | Singe-dose immediate intravesical chemotherapy |
Si | Silicon |
siRNA | Small interfering RNA |
TCPP | Meso-tetra(4-carboxyphenyl)porphine |
TiO2 | Titanium dioxide |
TME | Tumor microenvironment |
TURBT | Transurethral resection of the bladder cancer |
UCNP | Upconversion nanoparticle |
β- E | Β- elemene |
δ-FeOOH | Feroxyhyte nanosheets |
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin. 2019, 69, 7–34. [Google Scholar] [CrossRef] [PubMed]
- Patel, V.G.; Oh, W.K.; Galsky, M.D. Treatment of muscle-invasive and advanced bladder cancer in 2020. CA A Cancer J. Clin. 2020, 70, 404–423. [Google Scholar] [CrossRef] [PubMed]
- Grayson, M. Bladder cancer. Nature 2017, 551, S33. [Google Scholar] [CrossRef] [PubMed]
- Antoni, S.; Ferlay, J.; Soerjomataram, I.; Znaor, A.; Jemal, A.; Bray, F. Bladder Cancer Incidence and Mortality: A Global Overview and Recent Trends. Eur. Urol. 2017, 71, 96–108. [Google Scholar] [CrossRef] [PubMed]
- Richters, A.; Aben, K.K.H.; Kiemeney, L.A.L.M. The global burden of urinary bladder cancer: An update. World J. Urol. 2019, 38, 1895–1904. [Google Scholar] [CrossRef]
- Sloan, F.A.; Yashkin, A.P.; Akushevich, I.; Inman, B. The Cost to Medicare of Bladder Cancer Care. Eur. Urol. Oncol. 2019, 3, 515–522. [Google Scholar] [CrossRef]
- Schmid, S.C.; Zahel, T.; Haller, B.; Horn, T.; Metzger, I.; Holzapfel, K.; Seitz, A.K.; Gschwend, J.E.; Retz, M.; Maurer, T. Prognostic value of computed tomography before radical cystectomy in patients with invasive bladder cancer: Imaging predicts survival. World J. Urol. 2015, 34, 569–576. [Google Scholar] [CrossRef]
- Trinh, T.W.; Glazer, D.I.; Sadow, C.A.; Sahni, V.A.; Geller, N.L.; Silverman, S.G. Bladder cancer diagnosis with CT urography: Test characteristics and reasons for false-positive and false-negative results. Abdom. Radiol. 2018, 43, 663–671. [Google Scholar] [CrossRef]
- Mossanen, M.; Chang, S.L.; Kimm, S.; Sonpavde, G.P.; Kibel, A.S. Current Staging Strategies for Muscle-Invasive Bladder Cancer and Upper Tract Urothelial Cell Carcinoma. Urol. Clin. North Am. 2018, 45, 143–154. [Google Scholar] [CrossRef]
- Leow, J.J.; Martin-Doyle, W.; Rajagopal, P.S.; Patel, C.G.; Anderson, E.M.; Rothman, A.T.; Cote, R.J.; Urun, Y.; Chang, S.L.; Choueiri, T.K.; et al. Adjuvant Chemotherapy for Invasive Bladder Cancer: A 2013 Updated Systematic Review and Meta-Analysis of Randomized Trials. Eur. Urol. 2014, 66, 42–54. [Google Scholar] [CrossRef]
- Flaig, T.W.; Spiess, P.E.; Agarwal, N.; Bangs, R.; Johnson-Chilla, A. Bladder Cancer, Version 3. 2020, NCCN Clinical Practice Guidelines in Oncology. Journal of the National Comprehensive Cancer Network: JNCCN 2020, 18, 329–354. [Google Scholar]
- Bosschieter, J.; Nieuwenhuijzen, J.A.; van Ginkel, T.; Vis, A.N.; Witte, B.; Newling, D.; Beckers, G.M.; van Moorselaar, R.J.A. Value of an Immediate Intravesical Instillation of Mitomycin C in Patients with Non–muscle-invasive Bladder Cancer: A Prospective Multicentre Randomised Study in 2243 patients. Eur. Urol. 2017, 73, 226–232. [Google Scholar] [CrossRef] [PubMed]
- Messing, E.M.; Tangen, C.M.; Lerner, S.P.; Sahasrabudhe, D.M.; Koppie, T.M.; Wood, D.P.; Mack, P.C.; Svatek, R.S.; Evans, C.P.; Hafez, K.S.; et al. Effect of Intravesical Instillation of Gemcitabine vs Saline Immediately Following Resection of Suspected Low-Grade Non–Muscle-Invasive Bladder Cancer on Tumor Recurrence. JAMA 2018, 319, 1880–1888. [Google Scholar] [CrossRef]
- Chang, S.S. Re: EORTC Nomograms and Risk Groups for Predicting Recurrence, Progression, and Disease-Specific and Overall Survival in Non-Muscle-Invasive Stage Ta-T1 Urothelial Bladder Cancer Patients Treated with 1-3 Years of Maintenance Bacillus Calmette-Guérin. J. Urol. 2017, 198, 39–41. [Google Scholar] [CrossRef]
- Jo, A.; Mb, B.; Rs, C.; Ab, D.; Cvdb, E.; Gva, F.; Pg, G.; Wh, H.; Lt, I.; Sm, C. Final Results of an EORTC-GU Cancers Group Randomized Study of Maintenance Bacillus Calmette-Guérin in Intermediate- and High-risk Ta, T1 Papillary Carcinoma of the Urinary Bladder: One-third Dose Versus Full Dose and 1 Year Versus 3 Years of Maintenance. European urology 2013, 63, 462–472. [Google Scholar]
- Barocas, D.A.; Globe, D.R.; Colayco, D.C.; Onyenwenyi, A.; Bruno, A.S.; Bramley, T.J.; Spear, R.J. Surveillance and Treatment of Non-Muscle-Invasive Bladder Cancer in the USA. Adv. Urol. 2012, 2012, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Ślusarczyk, A.; Zapała, P.; Zapała, Ł.; Piecha, T.; Radziszewski, P. Prediction of BCG responses in non-muscle-invasive bladder cancer in the era of novel immunotherapeutics. Int. Urol. Nephrol. 2019, 51, 1089–1099. [Google Scholar] [CrossRef]
- Bajorin, D.F.; Witjes, J.A.; Gschwend, J.E.; Schenker, M.; Valderrama, B.P.; Tomita, Y.; Bamias, A.; Lebret, T.; Shariat, S.F.; Park, S.H.; et al. Adjuvant Nivolumab versus Placebo in Muscle-Invasive Urothelial Carcinoma. New Engl. J. Med. 2021, 384, 2102–2114. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Zhou, Y.; Liu, L.; Xu, Y.; Chen, Q.; Wang, Y.; Wu, S.; Deng, Y.; Zhang, J.; Shao, A. Nanoparticle-Based Drug Delivery in Cancer Therapy and Its Role in Overcoming Drug Resistance. Front. Mol. Biosci. 2020, 7, 193. [Google Scholar] [CrossRef]
- Pan, C.-X.; Lin, T.-Y.; Zhang, H.; Luo, J.; Li, Y.; Gao, T.; Lara, P.N., Jr.; White, R.D.V.; Lam, K.S. Multifunctional targeting micelle nanocarriers with both imaging and therapeutic potential for bladder cancer. Int. J. Nanomed. 2012, 7, 2793–2804. [Google Scholar] [CrossRef]
- Tao, K.; Liu, S.; Wang, L.; Qiu, H.; Li, B.; Zhang, M.; Guo, M.; Liu, H.; Zhang, X.; Liu, Y.; et al. Targeted multifunctional nanomaterials with MRI, chemotherapy and photothermal therapy for the diagnosis and treatment of bladder cancer. Biomater. Sci. 2019, 8, 342–352. [Google Scholar] [CrossRef]
- Zhou, Y.; Chan, C.-F.; Kwong, D.W.J.; Law, G.-L.; Cobb, S.; Wong, W.-K. αvβ3-Isoform specific erbium complexes highly specific for bladder cancer imaging and photodynamic therapy. Chem. Commun. 2016, 53, 557–560. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Wang, T.; Liu, H.; Ren, F.; Qiu, W.; Sun, Q.; Yan, F.; Zheng, H.; Li, Z.; Gao, M. Second near-infrared photodynamic therapy and chemotherapy of orthotopic malignant glioblastoma with ultra-small Cu2−xSe nanoparticles. Nanoscale 2019, 11, 7600–7608. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Sun, C.; Zeng, J.; Sun, Q.; Wang, G.; Wang, Y.; Wu, Y.; Dou, S.; Gao, M.; Li, Z. Ambient Aqueous Synthesis of Ultrasmall PEGylated Cu2-xSe Nanoparticles as a Multifunctional Theranostic Agent for Multimodal Imaging Guided Photothermal Therapy of Cancer. Adv. Mater. 2016, 28, 8927–8936. [Google Scholar] [CrossRef] [PubMed]
