Low-Cost Antenna-Array-Based Metamaterials for Non-Invasive Early-Stage Breast Tumor Detection in the Human Body
Abstract
:1. Introduction
2. Metamaterial Unit Cell and AMC Design Layout
3. Antenna Sensor Design with MTM
The Schematic Layout of the Optimized MTM
4. Results and Discussion
4.1. Frequency-Domain Performance
4.1.1. Proposed Antenna Image after Fabrication
4.1.2. Return Loss (S11) and Realized Gain
4.1.3. Radiation Pattern
4.2. Time-Domain Performance
4.2.1. Fidelity Factor (FF) Input and Received Pulse Waveforms (in a Face-to-Face and Side-by-Side Situation)
4.2.2. Group Delay (in Face-to-Face and Side-by-Side Scenarios)
5. Microwave Imaging Setup and Measurement
5.1. Microwave Imaging Setup (Breast Phantom and Antenna Array Setup Surrounding Phantom)
5.2. S-Parameters of The Antenna Array (with Only One Malignant Cell, with Tumor and Normal Cells)
5.3. Microwave Imaging (MWI) Results
5.4. Microwave Imaging System (MIS)
5.5. Surface Current Distribution
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Harbeck, N.; Penault-Llorca, F.; Cortes, J.; Gnant, M.; Houssami, N.; Poortmans, P.; Ruddy, K.; Tsang, J.; Cardoso, F. Breast cancer. Nat. Rev. Dis. Primers 2019, 5, 66. [Google Scholar] [CrossRef]
- Waks, A.G.; Eric, P. Winer, Breast Cancer Treatment: A Review. JAMA 2019, 321, 288–300. [Google Scholar] [CrossRef] [PubMed]
- Stewart, B.W.; Wild, C.P. World Cancer Report; World Health Organization: Geneva, Switzerland, 2014. [Google Scholar]
- Siegal, R.; Miller, K.D.; Jemal, A. Cancer statistics, 2012. CA Cancer J. Clin. 2014, 64, 9–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zerrad, F.E.; Taouzari, M.; Makroum, E.M.; el Aoufi, J.; Islam, M.T.; Ozkaner, V.; Abdulkarim, Y.I.; Karaaslan, M. Multilayered metamaterials array antenna based on artificial magnetic conductor’s structure for the application diagnostic breast cancer detection with microwave imaging. Med. Eng. Phys. 2022, 99, 103737. [Google Scholar] [CrossRef]
- Mahmud, M.Z.; Islam, M.T.; Misran, N.; Kibria, S.; Samsuzzaman, M. Microwave Imaging for Breast Tumor Detection Using Uniplanar AMC Based CPW-Fed Microstrip Antenna. IEEE Access 2018, 6, 44763–44775. [Google Scholar] [CrossRef]
- Islam, M.T.; Mahmud, M.Z.; Islam, M.T.; Kibria, S.; Samsuzzaman, M. A Low Cost and Portable Microwave Imaging System for Breast Tumor Detection Using UWB Directional Antenna array. Sci. Rep. 2019, 9, 15491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rao, P.K.; Yadav, A.R.; Mishra, R. AMC-based antenna sensor for breast tumors detection. Int. J. Microw. Wirel. Technol. 2020, 13, 954–961. [Google Scholar] [CrossRef]
- Aldhaeebi, M.A.; Alzoubi, K.; Almoneef, T.S.; Bamatraf, S.M.; Attia, H.; Ramahi, O.M. Review of Microwaves Techniques for Breast Cancer Detection. Sensors 2020, 20, 2390. [Google Scholar] [CrossRef] [Green Version]
- Langtry, A. Understanding Cancer of the Breast; Irish Cancer Society: Dublin, Ireland, 2008. [Google Scholar]
