Emerging Applications of Electrochemical Impedance Spectroscopy in Tear Film Analysis
Abstract
:1. Introduction
2. Physiology of Tear Film
Tear Fluids as Biomarker
3. Emerging Applications of Tear-Based Electrochemical Detection
4. Conclusions and Future Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nandi, S.K.; Singh, D.; Upadhay, J.; Gupta, N.; Dhiman, N.; Mittal, S.K.; Mahindroo, N. Identification of tear-based protein and non-protein biomarkers: Its application in diagnosis of human diseases using biosensors. Int. J. Biol. Macromol. 2021, 193, 838–846. [Google Scholar] [CrossRef]
- Mayeux, R. Biomarkers: Potential uses and limitations. NeuroRX 2004, 1, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Balogh, E.P.; Miller, B.T.; Ball, J.R. (Eds.) Improving Diagnosis in Health Care; The National Academies Press: Washington, DC, USA, 2015; p. 472. [Google Scholar]
- Hagan, S.; Martin, E.; Enríquez-de-Salamancaand, A. Tear fluid biomarkers in ocular and systemic disease: Potential use for predictive, preventive and personalised medicine. EPMA J. 2016, 7, 15. [Google Scholar]
- Böhm, D.; Keller, K.; Pieter, J.; Boehm, N.; Wolters, D.; Siggelkow, W.; Lebrecht, A.; Schmidt, M.; Kölbl, H.; Pfeiffer, N.; et al. Comparison of tear protein levels in breast cancer patients and healthy controls using a de novo proteomic approach. Oncol. Rep. 2012, 28, 429–438. [Google Scholar] [CrossRef] [Green Version]
- Lebrecht, A.; Boehm, D.; Schmidt, M.; Koelbl, H.; Grus, F.H. Surface-enhanced Laser Desorption/Ionisation Time-of-flight Mass Spectrometry to Detect Breast Cancer Markers in Tears and Serum. Cancer Genom. Proteom. 2009, 6, 75–83. [Google Scholar]
- Lebrecht, A.; Boehm, D.; Schmidt, M.; Koelbl, H.; Schwirz, R.L.; Grus, F.H. Diagnosis of breast cancer by tear proteomic pattern. Cancer Genom. Proteom. 2009, 6, 177–182. [Google Scholar]
- Evans, V.; Vockler, C.; Fridlander, M.; Walsh, B.; Willcox, M.D. Lacryglobin in human tears, a potential marker for cancer. Clin. Exp. Ophthalmol. 2001, 29, 161–163. [Google Scholar] [CrossRef] [PubMed]
- Inubushi, S.; Kawaguchi, H.; Mizumoto, S.; Kunihisa, T.; Baba, M.; Kitayama, Y.; Takeuchi, T.; Hoffman, R.M.; Tanino, H.; Sasaki, R. Oncogenic miRNAs Identified in Tear Exosomes From Metastatic Breast Cancer Patients. Anticancer Res. 2020, 40, 3091–3096. [Google Scholar] [CrossRef]
- Matheis, N.; Okrojek, R.; Grus, F.H.; Kahaly, G.J. Proteomics of tear fluid in thyroid-associated orbitopathy. Thyroid 2012, 22, 1039–1045. [Google Scholar] [CrossRef] [PubMed]
- Kalló, G.; Emri, M.; Varga, Z.; Ujhelyi, B.; Tőzsér, J.; Csutak, A.; Csősz, É. Changes in the chemical barrier composition of tears in Alzheimer’s disease reveal potential tear diagnostic biomarkers. PLoS ONE 2016, 11, e0158000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kenny, A.; Jiménez-Mateos, E.M.; Zea-Sevilla, M.A.; Rábano, A.; Gili-Manzanaro, P.; Prehn, J.H.M.; Henshall, D.C.; Ávila, J.; Engel, T.; Hernández, F. Proteins and microRNAs are differentially expressed in tear fluid from patients with Alzheimer’s disease. Sci. Rep. 2019, 9, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gijs, M.; Nuijts, R.M.; Ramakers, I.; Verhey, F.; Webers, C.A. Differences in tear protein biomarkers between patients with Alzheimer’s disease and controls. Investig. Ophthalmol. Vis. Sci. 2019, 60, 1744. [Google Scholar]