- Babjuk, M.; Burger, M.; Compérat, E.M.; Gontero, P.; Mostafid, A.H.; Palou, J.; van Rhijn, B.W.G.; Roupret, M.; Shariat, S.F.; Sylvester, R.; et al. European Association of Urology Guidelines on Non-muscle-invasive Bladder Cancer (TaT1 and Carcinoma In Situ)—2019 Update. Eur. Urol. 2019, 76, 639–657. [Google Scholar] [CrossRef]
- Lotan, Y.; Roehrborn, C.G. Sensitivity and specificity of commonly available bladder tumor markers versus cytology: Results of a comprehensive literature review and meta-analyses. Urology 2003, 61, 109–118. [Google Scholar] [CrossRef]
- Daneshmand, S.; Patel, S.; Lotan, Y.; Pohar, K.; Trabulsi, E.; Woods, M.; Downs, T.; Huang, W.; Jones, J.S.; O’Donnell, M.; et al. Efficacy and Safety of Blue Light Flexible Cystoscopy with Hexaminolevulinate in the Surveillance of Bladder Cancer: A Phase III, Comparative, Multicenter Study. J. Urol. 2018, 199, 1158–1165. [Google Scholar] [CrossRef]
- Lotan, Y.; Oʼsullivan, P.; Raman, J.D.; Shariat, S.F.; Kavalieris, L.; Frampton, C.; Guilford, P.; Luxmanan, C.; Suttie, J.; Crist, H.; et al. Clinical comparison of noninvasive urine tests for ruling out recurrent urothelial carcinoma. Urol. Oncol. Semin. Orig. Investig. 2017, 35, 531.e15–531.e22. [Google Scholar] [CrossRef]
- Yafi, F.A.; Brimo, F.; Steinberg, J.; Aprikian, A.G.; Tanguay, S.; Kassouf, W. Prospective analysis of sensitivity and specificity of urinary cytology and other urinary biomarkers for bladder cancer. Urol. Oncol. Semin. Orig. Investig. 2015, 33, 66.e25–66.e31. [Google Scholar] [CrossRef]
- Soria, F.; Krabbe, L.-M.; Todenhöfer, T.; Dobruch, J.; Mitra, A.P.; Inman, B.A.; Gust, K.M.; Lotan, Y.; Shariat, S.F. Molecular markers in bladder cancer. World J. Urol. 2018, 37, 31–40. [Google Scholar] [CrossRef]
- Chou, R.; Gore, J.L.; Buckley, D.; Fu, R.; Gustafson, K.; Griffin, J.C.; Grusing, S.; Selph, S. Urinary Biomarkers for Diagnosis of Bladder Cancer. Ann. Intern. Med. 2015, 163, 922–931. [Google Scholar] [CrossRef]
- Mowatt, G.; Zhu, S.; Kilonzo, M.; Boachie, C.; Fraser, C.; Griffiths, T.R.L.; N’Dow, J.; Nabi, G.; Cook, J.; Vale, L. Systematic review of the clinical effectiveness and cost-effectiveness of photodynamic diagnosis and urine biomarkers (FISH, ImmunoCyt, NMP22) and cytology for the detection and follow-up of bladder cancer. Health Technol. Assess. 2010, 14, 1–331, iii. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.B.; Lee, N.K.; Kim, S.; Son, I.W.; Ha, H.K.; Ku, J.Y.; Kim, K.H.; Park, W.Y. Vesical Imaging–Reporting and Data System for Multiparametric MRI to Predict the Presence of Muscle Invasion for Bladder Cancer. J. Magn. Reson. Imaging 2020, 52, 1249–1256. [Google Scholar] [CrossRef]
- Lin, W.-C.; Chen, J.-H. Pitfalls and Limitations of Diffusion-Weighted Magnetic Resonance Imaging in the Diagnosis of Urinary Bladder Cancer. Transl. Oncol. 2015, 8, 217–230. [Google Scholar] [CrossRef]
- Zhang, S.; Song, M.; Zhao, Y.; Xu, S.; Sun, Q.; Zhai, G.; Liang, D.; Wu, G.; Li, Z.-C. Radiomics nomogram for preoperative prediction of progression-free survival using diffusion-weighted imaging in patients with muscle-invasive bladder cancer. Eur. J. Radiol. 2020, 131, 109219. [Google Scholar] [CrossRef]
- Li, C.; Gu, Z.; Ni, P.; Zhang, W.; Yang, F.; Li, W.; Yao, X.; Chen, Y. The value of contrast-enhanced ultrasound and magnetic resonance imaging in the diagnosis of bladder cancer. Journal of cancer research and therapeutics 2021, 17, 1179–1185. [Google Scholar] [CrossRef]
- McKibben, M.J.; Woods, M.E. Preoperative Imaging for Staging Bladder Cancer. Curr. Urol. Rep. 2015, 16, 1–7. [Google Scholar] [CrossRef]
- Sylvester, R.J.; Oosterlinck, W.; Holmang, S.; Sydes, M.R.; Birtle, A.; Gudjonsson, S.; De Nunzio, C.; Okamura, K.; Kaasinen, E.; Solsona, E.; et al. Systematic Review and Individual Patient Data Meta-analysis of Randomized Trials Comparing a Single Immediate Instillation of Chemotherapy After Transurethral Resection with Transurethral Resection Alone in Patients with Stage pTa–pT1 Urothelial Carcinoma of the Bladder: Which Patients Benefit from the Instillation? Eur. Urol. 2016, 69, 231–244. [Google Scholar] [CrossRef]
- Morales, A.; Eidinger, D.; Bruce, A.W. Intracavitary Bacillus Calmette-guerin in the Treatment of Superficial Bladder Tumors. J. Urol. 1976, 116, 180–182. [Google Scholar] [CrossRef]
- Ratliff, T.L.; Kavoussi, L.R.; Catalona, W.J. Role of Fibronectin in Intravesical BCG Therapy for Superficial Bladder Cancer. J. Urol. 1988, 139, 410–414. [Google Scholar] [CrossRef]
- Sinn, H.W.; Elzey, B.D.; Jensen, R.J.; Zhao, X.; Zhao, W.; Ratliff, T.L. The fibronectin attachment protein of bacillus Calmette-Guerin (BCG) mediates antitumor activity. Cancer Immunol. Immunother. 2007, 57, 573–579. [Google Scholar] [CrossRef]
- Ratliff, T.L.; Palmer, J.O.; McGarr, J.A.; Brown, E.J. Intravesical Bacillus Calmette-Guérin therapy for murine bladder tumors: Initiation of the response by fibronectin-mediated attachment of Bacillus Calmette-Guérin. Cancer Res. 1987, 47, 1762–1766. [Google Scholar]
- Mora-Bau, G.; Platt, A.M.; Van Rooijen, N.; Randolph, G.J.; Albert, M.L.; Ingersoll, M.A. Macrophages Subvert Adaptive Immunity to Urinary Tract Infection. PLOS Pathog. 2015, 11, e1005044. [Google Scholar] [CrossRef]
- Ingersoll, M.A.; Albert, M.L. From infection to immunotherapy: Host immune responses to bacteria at the bladder mucosa. Mucosal Immunol. 2013, 6, 1041–1053. [Google Scholar] [CrossRef]
- Redelman-Sidi, G.; Iyer, G.; Solit, D.B.; Glickman, M.S. Oncogenic Activation of Pak1-Dependent Pathway of Macropinocytosis Determines BCG Entry into Bladder Cancer Cells. Cancer Res. 2013, 73, 1156–1167. [Google Scholar] [CrossRef]
- Bakhru, P.; Sirisaengtaksin, N.; Soudani, E.; Mukherjee, S.; Khan, A.; Jagannath, C. BCG vaccine mediated reduction in the MHC-II expression of macrophages and dendritic cells is reversed by activation of Toll-like receptors 7 and 9. Cell. Immunol. 2013, 287, 53–61. [Google Scholar] [CrossRef]
