Electrochemical Determination of Morphine in Urine Samples by Tailoring FeWO4/CPE Sensor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Apparatus
2.2. Synthesis of FeWO4
2.3. Carbon Paste Electrode Preparation
3. Results and Discussion
3.1. Physicochemical Characterization
3.2. Electrochemical Characterization
3.3. Optimization of Square Wave Voltammetry (SWV) Instrumental Parameters for MORPH Determination
3.4. Analytical Parameters of the Detection Method
3.5. Selectivity of Method and Application in Real-World Samples Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rajaei, M.; Foroughi, M.M.; Jahani, S.; Shahidi Zandi, M.; Hassani Nadiki, H. Sensitive detection of morphine in the presence of dopamine with La3+ doped fern-like CuO nanoleaves/MWCNTs modified carbon paste electrode. J. Mol. Liq. 2019, 284, 462–472. [Google Scholar] [CrossRef]
- Wester, N.; Mynttinen, E.; Etula, J.; Lilius, T.; Kalso, E.; Kauppinen, E.I.; Laurila, T.; Koskinen, J. Simultaneous Detection of Morphine and Codeine in the Presence of Ascorbic Acid and Uric Acid and in Human Plasma at Nafion Single-Walled Carbon Nanotube Thin-Film Electrode. ACS Omega 2019, 4, 17726–17734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, G.; Chen, Y.; Li, L.; Yang, Y. Direct electrochemical determination of morphine on a novel gold nanotube arrays electrode. Clin. Chim. Acta 2011, 412, 1544–1549. [Google Scholar] [CrossRef] [PubMed]
- Jafari-Nodoushan, M.; Barzin, J.; Mobedi, H. A stability-indicating HPLC method for simultaneous determination of morphine and naltrexone. J. Chromatogr. B 2016, 1011, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Gao, M.; Wang, L.; Zhou, T.; Jin, L.; Jin, J. Amperometric determination of morphine on cobalt hexacyanoferrate modified electrode in rat brain microdialysates. Talanta 2002, 58, 427–432. [Google Scholar] [CrossRef]
- Ho, K.-C.; Chen, C.-Y.; Hsu, H.-C.; Chen, L.-C.; Shiesh, S.-C.; Lin, X.-Z. Amperometric detection of morphine at a Prussian blue-modified indium tin oxide electrode. Biosens. Bioelectron. 2004, 20, 3–8. [Google Scholar] [CrossRef]
- Pournaghi-Azar, M.H.; Saadatirad, A. Simultaneous voltammetric and amperometric determination of morphine and codeine using a chemically modified-palladized aluminum electrode. J. Electroanal. Chem. 2008, 624, 293–298. [Google Scholar] [CrossRef]
- Knežević, S.; Ognjanović, M.; Stanković, V.; Zlatanova, M.; Nešić, A.; Gavrović-Jankulović, M.; Stanković, D. La(OH)3 Multi-Walled Carbon Nanotube/Carbon Paste-Based Sensing Approach for the Detection of Uric Acid—A Product of Environmentally Stressed Cells. Biosensors 2022, 12, 705. [Google Scholar] [CrossRef]
- Knežević, S.; Ognjanović, M.; Dojčinović, B.; Antić, B.; Vranješ-Đurić, S.; Manojlović, D.; Stanković, D.M. Sensing Platform Based on Carbon Paste Electrode Modified with Bismuth Oxide Nanoparticles and SWCNT for Submicromolar Quantification of Honokiol. Food Anal. Methods 2022, 15, 856–867. [Google Scholar] [CrossRef]
- Stanković, D.M.; Ognjanović, M.; Fabián, M.; Avdin, V.V.; Manojlović, D.D.; Đurić, S.V.; Petković, B.B. CeO2-doped–domestic carbon material decorated with MWCNT as an efficient green sensing platform for electrooxidation of dopamine. Surf. Interfaces 2021, 25, 101211. [Google Scholar] [CrossRef]
- Ognjanović, M.; Stanković, D.M.; Ming, Y.; Zhang, H.; Jančar, B.; Dojčinović, B.; Prijović, Ž.; Antić, B. Bifunctional (Zn,Fe)3O4 nanoparticles: Tuning their efficiency for potential application in reagentless glucose biosensors and magnetic hyperthermia. J. Alloy. Compd. 2019, 777, 454–462. [Google Scholar] [CrossRef]