- Sempionatto, J.R.; Brazaca, L.C.; García-Carmona, L.; Bolat, G.; Campbell, A.S.; Martin, A.; Tang, G.; Shah, R.; Mishra, R.K.; Kim, J.; et al. Eyeglasses-based tear biosensing system: Non-invasive detection of alcohol, vitamins and glucose. Biosens. Bioelectron. 2019, 137, 161–170. [Google Scholar] [CrossRef] [PubMed]
- Vo-Dinh, T.; Cullum, B. Biosensors and biochips: Advances in biological and medical diagnostics. Fresenius’ J. Anal. Chem. 2000, 366, 540–551. [Google Scholar] [CrossRef]
- Juzgado, A.; Soldà, A.; Ostric, A.; Criado, A.; Valenti, G.; Rapino, S.; Conti, G.; Fracasso, G.; Paolucci, F.; Prato, M. Highly sensitive electrochemiluminescence detection of a prostate cancer biomarker. J. Mater. Chem. B 2017, 5, 6681–6687. [Google Scholar] [CrossRef]
- Valenti, G.; Rampazzo, E.; Biavardi, E.; Villani, E.; Fracasso, G.; Marcaccio, M.; Bertani, F.; Ramarli, D.; Dalcanale, E.; Paolucci, F.; et al. An electrochemiluminescence-supramolecular approach to sarcosine detection for early diagnosis of prostate cancer. Faraday Discuss. 2015, 185, 299–309. [Google Scholar] [CrossRef]
- Srinivasan, B.; Tungand, S. Development and Applications of Portable Biosensors. J. Lab. Autom. 2015, 20, 365–389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Promphet, N.; Ummartyotin, S.; Ngeontae, W.; Puthongkham, P.; Rodthongkum, N. Non-invasive wearable chemical sensors in real-life applications. Anal Chim. Acta 2021, 1179, 338643. [Google Scholar] [CrossRef] [PubMed]
- Macdonald, D.D. Reflections on the history of electrochemical impedance spectroscopy. Electrochim. Acta 2006, 51, 1376–1388. [Google Scholar] [CrossRef]
- Lisdat, F.; Schäfer, D. The use of electrochemical impedance spectroscopy for biosensing. Anal. Bioanal. Chem. 2008, 391, 1555–1567. [Google Scholar] [CrossRef] [PubMed]
- Kownacka, A.E.; Vegelyte, D.; Joosse, M.; Anton, N.; Toebes, B.J.; Lauko, J.; Buzzacchera, I.; Lipinska, K.; Wilson, D.A.; Geelhoed-Duijvestijn, N.; et al. Clinical Evidence for Use of a Noninvasive Biosensor for Tear Glucose as an Alternative to Painful Finger-Prick for Diabetes Management Utilizing a Biopolymer Coating. Biomacromolecules 2018, 19, 4504–4511. [Google Scholar] [CrossRef] [Green Version]
- Geelhoed-Duijvestijn, P.; Vegelyte, D.; Kownacka, A.; Anton, N.; Joosse, M.; Wilson, C. Performance of the Prototype NovioSense Noninvasive Biosensor for Tear Glucose in Type 1 Diabetes. J. Diabetes Sci. Technol. 2021, 15, 1320–1325. [Google Scholar] [CrossRef]
- Zou, R.; Shan, S.; Huang, L.; Chen, Z.; Lawson, T.; Lin, M.; Yan, L.; Liu, Y. High-Performance Intraocular Biosensors from Chitosan-Functionalized Nitrogen-Containing Graphene for the Detection of Glucose. ACS Biomater. Sci. Eng. 2020, 6, 673–679. [Google Scholar] [CrossRef]
- Kim, S.; Jeon, H.-J.; Park, S.; Lee, D.Y.; Chung, E. Tear Glucose Measurement by Reflectance Spectrum of a Nanoparticle Embedded Contact Lens. Sci. Rep. 2020, 10, 8254. [Google Scholar] [CrossRef]
- Alexeev, V.L.; Das, S.; Finegold, D.N.; Asher, S.A. Photonic Crystal Glucose-Sensing Material for Noninvasive Monitoring of Glucose in Tear Fluid. Clin. Chem. 2004, 50, 2353–2360. [Google Scholar] [CrossRef] [Green Version]
- Elsherif, M.; Hassan, M.U.; Yetisen, A.K.; Butt, H. Wearable Contact Lens Biosensors for Continuous Glucose Monitoring Using Smartphones. ACS Nano 2018, 12, 5452–5462. [Google Scholar] [CrossRef]