- Alibakhshikenari, M.; Virdee, B.S.; Shukla, P.; Parchin, N.O.; Azpilicueta, L.; See, C.H.; Abd-Alhameed, R.A.; Falcone, F.; Huynen, I.; Denidni, T.A.; et al. Metamaterial-Inspired Antenna Array for Application in Microwave Breast Imaging Systems for Tumor Detection. IEEE Access 2020, 8, 174667–174678. [Google Scholar] [CrossRef]
- Hossain, K.; Sabapathy, T.; Jusoh, M.; Lee, S.H.; Rahman, K.S.A.; Kamarudin, M.R. Negative Index Metamaterial-Based Frequency-Reconfigurable Textile CPW Antenna for Microwave Imaging of Breast Cancer. Sensors 2022, 22, 1626. [Google Scholar] [CrossRef]
- Hossain, A.; Islam, M.T.; Islam, M.T.; Chowdhury, M.E.H.; Rmili, H.; Samsuzzaman, M. A Planar Ultrawideband Patch Antenna Array for Microwave Breast Tumor Detection. Materials 2020, 13, 4918. [Google Scholar] [CrossRef] [PubMed]
- Hussein, M.; Awwad, F.; Jithin, D.; el Hasasna, H.; Athamneh, K.; Iratni, R. Breast cancer cells exhibits specific dielectric signature in vitro using the open-ended coaxial probe technique from 200 MHz to 13.6 GHz. Sci. Rep. 2019, 9, 4681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdulkarim, Y.I.; Deng, L.; Yang, J.; Çolak, Ş.; Karaaslan, M.; Huang, S.; He, L.; Luo, H. Tunable left-hand characteristics in multi-nested square-split-ring enabled metamaterials. J. Cent. South Univ. 2020, 27, 1235–1246. [Google Scholar] [CrossRef]
- Abdulkarim, Y.I.; Dalgaç, Ş.; Alkurt, F.O.; Muhammadsharif, F.F.; Awl, H.N.; Saeed, S.R.; Altıntaş, O.; Li, C.; Bakır, M.; Karaaslan, M.; et al. Utilization of a triple hexagonal split ring resonator (SRR) based metamaterial sensor for the improved detection of fuel adulteration. J. Mater. Sci. Mater. Electron. 2021, 32, 24258–24272. [Google Scholar] [CrossRef]
- Abdulkarim, Y.I.; Deng, L.; Karaaslan, M.; Unal, E. Determination of the liquid chemicals depending on the electrical characteristics by using metamaterial absorber based sensor. Chem. Phys. Lett. 2019, 732, 136655. [Google Scholar] [CrossRef]
- Abdulkarim, Y.I.; Deng, L.; Karaaslan, M.; Altintas, O.; Awl, H.N.; Muhammadsharif, F.F.; Liao, C.; Unal, E.; Luo, H. Novel Metamaterials-Based Hypersensitized Liquid Sensor Integrating Omega-Shaped Resonator with Microstrip Transmission Line. Sensors 2020, 20, 943. [Google Scholar] [CrossRef] [Green Version]
- Abdulkarim, Y.I.; Deng, L.; Luo, H.; Huang, S.; Karaaslan, M.; Altıntaş, O.; Bakır, M.; Muhammadsharif, F.F.; Awl, H.N.; Sabah, C.; et al. Design and study of a metamaterial based sensor for the application of liquid chemicals detection. J. Mater. Res. Technol. 2020, 9, 10291–10304. [Google Scholar] [CrossRef]
- Abdulkarim, Y.I.; Muhammadsharif, F.F.; Bakır, M.; Awl, H.N.; Karaaslan, M.; Deng, L.; Huang, S. Hypersensitized metamaterials based on a corona-shaped resonator for efficient detection of glucose. Appl. Sci. 2020, 11, 103. [Google Scholar] [CrossRef]