- Kamat, A.M.; Briggman, J.; Urbauer, D.L.; Svatek, R.; González, G.M.N.; Anderson, R.; Grossman, H.B.; Prat, F.; Dinney, C.P. Cytokine Panel for Response to Intravesical Therapy (CyPRIT): Nomogram of Changes in Urinary Cytokine Levels Predicts Patient Response to Bacillus Calmette-Guérin. Eur. Urol. 2015, 69, 197–200. [Google Scholar] [CrossRef]
- Oddens, J.R.; De Reijke, T.M. The Current State of Predicting Response on Bacillus Calmette-Guérin Treatment for Nonmuscle Invasive Bladder Cancer is Not Yet Useful for Patients but Attributes to Understanding Its Mechanisms of Action. Eur. Urol. 2018, 73, 749–750. [Google Scholar] [CrossRef]
- Ajili, F.; Kaabi, B.; Darouiche, A.; Tounsi, H.; Kourda, N.; Chebil, M.; Manai, M.; Boubaker, S. Prognostic Value of Bcl-2 and Bax Tumor Cell Expression in Patients with Non Muscle-Invasive Bladder Cancer Receiving Bacillus Calmette-Guerin Immunotherapy. Ultrastruct. Pathol. 2012, 36, 31–39. [Google Scholar] [CrossRef]
- Yu, D.; Wu, C.; Ping, S.; Keng, C.; Shen, K. Bacille Calmette-Guerin can induce cellular apoptosis of urothelial cancer directly through toll-like receptor 7 activation. Kaohsiung J. Med Sci. 2015, 31, 391–397. [Google Scholar] [CrossRef]
- See, W.A.; Zhang, G.; Chen, F.; Cao, Y.; Langenstroer, P.; Sandlow, J. Bacille-Calmette Guèrin induces caspase-independent cell death in urothelial carcinoma cells together with release of the necrosis-associated chemokine high molecular group box protein 1. Br. J. Urol. 2009, 103, 1714–1720. [Google Scholar] [CrossRef] [PubMed]
- Ryk, C.; Koskela, L.R.; Thiel, T.; Wiklund, N.P.; Steineck, G.; Schumacher, M.C.; de Verdier, P.J. Outcome after BCG treatment for urinary bladder cancer may be influenced by polymorphisms in the NOS2 and NOS3 genes. Redox Biol. 2015, 6, 272–277. [Google Scholar] [CrossRef] [PubMed]
- Severino, P.F.; Silva, M.; Carrascal, M.; Malagolini, N.; Chiricolo, M.; Venturi, G.; Astolfi, A.; Catera, M.; Videira, P.A.; Dall’Olio, F. Expression of sialyl-Tn sugar antigen in bladder cancer cells affects response to Bacillus Calmette Guérin (BCG) and to oxidative damage. Oncotarget 2017, 8, 54506–54517. [Google Scholar] [CrossRef] [Green Version]
- Severino, P.F.; Silva, M.; Carrascal, M.; Malagolini, N.; Chiricolo, M.; Venturi, G.; Forleo, R.B.; Astolfi, A.; Catera, M.; Videira, P.A.; et al. Oxidative damage and response to Bacillus Calmette-Guérin in bladder cancer cells expressing sialyltransferase ST3GAL1. BMC Cancer 2018, 18, 198. [Google Scholar] [CrossRef]
- Bayoumi, Y.; Heikal, T.; Darweish, H. Survival benefit of adjuvant radiotherapy in stage III and IV bladder cancer: Results of 170 patients. Cancer Manag. Res. 2014, 6, 459–465. [Google Scholar] [CrossRef]
- Tey, J.; Soon, Y.Y.; Cheo, T.; Ooi, K.H.; Ho, F.; Vellayappan, B.; Chia, D.; Tai, B.C. Efficacy of Palliative Bladder Radiotherapy for Hematuria in Advanced Bladder Cancer Using Contemporary Radiotherapy Techniques. Vivo 2019, 33, 2161–2167. [Google Scholar] [CrossRef]
- Tey, J.; Ho, F.; Koh, W.Y.; Chia, D.; Ooi, K.H.; Tuan, J.K.L.; Vellayappan, B.; Soon, Y.Y. Palliative radiotherapy for bladder cancer: A systematic review and meta-analysis. Acta Oncol. 2021, 60, 635–644. [Google Scholar] [CrossRef]
- Balar, A.V.; Castellano, D.; O’Donnell, P.H.; Grivas, P.; Vuky, J.; Powles, T.; Plimack, E.R.; Hahn, N.M.; de Wit, R.; Pang, L.; et al. First-line pembrolizumab in cisplatin-ineligible patients with locally advanced and unresectable or metastatic urothelial cancer (KEYNOTE-052): A multicentre, single-arm, phase 2 study. Lancet Oncol. 2017, 18, 1483–1492. [Google Scholar] [CrossRef]
- Balar, A.V.; Galsky, M.D.; Rosenberg, J.E.; Powles, T.; Petrylak, D.P.; Bellmunt, J.; Loriot, Y.; Necchi, A.; Hoffman-Censits, J.; Perez-Gracia, J.L.; et al. Atezolizumab as first-line treatment in cisplatin-ineligible patients with locally advanced and metastatic urothelial carcinoma: A single-arm, multicentre, phase 2 trial. Lancet 2017, 389, 67–76. [Google Scholar] [CrossRef]
- Van der Heijden, M.S.; Loriot, Y.; Durán, I.; Ravaud, A.; Retz, M.; Vogelzang, N.J.; Nelson, B.; Wang, J.; Shen, X.; Powles, T. Atezolizumab Versus Chemotherapy in Patients with Platinum-treated Locally Advanced or Metastatic Urothelial Carcinoma: A Long-term Overall Survival and Safety Update from the Phase 3 IMvigor211 Clinical Trial. Eur. Urol. 2021, 80, 7–11. [Google Scholar] [CrossRef]
- Loriot, Y.; Necchi, A.; Park, S.H.; Garcia-Donas, J.; Huddart, R.; Burgess, E.; Fleming, M.; Rezazadeh, A.; Mellado, B.; Varlamov, S.; et al. Erdafitinib in Locally Advanced or Metastatic Urothelial Carcinoma. New Engl. J. Med. 2019, 381, 338–348. [Google Scholar] [CrossRef]
- Sheng, X.; Yan, X.; Wang, L.; Shi, Y.-X.; Yao, X.; Luo, H.; Shi, B.; Liu, J.-Y.; He, Z.; Yu, G.; et al. Open-label, Multicenter, Phase II Study of RC48-ADC, a HER2-Targeting Antibody–Drug Conjugate, in Patients with Locally Advanced or Metastatic Urothelial Carcinoma. Clin. Cancer Res. 2021, 27, 43–51. [Google Scholar] [CrossRef]
- Diamond, I.; Mcdonagh, A.; Wilson, C.; Granelli, S.; Nielsen, S.; Jaenicke, R. Photodynamic therapy of malignant tumours. Lancet 1972, 300, 1175–1177. [Google Scholar] [CrossRef]
- Li, X.; Lovell, J.F.; Yoon, J.; Chen, X. Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat. Rev. Clin. Oncol. 2020, 17, 657–674. [Google Scholar] [CrossRef]
- Jichlinski, P.; Leisinger, H.-J. Photodynamic therapy in superficial bladder cancer: Past, present and future. Urol. Res. 2001, 29, 396–405. [Google Scholar] [CrossRef]
- Lee, J.Y.; Diaz, R.R.; Cho, K.S.; Lim, M.S.; Chung, J.S.; Kim, W.T.; Ham, W.S.; Choi, Y.D. Efficacy and Safety of Photodynamic Therapy for Recurrent, High Grade Nonmuscle Invasive Bladder Cancer Refractory or Intolerant to Bacille Calmette-Guérin Immunotherapy. J. Urol. 2013, 190, 1192–1199. [Google Scholar] [CrossRef]
- Ayers, M.; Lunceford, J.; Nebozhyn, M.; Murphy, E.; Loboda, A.; Kaufman, D.R.; Albright, A.; Cheng, J.D.; Kang, S.P.; Shankaran, V.; et al. IFN-γ-related mRNA profile predicts clinical response to PD-1 blockade. J. Clin. Investig. 2017, 127, 2930–2940. [Google Scholar] [CrossRef]
- Sun, C.; Mezzadra, R.; Schumacher, T.N. Regulation and Function of the PD-L1 Checkpoint. Immunity 2018, 48, 434–452. [Google Scholar] [CrossRef]
- Xiong, W.; Qi, L.; Jiang, N.; Zhao, Q.; Chen, L.; Jiang, X.; Li, Y.; Zhou, Z.; Shen, J. Metformin Liposome-Mediated PD-L1 Downregulation for Amplifying the Photodynamic Immunotherapy Efficacy. ACS Appl. Mater. Interfaces 2021, 13, 8026–8041. [Google Scholar] [CrossRef]