- Xiong, C.; Zhang, T.; Kong, W.; Zhang, Z.; Qu, H.; Chen, W.; Wang, Y.; Luo, L.; Zheng, L. ZIF-67 derived porous Co3O4 hollow nanopolyhedron functionalized solution-gated graphene transistors for simultaneous detection of glucose and uric acid in tears. Biosens. Bioelectron. 2018, 101, 21–28. [Google Scholar] [CrossRef]
- Wang, J.-C.; Ku, H.-Y.; Chen, T.-S.; Chuang, H.-S. Detection of low-abundance biomarker lipocalin 1 for diabetic retinopathy using optoelectrokinetic bead-based immunosensing. Biosens. Bioelectron. 2017, 89, 701–709. [Google Scholar] [CrossRef]
- Wang, J.-Y.; Kwon, J.-S.; Hsu, S.-M.; Chuang, H.-S. Sensitive tear screening of diabetic retinopathy with dual biomarkers enabled using a rapid electrokinetic patterning platform. Lab A Chip 2020, 20, 356–362. [Google Scholar] [CrossRef] [Green Version]
- Chuang, H.-S.; Chen, Y.-J.; Chengand, H.-P. Enhanced diffusometric immunosensing with grafted gold nanoparticles for detection of diabetic retinopathy biomarker tumor necrosis factor-α. Biosens. Bioelectron. 2018, 101, 75–83. [Google Scholar] [CrossRef]
- Badugu, R.; Szmacinski, H.; Reece, E.A.; Jeng, B.H.; Lakowicz, J.R. Fluorescent contact lens for continuous non-invasive measurements of sodium and chloride ion concentrations in tears. Anal. Biochem. 2020, 608, 113902. [Google Scholar] [CrossRef] [PubMed]
- Ku, M.; Kim, J.; Won, J.E.; Kang, W.; Park, Y.G.; Park, J.; Park, J.U. Smart, soft contact lens for wireless immunosensing of cortisol. Sci. Adv. 2020, 6, eabb2891. [Google Scholar] [CrossRef]
- Kim, J.; Kim, M.; Lee, M.-S.; Kim, K.; Ji, S.; Kim, Y.-T.; Park, J.; Na, K.; Bae, K.-H.; Kim, H.K.; et al. Wearable smart sensor systems integrated on soft contact lenses for wireless ocular diagnostics. Nat. Commun. 2017, 8, 14997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, J.; Kim, J.; Kim, S.-Y.; Cheong, W.H.; Jang, J.; Park, Y.-G.; Na, K.; Kim, Y.-T.; Heo, J.H.; Lee, C.Y.; et al. Soft, smart contact lenses with integrations of wireless circuits, glucose sensors, and displays. Sci. Adv. 2018, 4, eaap9841. [Google Scholar] [CrossRef]
- Posa, A.; Bräuer, L.; Schicht, M.; Garreis, F.; Beileke, S.; Paulsen, F. Schirmer strip vs. capillary tube method: Non-invasive methods of obtaining proteins from tear fluid. Ann. Anat. 2013, 195, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Esmaeelpour, M.; Cai, J.; Watts, P.; Boulton, M.; Murphy, P.J. Tear sample collection using cellulose acetate absorbent filters. Ophthalmic Physiol. Opt. 2008, 28, 577–583. [Google Scholar] [CrossRef] [PubMed]
- Pieczyński, J.; Seppänen-Laakso, T.; Oresic, M.; Jauhiainen, M.; Holopainen, J.M. Tear fluid collection methods: Review of current techniques. Eur. J. Ophthalmol. 2021, 31, 2245–2251. [Google Scholar] [CrossRef]
- Attico, E.; Chiavelli, C.; Sceberras, V.; Fantacci, M.; Melonari, M.; Pellegrini, G. Stem Cells and Ocular Regeneration. In Encyclopedia of Tissue Engineering and Regenerative Medicine; Reis, R.L., Ed.; Academic Press: Oxford, UK, 2019; pp. 169–179. [Google Scholar]
- Gartner, L.P.; Hiattand, J.L. Concise Histology E-Book; Elsevier Health Sciences: Amsterdam, The Netherlands, 2010. [Google Scholar]