- Abdulkarim, Y.I.; Xiao, M.; Awl, H.N.; Muhammadsharif, F.F.; Lang, T.; Saeed, S.R.; Alkurt, F.Ö.; Bakır, M.; Karaaslan, M.; Dong, J. Simulation and lithographic fabrication of a triple band terahertz metamaterial absorber coated on flexible polyethylene terephthalate substrate. Opt. Mater. Express 2021, 12, 338–359. [Google Scholar] [CrossRef]
- Abdulkarim, Y.I.; Awl, H.N.; Muhammadsharif, F.F.; Karaaslan, M.; Mahmud, R.H.; Hasan, S.O.; Işık, Ö.; Luo, H.; Huang, S.; de Cos Gómez, M.E. A Low-Profile Antenna Based on Single-Layer Metasurface for Ku-Band Applications. Int. J. Antennas Propag. 2020, 2020, 8813951. [Google Scholar] [CrossRef]
- Awl, H.N.; Abdulkarim, Y.I.; Deng, L.; Bakır, M.; Muhammadsharif, F.F.; Karaaslan, M.; Unal, E.; Luo, H. Bandwidth Improvement in Bow-Tie Microstrip Antennas: The Effect of Substrate Type and Design Dimensions. Appl. Sci. 2020, 10, 504. [Google Scholar] [CrossRef] [Green Version]
- Awl, H.N.; Mahmud, R.H.; Karim, B.A.; Abdulkarim, Y.I.; Karaaslan, M.; Deng, L.; Luo, H.; Cicchetti, R. Double Meander Dipole Antenna Array with Enhanced Bandwidth and Gain. Int. J. Antennas Propag. 2021, 2021, 9936781. [Google Scholar] [CrossRef]
- Sağık, M.; Karaaslan, M.; Ünal, E.; Akgöl, O.; Bakır, M.; Akdogan, V.; Özdemir, E.; Abdulkarim, Y.I. C-shaped split ring resonator type metamaterial antenna design using neural network. Opt. Eng. 2021, 60, 047106. [Google Scholar] [CrossRef]
- Ali, H.O.; Al-Hindawi, A.M.; Abdulkarim, Y.I.; Karaaslan, M. New compact six-band metamaterial absorber based on Closed Circular Ring Resonator (CCRR) for Radar applications. Opt. Commun. 2022, 503, 127457. [Google Scholar] [CrossRef]
- Ali, H.O.; Al-Hindawi, A.M.; Abdulkarim, Y.I.; Nugoolcharoenlap, E.; Tippo, T.; Alkurt, F.Ö.; Altintaș, O.; Karaaslan, M. Simulated and experimental studies of a multi-band symmetric metamaterial absorber with polarization independence for radar applications. Chin. Phys. B 2022, 31, 058401. [Google Scholar] [CrossRef]
- Cheng, Y.; Fan, J.; Luo, H.; Chen, F. Dual-band and high-efficiency circular polarization convertor based on anisotropic metamaterial. IEEE Access 2019, 8, 7615–7621. [Google Scholar] [CrossRef]
- Ramaccia, D.; Sounas, D.L.; Alù, A.; Bilotti, F.; Toscano, A. Nonreciprocity in antenna radiation induced by space-time varying metamaterial cloaks. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 1968–1972. [Google Scholar] [CrossRef]
- Liang, Y.; Koshelev, K.; Zhang, F.; Lin, H.; Lin, S.; Wu, J.; Jia, B.; Kivshar, Y. Bound states in the continuum in anisotropic plasmonic metasurfaces. Nano Lett. 2020, 20, 6351–6356. [Google Scholar] [CrossRef]
- Landy, N.I.; Sajuyigbe, S.; Mock, J.J.; Smith, D.R.; Padilla, W.J. Perfect metamaterial absorber. Phys. Rev. Lett. 2008, 100, 207402. [Google Scholar] [CrossRef]
- Abdulkarim, Y.I.; Deng, L.; Altıntaş, O.; Ünal, E.; Karaaslan, M. Metamaterial absorber sensor design by incorporating swastika shaped resonator to determination of the liquid chemicals depending on electrical characteristics. Phys. E Low-Dimens. Syst. Nanostructures 2019, 114, 113593. [Google Scholar] [CrossRef]