- Pan, Y.; Volkmer, J.-P.; Mach, K.E.; Rouse, R.V.; Liu, J.-J.; Sahoo, D.; Chang, T.C.; Metzner, T.J.; Kang, L.; van de Rijn, M.; et al. Endoscopic molecular imaging of human bladder cancer using a CD47 antibody. Sci. Transl. Med. 2014, 6, 260ra148. [Google Scholar] [CrossRef]
- Pan, Y.; Chang, T.; Marcq, G.; Liu, C.; Kiss, B.; Rouse, R.; Mach, K.E.; Cheng, Z.; Liao, J.C. In vivo biodistribution and toxicity of intravesical administration of quantum dots for optical molecular imaging of bladder cancer. Sci. Rep. 2017, 7, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Deng, S.; Ren, Z.J.; Jin, T.; Yang, B.; Dong, Q. Contribution of prostate stem cell antigen variation rs2294008 to the risk of bladder cancer. Medicine 2019, 98, e15179. [Google Scholar] [CrossRef] [PubMed]
- Yuan, R.; Rao, T.; Cheng, F.; Yu, W.; Ruan, Y.; Zhang, X. Quantum dot-based fluorescent probes for targeted imaging of the EJ human bladder urothelial cancer cell line. Exp. Ther. Med. 2018, 16, 4779–4783. [Google Scholar] [CrossRef] [Green Version]
- Yamali, C.; Gul, H.I.; Ozli, G.; Angeli, A.; Kirmizibayrak, P.B.; Tepedelen, B.E.; Sakagami, H.; Bua, S.; Supuran, C.T. Exploring of tumor-associated carbonic anhydrase isoenzyme IX and XII inhibitory effects and cytotoxicities of the novel N-aryl-1-(4-sulfamoylphenyl)-5-(thiophen-2-yl)-1H-pyrazole-3-carboxamides. Bioorganic Chem. 2021, 115, 105194. [Google Scholar] [CrossRef] [PubMed]
- Biagiotti, G.; Angeli, A.; Giacomini, A.; Toniolo, G.; Landini, L.; Salerno, G.; Mannelli, L.D.C.; Ghelardini, C.; Mello, T.; Mussi, S.; et al. Glyco-Coated CdSe/ZnS Quantum Dots as Nanoprobes for Carbonic Anhydrase IX Imaging in Cancer Cells. ACS Appl. Nano Mater. 2021, 4, 14153–14160. [Google Scholar] [CrossRef]
- Li, X.; Wu, T.; Fu, Y.; Ding, X.; Li, Z.; Zhu, G.; Fan, J. A high sensitivity background eliminated fluorescence sensing platform for hyaluronidase activity detection based on Si QDs/HA-δ-FeOOH nanoassembly. Biosens. Bioelectron. 2019, 150, 111928. [Google Scholar] [CrossRef]
- Davis, R.M.; Kiss, B.; Trivedi, D.R.; Metzner, T.J.; Liao, J.C.; Gambhir, S.S. Surface-Enhanced Raman Scattering Nanoparticles for Multiplexed Imaging of Bladder Cancer Tissue Permeability and Molecular Phenotype. ACS Nano 2018, 12, 9669–9679. [Google Scholar] [CrossRef]
- Cho, S.K.; Su, L.-J.; Mao, C.; Wolenski, C.D.; Flaig, T.W.; Park, W. Multifunctional nanoclusters of NaYF4:Yb3+,Er3+ upconversion nanoparticle and gold nanorod for simultaneous imaging and targeted chemotherapy of bladder cancer. Mater. Sci. Eng. C 2018, 97, 784–792. [Google Scholar] [CrossRef]
- Ma, Y.; Mao, G.; Zhong, Y.; Wu, G.; Wu, W.; Zhan, Y.; He, Z.; Huang, W. Highly sensitive ratiometric fluorescent paper sensor for the urine assay of cancer. Talanta 2018, 194, 199–204. [Google Scholar] [CrossRef]
- Gennari, A.; Sun, Z.; Hasler-Strub, U.; Colleoni, M.; Kennedy, M.; Von Moos, R.; Cortés, J.; Vidal, M.; Hennessy, B.; Walshe, J.; et al. A randomized phase II study evaluating different maintenance schedules of nab-paclitaxel in the first-line treatment of metastatic breast cancer: Final results of the IBCSG 42-12/BIG 2-12 SNAP trial. Ann. Oncol. 2017, 29, 661–668. [Google Scholar] [CrossRef]
- Gradishar, W.J.; Krasnojon, D.; Cheporov, S.; Makhson, A.N.; Manikhas, G.M.; Clawson, A.; Bhar, P. Significantly Longer Progression-Free Survival With nab-Paclitaxel Compared With Docetaxel As First-Line Therapy for Metastatic Breast Cancer. J. Clin. Oncol. 2009, 27, 3611–3619. [Google Scholar] [CrossRef] [PubMed]
- Grivas, P.D.; Hussain, M.; Hafez, K.; Daignault-Newton, S.; Wood, D.; Lee, C.T.; Weizer, A.; Montie, J.E.; Hollenbeck, B.; Montgomery, J.S.; et al. A Phase II Trial of Neoadjuvant nab-paclitaxel, Carboplatin, and Gemcitabine (ACaG) in Patients With Locally Advanced Carcinoma of the Bladder. Urology 2013, 82, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Ko, Y.-J.; Canil, C.M.; Mukherjee, S.D.; Winquist, E.; Elser, C.; Eisen, A.; Reaume, M.N.; Zhang, L.; Sridhar, S.S. Nanoparticle albumin-bound paclitaxel for second-line treatment of metastatic urothelial carcinoma: A single group, multicentre, phase 2 study. Lancet Oncol. 2013, 14, 769–776. [Google Scholar] [CrossRef]
- Hu, B.; Yan, Y.; Tong, F.; Xu, L.; Zhu, J.; Xu, G.; Shen, R. Lumbrokinase/paclitaxel nanoparticle complex: Potential therapeutic applications in bladder cancer. Int. J. Nanomed. 2018, 13, 3625–3640. [Google Scholar] [CrossRef]
- Pan, A.; Zhang, H.; Li, Y.; Lin, T.-Y.; Wang, F.; Lee, J.; Cheng, M.; Dall’Era, M.; Li, T.; White, R.D.; et al. Disulfide-crosslinked nanomicelles confer cancer-specific drug delivery and improve efficacy of paclitaxel in bladder cancer. Nanotechnology 2016, 27, 425103. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, R.; Hou, J.; Sun, B.; Zhu, B.; Qiao, Z.; Su, Y.; Zhu, X. Paclitaxel/Chitosan Nanosupensions Provide Enhanced Intravesical Bladder Cancer Therapy with Sustained and Prolonged Delivery of Paclitaxel. ACS Appl. Bio Mater. 2018, 1, 1992–2001. [Google Scholar] [CrossRef]
- Xiao, T.; Xiao, Y.; Wang, W.; Tang, Y.Y.; Xiao, Z.; Su, M. Targeting EphA2 in cancer. J. Hematol. Oncol. 2020, 13, 1–17. [Google Scholar] [CrossRef]
- Kamoun, W.S.; Kirpotin, D.B.; Huang, Z.R.; Tipparaju, S.K.; Noble, C.O.; Hayes, M.E.; Luus, L.; Koshkaryev, A.; Kim, J.; Olivier, K.; et al. Antitumour activity and tolerability of an EphA2-targeted nanotherapeutic in multiple mouse models. Nat. Biomed. Eng. 2019, 3, 264–280. [Google Scholar] [CrossRef]
- Kamoun, W.; Swindell, E.; Pien, C.; Luus, L.; Cain, J.; Pham, M.; Kandela, I.; Huang, Z.R.; Tipparaju, S.K.; Koshkaryev, A.; et al. Targeting EphA2 in Bladder Cancer Using a Novel Antibody-Directed Nanotherapeutic. Pharmaceutics 2020, 12, 996. [Google Scholar] [CrossRef]
- Manan, F.A.A.; Yusof, N.A.; Abdullah, J.; Mohammad, F.; Nurdin, A.; Yazan, L.S.; Khiste, S.K.; Al-Lohedan, H.A. Drug Release Profiles of Mitomycin C Encapsulated Quantum Dots–Chitosan Nanocarrier System for the Possible Treatment of Non-Muscle Invasive Bladder Cancer. Pharmaceutics 2021, 13, 1379. [Google Scholar] [CrossRef]
- Sun, R.; Liu, X.; Li, G.; Wang, H.; Luo, Y.; Huang, G.; Wang, X.; Zeng, G.; Liu, Z.; Wu, S. Photoactivated H2 Nanogenerator for Enhanced Chemotherapy of Bladder Cancer. ACS Nano 2020, 14, 8135–8148. [Google Scholar] [CrossRef] [PubMed]