- Rantamäki, A.H.; Seppänen-Laakso, T.; Oresic, M.; Jauhiainen, M.; Holopainen, J.M. Human tear fluid lipidome: From composition to function. PLoS ONE 2011, 6, e19553. [Google Scholar] [CrossRef] [Green Version]
- Van Haeringen, N.J. Clinical biochemistry of tears. Surv. Ophthalmol. 1981, 26, 84–96. [Google Scholar] [CrossRef]
- Li, K.; Liu, X.; Chen, Z.; Huang, Q.; Wu, K. Quantification of tear proteins and sPLA2-IIa alteration in patients with allergic conjunctivitis. Mol. Vis. 2010, 16, 2084. [Google Scholar]
- Herber, S.; Grus, F.H.; Sabuncuo, P.; Augustin, A.J. Two-dimensional analysis of tear protein patterns of diabetic patients. Electrophoresis 2001, 22, 1838–1844. [Google Scholar] [CrossRef]
- Tiffany, J.M. Tears in health and disease. Eye 2003, 17, 923–926. [Google Scholar] [CrossRef]
- Zhang, P.; Qian, B.; Liu, Z.; Wang, D.; Lv, F.; Xing, Y.; Xiao, Y. Identification of novel biomarkers of prostate cancer through integrated analysis. Transl. Androl. Urol. 2021, 10, 3239–3254. [Google Scholar] [CrossRef] [PubMed]
- De Souza, G.A.; Godoy, L.M.; Mann, M. Identification of 491 proteins in the tear fluid proteome reveals a large number of proteases and protease inhibitors. Genome Biol. 2006, 7, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wrotnowski, C. The future of plasma proteins. Genet. Eng. News 1998, 18. [Google Scholar]
- Bandodkar, A.J.; Wangand, J. Non-invasive wearable electrochemical sensors: A review. Trends Biotechnol. 2014, 32, 363–371. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Yang, Z.; An, M. Lab on the eye: A review of tear-based wearable devices for medical use and health management. Biosci. Trends 2019, 13, 308–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, L.; Beuerman, R.W.; Chan, C.M.; Zhao, S.Z.; Li, X.R.; Yang, H.; Tong, L.; Liu, S.; Stern, M.E.; Tan, D. Identification of tear fluid biomarkers in dry eye syndrome using iTRAQ quantitative proteomics. J. Proteome Res. 2009, 8, 4889–4905. [Google Scholar] [CrossRef]
- Von Hohenstein-Blaul, N.T.U.; Funke, S.; Grus, F.H. Tears as a source of biomarkers for ocular and systemic diseases. Exp. Eye Res. 2013, 117, 126–137. [Google Scholar] [CrossRef] [PubMed]
- LaFrance, M.W.; Kehinde, L.E.; Fullard, R.J. Multiple cytokine analysis in human tears: An optimized procedure for cytometric bead-based assay. Curr. Eye Res. 2008, 33, 525–544. [Google Scholar] [CrossRef]
- Ginsberg, J.M.; Chang, B.S.; Matarese, R.A.; Garella, S. Use of single voided urine samples to estimate quantitative proteinuria. New Engl. J. Med. 1983, 309, 1543–1546. [Google Scholar] [CrossRef] [PubMed]
- Caselli, E.; Soffritti, I.; Lamberti, G.; D’accolti, M.; Franco, F.; Demaria, D.; Contoli, M.; Passaro, A.; Contini, C.; Perri, P. Anti-SARS-CoV-2 IgA response in tears of COVID-19 patients. Biology 2020, 9, 374. [Google Scholar] [CrossRef]
- Filik, J.; Stone, N. Analysis of human tear fluid by Raman spectroscopy. Anal. Chim. Acta 2008, 616, 177–184. [Google Scholar] [CrossRef]