- Stanković, V.; Đurđić, S.; Ognjanović, M.; Mutić, J.; Kalcher, K.; Stanković, D.M. A novel nonenzymatic hydrogen peroxide amperometric sensor based on AgNp@GNR nanocomposites modified screen-printed carbon electrode. J. Electroanal. Chem. 2020, 876, 114487. [Google Scholar] [CrossRef]
- Dăscălescu, D.; Apetrei, C. Development of a Novel Electrochemical Biosensor Based on Organized Mesoporous Carbon and Laccase for the Detection of Serotonin in Food Supplements. Chemosensors 2022, 10, 365. [Google Scholar] [CrossRef]
- Kavieva, L.; Ziyatdinova, G. Voltammetric Sensor Based on SeO2 Nanoparticles and Surfactants for Indigo Carmine Determination. Sensors 2022, 22, 3224. [Google Scholar] [CrossRef]
- Škugor Rončević, I.; Skroza, D.; Vrca, I.; Kondža, A.M.; Vladislavić, N. Development and Optimization of Electrochemical Method for Determination of Vitamin C. Chemosensors 2022, 10, 283. [Google Scholar] [CrossRef]
- Schwartz, R.S.; Benjamin, C.R. Voltammetric determination of morphine in poppy straw concentrate at a glassy carbon electrode. Anal. Chim. Acta 1982, 141, 365–369. [Google Scholar] [CrossRef]
- Ognjanović, M.; Stanković, D.M.; Jaćimović, Ž.K.; Kosović-Perutović, M.; Mariano, J.F.M.L.; Krehula, S.; Musić, S.; Antić, B. Construction of Sensor for Submicromolar Detection of Riboflavin by Surface Modification of SPCE with Thermal Degradation Products of Nickel Acetate Tetrahydrate. Electroanalysis 2022, 34, 1431–1440. [Google Scholar] [CrossRef]
- Đurđić, S.; Stanković, V.; Vlahović, F.; Ognjanović, M.; Kalcher, K.; Manojlović, D.; Mutić, J.; Stanković, D.M. Carboxylated single-wall carbon nanotubes decorated with SiO2 coated-Nd2O3 nanoparticles as an electrochemical sensor for L-DOPA detection. Microchem. J. 2021, 168, 106416. [Google Scholar] [CrossRef]
- Knežević, S.; Ognjanović, M.; Nedić, N.; Mariano, J.F.M.L.; Milanović, Z.; Petković, B.; Antić, B.; Djurić, S.V.; Stanković, D. A single drop histamine sensor based on AuNPs/MnO2 modified screen-printed electrode. Microchem. J. 2020, 155, 104778. [Google Scholar] [CrossRef]
- Li, Y.; Zou, L.; Li, Y.; Li, K.; Ye, B. A new voltammetric sensor for morphine detection based on electrochemically reduced MWNTs-doped graphene oxide composite film. Sens. Actuators B Chem. 2014, 201, 511–519. [Google Scholar] [CrossRef]
- Salimi, A.; Hallaj, R.; Khayatian, G.-R. Amperometric Detection of Morphine at Preheated Glassy Carbon Electrode Modified with Multiwall Carbon Nanotubes. Electroanalysis 2005, 17, 873–879. [Google Scholar] [CrossRef]
- Klug, H.P.; Alexander, L.E. X-ray Diffraction Procedures: For Polycrystalline and Amorphous Materials, 2nd ed.; Wiley: Hoboken, NJ, USA, 1974. [Google Scholar]
- Wang, C.; Wang, R.; Peng, Y.; Chen, J.; Li, J. Iron tungsten mixed composite as a robust oxygen evolution electrocatalyst. Chem. Commun. 2019, 55, 10944–10947. [Google Scholar] [CrossRef] [PubMed]
- Chernyshova, I.V.; Ponnurangam, S.; Somasundaran, P. Linking interfacial chemistry of CO2 to surface structures of hydrated metal oxide nanoparticles: Hematite. Phys. Chem. Chem. Phys. 2013, 15, 6953–6964. [Google Scholar] [CrossRef] [PubMed]
- Bagheri, H.; Khoshsafar, H.; Afkhami, A.; Amidi, S. Sensitive and simple simultaneous determination of morphine and codeine using a Zn2SnO4 nanoparticle/graphene composite modified electrochemical sensor. New J. Chem. 2016, 40, 7102–7112. [Google Scholar] [CrossRef]
- Habibi, M.M.; Ghasemi, J.B.; Badiei, A.; Norouzi, P. Simultaneous electrochemical determination of morphine and methadone by using CMK-5 mesoporous carbon and multivariate calibration. Sci. Rep. 2022, 12, 8270. [Google Scholar] [CrossRef] [PubMed]