- Qiu, X.; Cao, K.; Lin, T.; Chen, W.; Yuan, A.; Wu, J.; Hu, Y.; Guo, H. Drug delivery system based on dendritic nanoparticles for enhancement of intravesical instillation. Int. J. Nanomed. 2017, 12, 7365–7374. [Google Scholar] [CrossRef] [PubMed]
- Ding, K.; Wang, L.; Zhu, J.; He, D.; Huang, Y.; Zhang, W.; Wang, Z.; Qin, A.; Hou, J.; Tang, B.Z. Photo-Enhanced Chemotherapy Performance in Bladder Cancer Treatment via Albumin Coated AIE Aggregates. ACS Nano 2022, 16, 7535–7546. [Google Scholar] [CrossRef]
- Chang, Z.; Gao, M.; Zhang, W.; Song, L.; Jia, Y.; Qin, Y. Beta-elemene treatment is associated with improved outcomes of patients with esophageal squamous cell carcinoma. Surg. Oncol. 2017, 26, 333–337. [Google Scholar] [CrossRef]
- Zhai, B.; Zeng, Y.; Zeng, Z.; Zhang, N.; Li, C.; Zeng, Y.; You, Y.; Wang, S.; Chen, X.; Sui, X.; et al. Drug delivery systems for elemene, its main active ingredient β-elemene, and its derivatives in cancer therapy. Int. J. Nanomed. 2018, 13, 6279–6296. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Staley, C.; Kooby, D.; El-Rays, B.; Mao, H.; Yang, L. Current status of biomarker and targeted nanoparticle development: The precision oncology approach for pancreatic cancer therapy. Cancer Lett. 2016, 388, 139–148. [Google Scholar] [CrossRef]
- Zhai, E.A.B.; Chen, P.; Wang, W.; Liu, S.; Feng, J.; Duan, T.; Xiang, Y.; Zhang, R.; Zhang, M.; Han, X.; et al. An ATF24 peptide-functionalized β-elemene-nanostructured lipid carrier combined with cisplatin for bladder cancer treatment. Cancer Biol. Med. 2020, 17, 676–692. [Google Scholar] [CrossRef]
- Wang, K.-R.; Zhang, B.-Z.; Zhang, W.; Yan, J.-X.; Li, J.; Wang, R. Antitumor effects, cell selectivity and structure–activity relationship of a novel antimicrobial peptide polybia-MPI. Peptides 2008, 29, 963–968. [Google Scholar] [CrossRef]
- Oršolić, N. Bee venom in cancer therapy. Cancer Metastasis Rev. 2011, 31, 173–194. [Google Scholar] [CrossRef]
- Li, G.; Lei, Q.; Wang, F.; Deng, D.; Wang, S.; Tian, L.; Shen, W.; Cheng, Y.; Liu, Z.; Wu, S. Fluorinated Polymer Mediated Transmucosal Peptide Delivery for Intravesical Instillation Therapy of Bladder Cancer. Small 2019, 15, e1900936. [Google Scholar] [CrossRef]
- Xiong, Q.; Liu, A.; Ren, Q.; Xue, Y.; Yu, X.; Ying, Y.; Gao, H.; Tan, H.; Zhang, Z.; Li, W.; et al. Cuprous oxide nanoparticles trigger reactive oxygen species-induced apoptosis through activation of erk-dependent autophagy in bladder cancer. Cell Death Dis. 2020, 11, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Folkes, L.K.; Wardman, P. Oxidative activation of indole-3-acetic acids to cytotoxic species— a potential new role for plant auxins in cancer therapy. Biochem. Pharmacol. 2001, 61, 129–136. [Google Scholar] [CrossRef]
- Pereira, F.M.; Melo, M.N.; Santos, K.M.; Oliveira, K.V.; Diz, F.M.; Ligabue, R.A.; Morrone, F.B.; Severino, P.; Fricks, A.T. Hyaluronic acid-coated chitosan nanoparticles as carrier for the enzyme/prodrug complex based on horseradish peroxidase/indole-3-acetic acid: Characterization and potential therapeutic for bladder cancer cells. Enzym. Microb. Technol. 2021, 150, 109889. [Google Scholar] [CrossRef]
- Zhang, D.; Sun, P.; Li, P.; Xue, A.; Zhang, X.; Zhang, H.; Jin, X. A magnetic chitosan hydrogel for sustained and prolonged delivery of Bacillus Calmette–Guérin in the treatment of bladder cancer. Biomaterials 2013, 34, 10258–10266. [Google Scholar] [CrossRef] [PubMed]
- Kato, T.; Bilim, V.; Yuuki, K.; Naito, S.; Yamanobe, T.; Nagaoka, A.; Yano, I.; Akaza, H.; Tomita, Y. Bacillus Calmette-Guerin and BCG cell wall skeleton suppressed viability of bladder cancer cells in vitro. Anticancer Res. 2010, 30, 4089–4096. [Google Scholar] [PubMed]
- Nakamura, T.; Fukiage, M.; Higuchi, M.; Nakaya, A.; Yano, I.; Miyazaki, J.; Nishiyama, H.; Akaza, H.; Ito, T.; Hosokawa, H.; et al. Nanoparticulation of BCG-CWS for application to bladder cancer therapy. J. Control. Release 2014, 176, 44–53. [Google Scholar] [CrossRef]
- Nakamura, T.; Fukiage, M.; Suzuki, Y.; Yano, I.; Miyazaki, J.; Nishiyama, H.; Akaza, H.; Harashima, H. Mechanism responsible for the antitumor effect of BCG-CWS using the LEEL method in a mouse bladder cancer model. J. Control. Release 2014, 196, 161–167. [Google Scholar] [CrossRef]
- Masuda, H.; Nakamura, T.; Noma, Y.; Harashima, H. Application of BCG-CWS as a systemic adjuvant by using nanoparticulation technology. Mol. Pharm. 2018, 15, 5762–5771. [Google Scholar] [CrossRef]
- Yoon, H.Y.; Yang, H.M.; Kim, C.H.; Goo, Y.T.; Hwang, G.Y.; Chang, I.H.; Whang, Y.M.; Choi, Y.W. Enhanced intracellular delivery of BCG cell wall skeleton into bladder cancer cells using liposomes functionalized with folic acid and pep-1 peptide. Pharmaceutics 2019, 11, 652. [Google Scholar] [CrossRef]
- Whang, Y.M.; Yoon, D.H.; Hwang, G.Y.; Yoon, H.; Park, S.I.; Choi, Y.W.; Chang, I.H. Liposome-Encapsulated Bacillus Calmette–Guérin Cell Wall Skeleton Enhances Antitumor Efficiency for Bladder Cancer In Vitro and In Vivo via Induction of AMP-Activated Protein Kinase. Cancers 2020, 12, 3679. [Google Scholar] [CrossRef]
- Joraku, A.; Homhuan, A.; Kawai, K.; Yamamoto, T.; Miyazaki, J.; Kogure, K.; Yano, I.; Harashima, H.; Akaza, H. Immunoprotection against murine bladder carcinoma by octaarginine-modified liposomes incorporating cell wall ofMycobacterium bovisbacillus Calmette-Guérin. Br. J. Urol. 2009, 103, 686–693. [Google Scholar] [CrossRef] [PubMed]
- Miyazaki, J.; Nishiyama, H.; Yano, I.; Nakaya, A.; Kohama, H.; Kawai, K.; Joraku, A.; Nakamura, T.; Harashima, H.; Akaza, H. The therapeutic effects of R8-liposome-BCG-CWS on BBN-induced rat urinary bladder carcinoma. Anticancer Res. 2011, 31, 2065–2071. [Google Scholar] [PubMed]
- Miyazaki, J.; Kawai, K.; Kojima, T.; Oikawa, T.; Joraku, A.; Shimazui, T.; Nakaya, A.; Yano, I.; Nakamura, T.; Harashima, H.; et al. The liposome-incorporating cell wall skeleton of Mycobacterium bovis bacillus Calmette-Guéin can directly enhance the susceptibility of cancer cells to lymphokine-activated killer cells through up-regulation of natural-killer group 2, member D ligands. Br. J. Urol. 2011, 108, 1520–1526. [Google Scholar] [CrossRef]
- Chen, Z.; Yu, T.; Zhou, B.; Wei, J.; Fang, Y.; Lu, J.; Guo, L.; Chen, W.; Liu, Z.-P.; Luo, J. Mg(II)-Catechin nanoparticles delivering siRNA targeting EIF5A2 inhibit bladder cancer cell growth in vitro and in vivo. Biomaterials 2015, 81, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Groner, B.; Weiss, A. Targeting survivin in cancer: Novel drug development approaches. BioDrugs 2013, 28, 27–39. [Google Scholar] [CrossRef]