- Dikovskaya, M.A.; Trunov, A.N.; Chernykh, V.V.; Korolenko, T.A. Cystatin C and lactoferrin concentrations in biological fluids as possible prognostic factors in eye tumor development. Int. J. Circumpolar Health 2013, 72, 21087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calais, G.; Forzy, G.; Crinquette, C.; Mackowiak, A.; de Seze, J.; Blanc, F.; Lebrun, C.; Heinzlef, O.; Clavelou, P.; Moreau, T. Tear analysis in clinically isolated syndrome as new multiple sclerosis criterion. Mult. Scler. J. 2010, 16, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-J.; Kim, P.-K.; Yoo, H.-S.; Kim, C.-W. Comparison of tear proteins between healthy and early diabetic retinopathy patients. Clin. Biochem. 2012, 45, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Kim, A.; Nodel, M.; Pavlenko, T.; Chesnokova, N.; Yakhno, N.; Ugrumov, M. Tear fluid catecholamines as biomarkers of the Parkinson’s disease: A clinical and experimental study. Acta Nat. 2019, 11, 99–103. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-R.; Chuang, H.-C.; Tripathi, A.; Wang, Y.-L.; Ko, M.-L.; Chuang, C.-C.; Chen, J.-C. High-Sensitivity and Trace-Amount Specimen Electrochemical Sensors for Exploring the Levels of β-Amyloid in Human Blood and Tears. Anal. Chem. 2021, 93, 8099–8106. [Google Scholar] [CrossRef]
- Cardinell, B.A.; Spano, M.L.; La Belle, J. Toward a Label-Free Electrochemical Impedance Immunosensor Design for Quantifying Cortisol in Tears. Crit. Rev. Biomed. Eng. 2019, 47, 207–215. [Google Scholar] [CrossRef]
- Kalasin, S.; Sangnuang, P.; Surareungchai, W. Lab-on-Eyeglasses to Monitor Kidneys and Strengthen Vulnerable Populations in Pandemics: Machine Learning in Predicting Serum Creatinine Using Tear Creatinine. Anal. Chem. 2021, 93, 10661–10671. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Liu, J.; Wasinger, V.C.; Malouf, T.; Nguyen-Khuong, T.; Walsh, B.; Willcox, M.D. Tear lipocalin is the predominant phosphoprotein in human tear fluid. Exp. Eye Res. 2010, 90, 344–349. [Google Scholar] [CrossRef] [PubMed]
- Acera, A.; Vecino, E.; Rodríguez-Agirretxe, I.; Aloria, K.; Arizmendi, J.; Morales, C.; Durán, J. Changes in tear protein profile in keratoconus disease. Eye 2011, 25, 1225–1233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Acera, A.; Suárez, T.; Rodríguez-Agirretxe, I.; Vecino, E.; Durán, J.A. Changes in tear protein profile in patients with conjunctivochalasis. Cornea 2011, 30, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Hida, R.Y.; Ohashi, Y.; Takano, Y.; Dogru, M.; Goto, E.; Fujishima, H.; Saito, I.; Saito, K.; Fukase, Y.; Tsubota, K. Elevated levels of human α-defensin in tears of patients with allergic conjunctival disease complicated by corneal lesions: Detection by SELDI ProteinChip system and quantification. Curr. Eye Res. 2005, 30, 737–744. [Google Scholar] [CrossRef] [PubMed]
- Koo, B.-S.; Lee, D.-Y.; Ha, H.-S.; Kim, J.-C.; Kim, C.-W. Comparative analysis of the tear protein expression in blepharitis patients using two-dimensional electrophoresis. J. Proteome Res. 2005, 4, 719–724. [Google Scholar] [CrossRef]
- Zhou, L.; Beuerman, R.W.; Ang, L.P.; Chan, C.M.; Li, S.F.; Chew, F.T.; Tan, D.T. Elevation of human α-defensins and S100 calcium-binding proteins A8 and A9 in tear fluid of patients with pterygium. Investig. Ophthalmol. Vis. Sci. 2009, 50, 2077–2086. [Google Scholar] [CrossRef] [PubMed]
- Nichols, J.J.; Green-Church, K.B. Mass spectrometry-based proteomic analyses in contact lens-related dry eye. Cornea 2009, 28, 1109–1117. [Google Scholar] [CrossRef]
- Srinivasan, S.; Thangavelu, M.; Zhang, L.; Green, K.B.; Nichols, K.K. iTRAQ quantitative proteomics in the analysis of tears in dry eye patients. Investig. Ophthalmol. Vis. Sci. 2012, 53, 5052–5059. [Google Scholar] [CrossRef] [Green Version]