- Wang, J.; Yang, R.; Tian, J.; Chen, X.; Zhang, W. A dual-band absorber with wide-angle and polarization insensitivity. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 1242–1246. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Z.; Xu, D.; Yi, Z.; Chen, X.; Chen, J.; Tang, Y.; Wu, P.; Li, G.; Yi, Y. Triple-band perfect metamaterial absorber with good operating angle polarization tolerance based on split ring arrays. Results Phys. 2020, 16, 102951. [Google Scholar] [CrossRef]
- Baqir, M.A. Conductive metal–oxide-based tunable, wideband, and wide-angle metamaterial absorbers operating in the near-infrared and short-wavelength infrared regions. Appl. Opt. 2020, 59, 10912–10919. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.T.; Samsuzzaman, M.; Faruque, M.; Singh, M.J.; Islam, M. Microwave imaging based breast tumor detection using compact wide slotted UWB patch antenna. Optoelectron. Adv. Mater. Rapid Commun 2019, 13, 448–457. [Google Scholar]
- Collin, R.E. Field Theory of Guided Waves; John Wiley & Sons: New York, NY, USA, 1990. [Google Scholar]
- Sievenpiper, D.; Zhang, L.; Broas, R.F.; Alexopolous, N.G.; Yablonovitch, E. High-impedance electromagnetic surfaces with a forbidden frequency band. IEEE Trans. Microw. Theory Tech. 1999, 47, 2059–2074. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, A.; Kumar, V.; Sen, G.; Das, S. Gain enhancement of triple-band patch antenna by using triple-band artificial magnetic conductor. IET Microw. Antennas Propag. 2018, 12, 1400–1406. [Google Scholar] [CrossRef]
- Islam, M.T.; Samsuzzaman, M.; Islam, M.T.; Kibria, S.; Singh, M.J. A Homogeneous Breast Phantom Measurement System with an Improved Modified Microwave Imaging Antenna Sensor. Sensors 2018, 18, 2962. [Google Scholar] [CrossRef] [Green Version]
- Mahmud, M.; Kibria, S.; Samsuzzaman, M.; Misran, N.; Islam, M. A new high performance hibiscus petal pattern monopole antenna for UWB applications. Appl. Comput. Electromagn. Soc. J. 2016, 31, 373–380. [Google Scholar]
- Cheng, Y.; Fu, M. Dielectric properties for non-invasive detection of normal, benign, and malignant breast tissues using microwave theories. Thorac Cancer 2018, 9, 459–465. [Google Scholar] [CrossRef]
- Nguyen, P.T.; Abbosh, A.M.; Crozier, S. Thermo-Dielectric Breast Phantom for Experimental Studies of Microwave Hyperthermia. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 476–479. [Google Scholar] [CrossRef]
- Saleh, S.M.; El-Sayed, W.A.; El-Manawaty, M.A.; Gassoumi, M.; Ali, R. Microwave-Assisted Rapid Synthesis of Luminescent Tryptophan-Stabilized Silver Nanoclusters for Ultra-Sensitive Detection of Fe (III), and Their Application in a Test Strip. Biosensors 2022, 12, 425. [Google Scholar] [CrossRef] [PubMed]
Parameter | Value (mm) | Parameter | Value (mm) | Parameter | Value (mm) | Parameter | Value (mm) |