- García, D.M.; Manero-Rupérez, N.; Quesada, R.; Korrodi-Gregório, L.; Soto-Cerrato, V. Therapeutic strategies involving survivin inhibition in cancer. Med. Res. Rev. 2018, 39, 887–909. [Google Scholar] [CrossRef]
- Krafft, U.; Tschirdewahn, S.; Hess, J.; Harke, N.N.; Hadaschik, B.; Olah, C.; Krege, S.; Nyirády, P.; Szendröi, A.; Szücs, M.; et al. Validation of survivin and HMGA2 as biomarkers for cisplatin resistance in bladder cancer. Urol. Oncol. Semin. Orig. Investig. 2019, 37, 810.e7–810.e15. [Google Scholar] [CrossRef]
- Chen, L.; Liang, L.; Yan, X.; Liu, N.; Gong, L.; Pan, S.; Lin, F.; Zhang, Q.; Zhao, H.; Zheng, F. Survivin Status Affects Prognosis and Chemosensitivity in Epithelial Ovarian Cancer. Int. J. Gynecol. Cancer 2013, 23, 256–263. [Google Scholar] [CrossRef]
- Aliabadi, H.M.; Landry, B.; Mahdipoor, P.; Uludağ, H. Induction of Apoptosis by Survivin Silencing through siRNA Delivery in a Human Breast Cancer Cell Line. Mol. Pharm. 2011, 8, 1821–1830. [Google Scholar] [CrossRef]
- Arista-Romero, M.; Cascante, A.; Fornaguera, C.; Borrós, S. Role of Survivin in Bladder Cancer: Issues to Be Overcome When Designing an Efficient Dual Nano-Therapy. Pharmaceutics 2021, 13, 1959. [Google Scholar] [CrossRef]
- Muxika, A.; Etxabide, A.; Uranga, J.; Guerrero, P.; de la Caba, K. Chitosan as a bioactive polymer: Processing, properties and applications. Int. J. Biol. Macromol. 2017, 105, 1358–1368. [Google Scholar] [CrossRef] [PubMed]
- Martin, D.T.; Steinbach, J.M.; Liu, J.; Shimizu, S.; Kaimakliotis, H.Z.; Wheeler, M.A.; Hittelman, A.B.; Saltzman, W.M.; Weiss, R.M. Surface-Modified Nanoparticles Enhance Transurothelial Penetration and Delivery of Survivin siRNA in Treating Bladder Cancer. Mol. Cancer Ther. 2014, 13, 71–81. [Google Scholar] [CrossRef]
- Luo, J.-H.; Xie, D.; Liu, M.-Z.; Chen, W.; Liu, Y.-D.; Wu, G.-Q.; Kung, H.-F.; Zeng, Y.-X.; Guan, X.-Y. Protein expression and amplification of AIB1 in human urothelial carcinoma of the bladder and overexpression of AIB1 is a new independent prognostic marker of patient survival. Int. J. Cancer 2008, 122, 2554–2561. [Google Scholar] [CrossRef] [PubMed]
- Tong, Z.-T.; Wei, J.-H.; Zhang, J.-X.; Liang, C.-Z.; Liao, B.; Lu, J.; Fan, S.; Chen, Z.-H.; Zhang, F.; Ma, H.-H.; et al. AIB1 predicts bladder cancer outcome and promotes bladder cancer cell proliferation through AKT and E2F1. Br. J. Cancer 2013, 108, 1470–1479. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Cheang, T.; Tang, B.; Xia, H.; Xing, Z.; Chen, Z.; Fang, Y.; Chen, W.; Xu, A.; Wang, S.; et al. The inhibition of human bladder cancer growth by calcium carbonate/CaIP6 nanocomposite particles delivering AIB1 siRNA. Biomaterials 2013, 34, 1246–1254. [Google Scholar] [CrossRef]
- Su, S.; Wang, J.; Vargas, E.; Wei, J.; Martinez-Zaguilan, R.; Sennoune, S.R.; Pantoya, M.L.; Wang, S.; Chaudhuri, J.; Qiu, J. Porphyrin Immobilized Nanographene Oxide for Enhanced and Targeted Photothermal Therapy of Brain Cancer. ACS Biomater. Sci. Eng. 2016, 2, 1357–1366. [Google Scholar] [CrossRef]
- Cao, Y.; Dong, H.; Yang, Z.; Zhong, X.; Chen, Y.; Dai, W.; Zhang, X. Aptamer-Conjugated Graphene Quantum Dots/Porphyrin Derivative Theranostic Agent for Intracellular Cancer-Related MicroRNA Detection and Fluorescence-Guided Photothermal/Photodynamic Synergetic Therapy. ACS Appl. Mater. Interfaces 2016, 9, 159–166. [Google Scholar] [CrossRef]
- Menilli, L.; Monteiro, A.R.; Lazzarotto, S.; Morais, F.M.P.; Gomes, A.T.P.C.; Moura, N.M.M.; Fateixa, S.; Faustino, M.A.F.; Neves, M.G.P.M.S.; Trindade, T.; et al. Graphene Oxide and Graphene Quantum Dots as Delivery Systems of Cationic Porphyrins: Photo-Antiproliferative Activity Evaluation towards T24 Human Bladder Cancer Cells. Pharmaceutics 2021, 13, 1512. [Google Scholar] [CrossRef]
- Wang, S.; Jin, S.; Li, G.; Xu, M.; Deng, D.; Xiao, Z.; Sun, H.; Zhang, S.; Zhang, E.; Xie, L.; et al. Transmucosal Delivery of Self-Assembling Photosensitizer–Nitazoxanide Nanocomplexes with Fluorinated Chitosan for Instillation-Based Photodynamic Therapy of Orthotopic Bladder Tumors. ACS Biomater. Sci. Eng. 2021, 7, 1485–1495. [Google Scholar] [CrossRef]
- Li, G.; Yuan, S.; Deng, D.; Ou, T.; Li, Y.; Sun, R.; Lei, Q.; Wang, X.; Shen, W.; Cheng, Y.; et al. Fluorinated Polyethylenimine to Enable Transmucosal Delivery of Photosensitizer-Conjugated Catalase for Photodynamic Therapy of Orthotopic Bladder Tumors Postintravesical Instillation. Adv. Funct. Mater. 2019, 29, 1901932. [Google Scholar] [CrossRef]
- Tan, P.; Cai, H.; Wei, Q.; Tang, X.; Zhang, Q.; Kopytynski, M.; Yang, J.; Yi, Y.; Zhang, H.; Gong, Q.; et al. Enhanced chemo-photodynamic therapy of an enzyme-responsive prodrug in bladder cancer patient-derived xenograft models. Biomaterials 2021, 277, 121061. [Google Scholar] [CrossRef] [PubMed]
- Yi, X.; Hu, J.-J.; Dai, J.; Lou, X.; Zhao, Z.; Xia, F.; Tang, B.Z. Self-Guiding Polymeric Prodrug Micelles with Two Aggregation-Induced Emission Photosensitizers for Enhanced Chemo-Photodynamic Therapy. ACS Nano 2021, 15, 3026–3037. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wei, G.; Zhang, X.; Xu, F.; Xiong, X.; Zhou, S. A Step-by-Step Multiple Stimuli-Responsive Nanoplatform for Enhancing Combined Chemo-Photodynamic Therapy. Adv. Mater. 2017, 29, 1605357. [Google Scholar] [CrossRef] [PubMed]
- Cha, J.-H.; Yang, W.-H.; Xia, W.; Wei, Y.; Chan, L.-C.; Lim, S.-O.; Li, C.-W.; Kim, T.; Chang, S.-S.; Lee, H.-H.; et al. Metformin Promotes Antitumor Immunity via Endoplasmic-Reticulum-Associated Degradation of PD-L1. Mol. Cell 2018, 71, 606–620.e7. [Google Scholar] [CrossRef]
- Munoz, L.E.; Huang, L.; Bommireddy, R.; Sharma, R.; Monterroza, L.; Guin, R.N.; Samaranayake, S.G.; Pack, C.D.; Ramachandiran, S.; Reddy, S.J.; et al. Metformin reduces PD-L1 on tumor cells and enhances the anti-tumor immune response generated by vaccine immunotherapy. J. Immunother. Cancer 2021, 9, e002614. [Google Scholar] [CrossRef]
- Chin, Y.-C.; Yang, L.-X.; Hsu, F.-T.; Hsu, C.-W.; Chang, T.-W.; Chen, H.-Y.; Chen, L.Y.-C.; Chia, Z.C.; Hung, C.-H.; Su, W.-C.; et al. Iron oxide@chlorophyll clustered nanoparticles eliminate bladder cancer by photodynamic immunotherapy-initiated ferroptosis and immunostimulation. J. Nanobiotechnology 2022, 20, 1–18. [Google Scholar] [CrossRef]