- Gerostamoulos, J.; Crump, K.; McIntyre, I.M.; Drummer, O.H. Simultaneous determination of 6-monoacetylmorphine, morphine and codeine in urine using high-performance liquid chromatography with combined ultraviolet and electrochemical detection. J. Chromatogr. B: Biomed. Sci. Appl. 1993, 617, 152–156. [Google Scholar] [CrossRef]
- Nazari, Z.; Eshaghi, Z. Carbon Nanotube Reinforced Heterostructure Electrochemical Sensor for the Simultaneous Determination of Morphine and Fentanyl in Biological Samples. Iran. J. Anal. Chem. 2022, 9, 63–77. [Google Scholar] [CrossRef]
- Fernández, P.; Vázquez, C.; Morales, L.; Bermejo, A.M. Analysis of opiates, cocaine and metabolites in urine by high-performance liquid chromatography with diode array detection (HPLC-DAD). J. Appl. Toxicol. 2005, 25, 200–204. [Google Scholar] [CrossRef]
- Meissner, C.; Recker, S.; Reiter, A.; Friedrich, H.J.; Oehmichen, M. Fatal versus non-fatal heroin “overdose”: Blood morphine concentrations with fatal outcome in comparison to those of intoxicated drivers. Forensic Sci. Int. 2002, 130, 49–54. [Google Scholar] [CrossRef]
- Samano, K.L.; Clouette, R.E.; Rowland, B.J.; Sample, R.H.B. Concentrations of Morphine and Codeine in Paired Oral Fluid and Urine Specimens Following Ingestion of a Poppy Seed Roll and Raw Poppy Seeds. J. Anal. Toxicol. 2015, 39, 655–661. [Google Scholar] [CrossRef]
- Smith, M.L.; Nichols, D.C.; Underwood, P.; Fuller, Z.; Moser, M.A.; LoDico, C.; Gorelick, D.A.; Newmeyer, M.N.; Concheiro, M.; Huestis, M.A. Morphine and codeine concentrations in human urine following controlled poppy seeds administration of known opiate content. Forensic Sci. Int. 2014, 241, 87–90. [Google Scholar] [CrossRef] [PubMed]
Electrode Modifier | Detection Method | Detection Limit (µM) | Operating Linear Range (µM) | Ref. |
---|---|---|---|---|
Electrodeposited Prussian blue thin film | Amperometry | 100 | 90–1000 | [17] |
Electrochemically reduced MWNTs-doped graphene oxide | Linear sweep voltammetry | 0.05 | 0.07–17.00 | [18] |
Prussian blue film modified-palladized aluminum electrode | DPV, amperometry | 0.8 | 2–50 | [19] |
Multiwall carbon nanotubes immobilized on preheated glassy carbon electrode | Amperometry | 0.2 | 0.5–150 | [20] |
Cobalt hexacyanoferrate | Amperometry | 0.5 | 1–500 | [21] |
Iron tungstate | SWV | 0.58 | 5–85 | This work |
Sample No | Found MORPH (µM) | Added MORPH (µM) | Found MORPH (µM) | Recovery % |
---|---|---|---|---|
1 | 0.00 | 5.00 | 5.05 | 101 |
2 | 0.00 | 7.00 | 6.92 | 99 |
3 | 0.00 | 10.00 | 10.02 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ognjanović, M.; Nikolić, K.; Bošković, M.; Pastor, F.; Popov, N.; Marciuš, M.; Krehula, S.; Antić, B.; Stanković, D.M. Electrochemical Determination of Morphine in Urine Samples by Tailoring FeWO4/CPE Sensor. Biosensors 2022, 12, 932. https://doi.org/10.3390/bios12110932
Ognjanović M, Nikolić K, Bošković M, Pastor F, Popov N, Marciuš M, Krehula S, Antić B, Stanković DM. Electrochemical Determination of Morphine in Urine Samples by Tailoring FeWO4/CPE Sensor. Biosensors. 2022; 12(11):932. https://doi.org/10.3390/bios12110932
Chicago/Turabian StyleOgnjanović, Miloš, Katarina Nikolić, Marko Bošković, Ferenc Pastor, Nina Popov, Marijan Marciuš, Stjepko Krehula, Bratislav Antić, and Dalibor M. Stanković. 2022. "Electrochemical Determination of Morphine in Urine Samples by Tailoring FeWO4/CPE Sensor" Biosensors 12, no. 11: 932. https://doi.org/10.3390/bios12110932
APA StyleOgnjanović, M., Nikolić, K., Bošković, M., Pastor, F., Popov, N., Marciuš, M., Krehula, S., Antić, B., & Stanković, D. M. (2022). Electrochemical Determination of Morphine in Urine Samples by Tailoring FeWO4/CPE Sensor. Biosensors, 12(11), 932. https://doi.org/10.3390/bios12110932