---|---|---|---|---|---|---|---|
A | 35.60 | K | 2.00 | U | 2.40 | a | 25.17 |
B | 35.60 | L | 28.80 | V | 1.41 | b | 8.77 |
C | 22.70 | M | 11.80 | W | 0.20 | c | 15.27 |
D | 12.70 | N | 35.60 | X | 2.00 | d | 12.40 |
E | 15.77 | O | 25.17 | Y1 | 112.82° | e | 21.60 |
F | 3.00 | P | 21.90 | Y2 | 118.92° | f | 6.11 |
G | 4.82 | Q | 35.60 | Y3 | 45.00° | Space | 2.8 |
H | 1.00 | R | 35.60 | Y4 | 45.00° | W2 | 0.500 |
I | 1.00 | S | 7.12 | Y5 | 287.56° | ||
J | 1.00 | T | 7.12 | Z | 3.40 |
Tissue Type | Effective Dielectric Permittivity (εeff) (F/m) [5,8,42] | Electric or Effective Conductivity (σ eff) (S/m) [5,8,42] | Density (kg/m3) [5,8] | Thermal Conductivity K (W/(K·m)) [43] | Mu (µ) | Specific Heat Capacity Cp (kJ/(K·kg)) [43] | Diffusivity (m2/s) |
---|---|---|---|---|---|---|---|
Areola | 36.7 | 2.34 | 1109 | 0.52 | 1 | 3.92 | 1.19615 × 10−7 |
Skin | 36.7 | 2.34 | 1109 | 0.52 | 1 | 3.92 | 1.19615 × 10−7 |
Adipose tissue (fat) | 4.84 | 0.262 | 911 | 0.23 | 1 | 1.9 | 1.32879 × 10−7 |
Fibroglandular | 20.1 | 0.5 | 1035 | 0.51 | 1 | 3.9 | 1.26347 × 10−7 |
Tumor | 67 | 4 | 1085 | 0.55 | 1 | 3.75 | 1.35177 × 10−7 |
Malignant cell | 15.12 | 2.346 | 1085 | 0.55 | 1 | 3.75 | 1.35177 × 10−7 |
References | Structure Size (mm2) | Substrate | Frequency Range (GHz) | Gain (dBi) | Year Published |
---|---|---|---|---|---|
[5] | 20 × 19 | FR4 | 2–12 | 5 | 2022 |
[6] | 66 × 66 | Rogers RO4003C | 1–13 | 10 | 2018 |
[7] | 51 × 42 | Rogers RT/duroid 5870 | 2–7.5 | 9.5 | 2019 |
[13] | 42 × 41 | Rogers RT 5880 | 2–11 | 5.48 | 2020 |
[12] | 80 × 61 | felt | 4–15 | 7.56 | 2022 |
[36] | 21.44 × 23.53 | FR4 | 3–12 | 5.76 | 2019 |
This work | 35.6 × 35.6 | FR4 | 2–14 | 10.61 | 2022 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamza, M.N.; Abdulkarim, Y.I.; Saeed, S.R.; Altıntaş, O.; Mahmud, R.H.; Appasani, B.; Ravariu, C. Low-Cost Antenna-Array-Based Metamaterials for Non-Invasive Early-Stage Breast Tumor Detection in the Human Body. Biosensors 2022, 12, 828. https://doi.org/10.3390/bios12100828
Hamza MN, Abdulkarim YI, Saeed SR, Altıntaş O, Mahmud RH, Appasani B, Ravariu C. Low-Cost Antenna-Array-Based Metamaterials for Non-Invasive Early-Stage Breast Tumor Detection in the Human Body. Biosensors. 2022; 12(10):828. https://doi.org/10.3390/bios12100828
Chicago/Turabian StyleHamza, Musa N., Yadgar I. Abdulkarim, Salah Raza Saeed, Olcay Altıntaş, Rashad H. Mahmud, Bhargav Appasani, and Cristian Ravariu. 2022. "Low-Cost Antenna-Array-Based Metamaterials for Non-Invasive Early-Stage Breast Tumor Detection in the Human Body" Biosensors 12, no. 10: 828. https://doi.org/10.3390/bios12100828
APA StyleHamza, M. N., Abdulkarim, Y. I., Saeed, S. R., Altıntaş, O., Mahmud, R. H., Appasani, B., & Ravariu, C. (2022). Low-Cost Antenna-Array-Based Metamaterials for Non-Invasive Early-Stage Breast Tumor Detection in the Human Body. Biosensors, 12(10), 828. https://doi.org/10.3390/bios12100828