- Zhang, S.; Li, G.; Deng, D.; Dai, Y.; Liu, Z.; Wu, S. Fluorinated Chitosan Mediated Synthesis of Copper Selenide Nanoparticles with Enhanced Penetration for Second Near-Infrared Photothermal Therapy of Bladder Cancer. Adv. Ther. 2021, 4, 2100043. [Google Scholar] [CrossRef]
- Ni, W.; Li, M.; Cui, J.; Xing, Z.; Li, Z.; Wu, X.; Song, E.; Gong, M.; Zhou, W. 808 nm light triggered black TiO2 nanoparticles for killing of bladder cancer cells. Mater. Sci. Eng. C 2017, 81, 252–260. [Google Scholar] [CrossRef]
- Self-Assembled Nanoparticle-Mediated Chemophototherapy Reverses the Drug Resistance of Bladder Cancers through Dual AKT/ERK Inhibition. Adv. Ther. 2020, 3, 2000032. [CrossRef]
- Kobayashi, H.; Choyke, P.L. Near-Infrared Photoimmunotherapy of Cancer. Accounts Chem. Res. 2019, 52, 2332–2339. [Google Scholar] [CrossRef]
- Wu, X.; Wei, Y.; Lin, R.; Chen, P.; Hong, Z.; Zeng, R.; Xu, Q.; Li, T. Multi-responsive mesoporous polydopamine composite nanorods cooperate with nano-enzyme and photosensitiser for intensive immunotherapy of bladder cancer. Immunology 2022. early view. [Google Scholar] [CrossRef] [PubMed]
- Guo, P.; Wang, L.; Shang, W.; Chen, J.; Chen, Z.; Xiong, F.; Wang, Z.; Tong, Z.; Wang, K.; Yang, L.; et al. Intravesical In Situ Immunostimulatory Gel for Triple Therapy of Bladder Cancer. ACS Appl. Mater. Interfaces 2020, 12, 54367–54377. [Google Scholar] [CrossRef] [PubMed]
- Kiss, B.; Berg, N.S.V.D.; Ertsey, R.; McKenna, K.; Mach, K.E.; Zhang, C.A.; Volkmer, J.-P.; Weissman, I.L.; Rosenthal, E.L.; Liao, J.C. CD47-Targeted Near-Infrared Photoimmunotherapy for Human Bladder Cancer. Clin. Cancer Res. 2019, 25, 3561–3571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, T.; Yuan, A.; Zhao, X.; Lian, H.; Zhuang, J.; Chen, W.; Zhang, Q.; Liu, G.; Zhang, S.; Cao, W.; et al. Self-assembled tumor-targeting hyaluronic acid nanoparticles for photothermal ablation in orthotopic bladder cancer. Acta Biomater. 2017, 53, 427–438. [Google Scholar] [CrossRef] [PubMed]
- Yumita, N.; Nishigaki, R.; Umemura, K.; Umemura, S.-I. Synergistic Effect of Ultrasound and Hematoporphyrin on Sarcoma 180. Jpn. J. Cancer Res. 1990, 81, 304–308. [Google Scholar] [CrossRef]
- Li, G.; Wang, S.; Deng, D.; Xiao, Z.; Dong, Z.; Wang, Z.; Lei, Q.; Gao, S.; Huang, G.; Zhang, E.; et al. Fluorinated Chitosan To Enhance Transmucosal Delivery of Sonosensitizer-Conjugated Catalase for Sonodynamic Bladder Cancer Treatment Post-intravesical Instillation. ACS Nano 2020, 14, 1586–1599. [Google Scholar] [CrossRef]
- Duo, Y.; Zhu, D.; Sun, X.; Suo, M.; Zheng, Z.; Jiang, W.; Tang, B.Z. Patient-derived microvesicles/AIE luminogen hybrid system for personalized sonodynamic cancer therapy in patient-derived xenograft models. Biomaterials 2021, 272, 120755. [Google Scholar] [CrossRef]
Biomarkers and Manufacturer | Detected Biomarkers | Assay Type | Specimen | Sensitivity (CI 95%) | Specificity (CI 95%) | Ref. |
---|---|---|---|---|---|---|
NMP22 (Matritech, Inc., Alere, Jena, Thuringia, Germany) | Nuclear mitotic apparatus proteins | ELISA | Urine | 62–75% | 70–83% | [31] |
NMP22 (Matritech, Inc., Alere, Jena, Thuringia, Germany) | Nuclear mitotic apparatus proteins | Point- of-care test | Urine | 52–59% | 87–89% | [31] |
BTA Stat (Polymedco, Cortlandt, NY, USA) | Complement factor H-related protein and complement factor H | Point-of-care test | Urine | 58–69% | 73–81% | [31] |
BTA TRAK (Polymedco, Cortlandt, NY, USA) | Complement factor H-related protein and complement factor H | ELISA | Urine | 54–75% | 64–82% | [31] |
UroVysion (Abbott Vysis, Chicgo, Illinois, USA) | Alterations in chromosomes 3, 7, 17, and 9p21 | FISH | Urine | 65–84% | 78–92% | [32] |
uCyt+/Immunocyt (Scimedx, Inc., Dover, New Jersey, USA) | Bladder tumor cell associated mucins/carcinoembryonic antigen | Immunocytochemistry | Urine | 78–90% | 77–87% | [31] |
Nanomatierials | Detect Target | Properties | Sensitivity (CI 95%) | Specificity (CI 95%) | Applcations | Ref. |
---|---|---|---|---|---|---|
QD625 | CD47 | High sensitivity and specificity. | 82.9% | 90.5% | Targeted fluorescent probe for cystoscope | [70] |
QD605 | PSCA | Specifically targets BC cells and emits stable and long duration fluorescent | - | - | Targeted fluorescent probe for cystoscope | [73] |
CdSe/ZnS QD | Carbonic anhydrase | Well biocompatibility and dispersion. | - | - | Targeted fluorescent probe for cystoscope | [74,75] |
Heteroatom-doped graphene QD | Haase | Emits white light and broad excitation-dependent full-color photoluminescence from 463 nm to 672 nm. | - | - | Targeted fluorescent probe for cystoscope | [76] |
Surface-enhanced Raman scattering nanoparticle | Carbonic anhydrase9, CD47 | Multiple targets and imaging | (ROC AUC: 0.95) | - | Targeted fluorescent probe for Raman endoscopy | [77] |
UCNP | EGFR | Well ability of tissue penetration | - | - | NIR probe and imaging system | [78] |
Si QDs/HA-δ-FeOOH | Haase | Detection limit for Haase: 0.02 ng/mL (based on 3σ/S). RSD < 3% (Compared with ELISA method) | Detection limit: 0.02 ng/mL | - | Fluorescence platform for urine test | [76] |
Rox-DNA functionalized QD | Telomerase | Enabled visual semi-quantitative detection with naked eye. The detection limit was 10 cells and response time was within an hour. | - | - | Sensitive ratiometric fluorescence paper sensor | [79] |
Nanoparticle | Therapeutic Agents | Condition | Sponsor/Collaborations | States | Study Start | NCT Number |
---|---|---|---|---|---|---|
Paclitaxel albumin-stabilized nanoparticle (Nab-paclitaxel) | PTX | Recurrent BC; Stage IV BC | Mayo Clinic/NCI | Phase 2 (Withdrawn) | June 2016 | NCT02718742 |
Paclitaxel albumin-stabilized nanoparticle (Nab-paclitaxel) | PTX | Bladder cancer | University of Michigan Rogel Cancer Center/Celgene Corporation | Phase 2 | December 2007 | NCT00585689 |
PLZ4-coated paclitaxel-loaded micelles (PPM) | PTX | NMIBC | VA Office of Research and Development/University of California, Davis | Phase 1 (Not yet recruiting) | - | NCT05519241 |
Nanoparticle | Size (nm) | Therapeutic Agents | Loading Efficiency | Properties | Application | Ref. |
---|---|---|---|---|---|---|
Nab-paclitaxel | 150–200 | PTX | 10% | Low side-effects; good solubility and biocompatibility | Vein injection | [80] |
LK/PTX/PEGb- (PELG-g-(PZLL-r-PLL)) | 89 ± 3 | LK, PTX | LK (6.74%), PTX (4.13%) | Increasing of the half-life and bioavailability of the drugs | Abdominal subcutaneous injection | [84] |
DC-PNM-PTX | 23 ± 6 | PTX | >99% | Specifically targeting the bladder cancer PDXs; improvement of the cisplatin resistance; GSH-responsive release | Tail vein injection | [85] |
PTX/CS NSs | 194.48 ± 86.24 | PTX | 81.4% | Attaching to mucosa of the bladder through electrostatic adsorption | Intravesical instillation | [86] |
EphA2-ILs-DTXp | 110 ± 10 | DTX prodrug | 90–99% | Specific targeting to tumor; improvement of penetration; minimal haematological toxicity | Tail vein injection | [88,89] |
MMC@CS -Mn:ZnS | 175 | MMC | 44.52 ± 1.05% | Long retention time | - | [90] |
[FeFe]TPP/GEM/FCS NPs | 220 | GEM; [FeFe]TPP | GEM (6.9%); [FeFe]TPP (7.7%) | Improvement of penetration capacity; H2 generation under 660nm laser irradiation; inhibition of drug transport capacity of cancer cells | Intravesical instillation | [91] |
PEG-PAMAM-DOX | 13 | DOX | - | pH-responsive release | Intravesical instillation | [92] |
BITT@BSA-DSP | 70.2 ± 22.0 | DSP | 35% | Visible drug delivery; photodynamic and photothermal effect | Intravesical instillation | [93] |
ATF24-PEG-Lipo-β-E | 79.32 ± 1.282 | β-E | 98.37% | Specific targeting to tumor | Intravesical instillation | [97] |
MPI/F-PEI NPs | 260.67 ± 6.62 | MPI | - | Improved cross-membrane and transmucosal penetration | Intravesical instillation | [100] |
CONPs | 40~110 | CONPs | - | Activation of ERK-dependent autophagy; synergistic effect with chemo drugs. | Intravesical instillation and in situ injection | [101] |
IAA-CS/HA NP and HRP-CS/HA NP | 170~200 | HRP, IAA | Both > 90% | Enzyme/prodrug system. | In vitro (T24) | [103] |
Nanoparticle | Size (nm) | Therapeutic Agents | Loading Efficiency | Properties | Application | Ref. |
---|---|---|---|---|---|---|
Fe3O4-BCG-CS/GP gel | - | BCG | 1% (w/v) | Response to magnetic field control; long retention time | Intravesical instillation | [104] |
CWS-NP/LEEL | 166 | BCG-CWS | 57% | Good water solubility | Intravesical instillation | [106,107] |
CWS-FPL | <200 | BCG-CWS | 60% | Improvement of tumor targeting by folic acid; improvement of penetration by Pep-1 peptide | Intravesical instillation | [109] |
R8-liposome-BCG-CW | 230 | BCG-CWS | - | Improvement of cell binding and internalization | Intravesical instillation | [110] |
Nanoparticle | Size (nm) | Therapeutic Agents | Loading Efficiency | Properties | Application | Ref. |
---|---|---|---|---|---|---|
Mg(II)-Cat/siEIF5A2 | 10-20 | Catechin; siEIF5A2 | - | Good biocompatibility and cellular uptake; inhibition of oncogene eukaryotic translation initiation factor | Tail vein injection | [114] |
Anti-survivin siRNA-1 pbae-NP | 150 | Survivin siRNA | 100% | No synergistic effect with PTX | In virto (T24, RT4) | [110] |
NP-siSUR-CH2.5 | 137 ± 51 | Survivin siRNA | 70% | Long release time of sirna | In situ injection | [121,122] |
NP-ACC/caip6/siAIB1 | 80–200 | siAIB1 | - | Well ability of lysosome escape; good biocompatibility | In situ injection | [125] |
Nanoparticle | Responsive Part | Size (nm) | Therapeutic Agents | Properties | Application | Ref. |
---|---|---|---|---|---|---|
Zn-TMPyP@GQDs | An-TMPyP, GQDs | 28.4 | - | Blue light-responsive; good stability of porphyrins in aqueous solutions; multiple targets binding sites and possible photothermal effect | In vitro (T24) | [128] |
HSA-Ce6/NTZ/FCS | Ce6 | 192 | NTZ | Improvement of tumor hypoxia and drug transmucosal delivery | Intravesical instillation | [129] |
CAT-Ce6/F-PEI | Ce6 | 220.3 | - | Improvement of tumor hypoxia by catalase and drug transmucosal delivery | Intravesical instillation | [130] |
Poly (OEGMA)-PTX@Ce6 (NPs@Ce6) | Ce6 | 168.2 ± 1.12 | Polymer-PTX prodrug | Combination of PCI effect and enhanced chemo-PDT | In situ injection | [131,132,133] |
IR775@Met@Lip | IR775 | - | Metformin | Improvement of tumor hypoxia; down-regulate PD-L1 | Intravesical instillation | [69] |
Fe3O4@Chl/Fe CNPs | Chl/Fe | 12.8 ± 4.8 | - | Photodynamic immunotherapy-initiated ferroptosis and immune stimulation. | Intravesical instillation | [136] |
FCS-Cu2-xSe | Cu2-xSe | 30.1 | - | Improvement of drug transmucosal delivery; NIR-II-responsive | Intravesical instillation | [137] |
Black TiO2 NPs | TiO2 | 20–30 | - | Absorption of visible light and near in- frared | In vitro (T24) | [138] |
PhD | Pheophorbide a | 71 | DOX | Combination of PDT, PTT and DOX; pH and NIR-responsive. | Tail vein injection | [139] |
MPDIαW | ICG, MnO2 | 120 | PD-L1 antibody | Combination of PTT and immunotherapy; specific adherence to bladder cancer cell; pH-responsive | Intravesical instillation | [141] |
AuNRs&IONs@Gel | AuNrs | 80–120 | Iron oxide nanoparticles | Combination of PTT, iron death, and macrophages re-polarization; targeting delivery | In situ injection | [142] |
Anti-CD47-IR700 | IR700 | - | - | Targeting delivery; long retention time | Tail vein injection | [143] |
HA-IR780 NPs | IR780 | 171.3 | - | Targeting delivery; good bioavailability and biocompatibility | Tail vein injection | [144] |
Nanoparticle | Responsive Part | Size (nm) | Therapeutic Agents | Properties | Application | Ref. |
---|---|---|---|---|---|---|
CAT-TCPP/FCS NPs | TCPP | 190 ± 12 | - | Improvement of tumor hypoxia by catalase and drug transmucosal delivery | Intravesical instillation | [146] |
AMVs | AIEgen | 300 | - | Good internalization and personalized tumor targeting ability | Tail vein injection | [147] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kong, C.; Zhang, S.; Lei, Q.; Wu, S. State-of-the-Art Advances of Nanomedicine for Diagnosis and Treatment of Bladder Cancer. Biosensors 2022, 12, 796. https://doi.org/10.3390/bios12100796
Kong C, Zhang S, Lei Q, Wu S. State-of-the-Art Advances of Nanomedicine for Diagnosis and Treatment of Bladder Cancer. Biosensors. 2022; 12(10):796. https://doi.org/10.3390/bios12100796
Chicago/Turabian StyleKong, Chenfan, Shaohua Zhang, Qifang Lei, and Song Wu. 2022. "State-of-the-Art Advances of Nanomedicine for Diagnosis and Treatment of Bladder Cancer" Biosensors 12, no. 10: 796. https://doi.org/10.3390/bios12100796
APA StyleKong, C., Zhang, S., Lei, Q., & Wu, S. (2022). State-of-the-Art Advances of Nanomedicine for Diagnosis and Treatment of Bladder Cancer. Biosensors, 12(10), 796. https://doi.org/10.3390/bios12100796