- Grus, F.H.; Podust, V.N.; Bruns, K.; Lackner, K.; Fu, S.; Dalmasso, E.A.; Wirthlin, A.; Pfeiffer, N. SELDI-TOF-MS ProteinChip array profiling of tears from patients with dry eye. Investig. Ophthalmol. Vis. Sci. 2005, 46, 863–876. [Google Scholar] [CrossRef] [Green Version]
- Saijyothi, A.V.; Angayarkanni, N.; Syama, C.; Utpal, T.; Shweta, A.; Bhaskar, S.; Geetha, I.K.; Vinay, P.S.; Thennarasu, M.; Sivakumar, R.M. Two dimensional electrophoretic analysis of human tears: Collection method in dry eye syndrome. Electrophoresis 2010, 31, 3420–3427. [Google Scholar] [CrossRef] [PubMed]
- Ananthi, S.; Chitra, T.; Bini, R.; Prajna, N.V.; Lalitha, P.; Dharmalingam, K. Comparative analysis of the tear protein profile in mycotic keratitis patients. Mol. Vis. 2008, 14, 500. [Google Scholar] [PubMed]
- Amil-Bangsa, N.H.; Mohd-Ali, B.; Ishak, B.; Abdul-Aziz, C.N.N.; Ngah, N.F.; Hashim, H.; Ghazali, A.R. Total Protein Concentration and Tumor Necrosis Factor α in Tears of Nonproliferative Diabetic Retinopathy. Optom. Vis. Sci. 2019, 96, 934–939. [Google Scholar] [CrossRef]
- Csősz, É.; Boross, P.; Csutak, A.; Berta, A.; Tóth, F.; Póliska, S.; Török, Z.; Tőzsér, J. Quantitative analysis of proteins in the tear fluid of patients with diabetic retinopathy. J. Proteom. 2012, 75, 2196–2204. [Google Scholar] [CrossRef]
- Kramann, C.; Boehm, N.; Lorenz, K.; Wehrwein, N.; Stoffelns, B.M.; Pfeiffer, N.; Grus, F.H. Effect of contact lenses on the protein composition in tear film: A ProteinChip study. Graefe’s Arch. Clin. Exp. Ophthalmol. 2011, 249, 233–243. [Google Scholar] [CrossRef]
- Wong, T.T.; Zhou, L.; Li, J.; Tong, L.; Zhao, S.Z.; Li, X.R.; Yu, S.J.; Koh, S.K.; Beuerman, R.W. Proteomic profiling of inflammatory signaling molecules in the tears of patients on chronic glaucoma medication. Investig. Ophthalmol. Vis. Sci. 2011, 52, 7385–7391. [Google Scholar] [CrossRef]
- Fatima, T.; Bansal, S.; Husain, S.; Khanuja, M. Biosensors. In Electrochemical Sensors; Elsevier: Amsterdam, The Netherlands, 2022; pp. 1–30. [Google Scholar]
- Murthy, H.A.; Wagassa, A.N.; Ravikumar, C.; Nagaswarupa, H. Functionalized metal and metal oxide nanomaterial-based electrochemical sensors. In Functionalized Nanomaterial-Based Electrochemical Sensors; Elsevier: Amsterdam, The Netherlands, 2022; pp. 369–392. [Google Scholar]
- Guth, U.; Vonau, W.; Zosel, J. Recent developments in electrochemical sensor application and technology—A review. Meas. Sci. Technol. 2009, 20, 042002. [Google Scholar] [CrossRef]
- Rinken, T. State of the Art in Biosensors: General Aspects; Intechopen: London, UK, 2013. [Google Scholar]
- Willcox, M.D. Tear film, contact lenses and tear biomarkers. Clin. Exp. Optom. 2019, 102, 350–363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ErtuğruL, H.D.; Uygun, Z.O. Impedimetric biosensors for label-free and enzymless detection. In State of the Art in Biosensors; IntechOpen: Rijeka, Croatia, 2013; pp. 179–196. [Google Scholar]
- Magar, H.S.; Hassan, R.Y.A.; Mulchandani, A. Electrochemical Impedance Spectroscopy (EIS): Principles, Construction, and Biosensing Applications. Sensors 2021, 21, 6578. [Google Scholar] [CrossRef]
- Griffiths, P.R. Transform Techniques in Chemistry: Past, Present, and Future. In Transform Techniques in Chemistry; Springer: New York, NY, USA, 1978; pp. 1–9. [Google Scholar]
- Randviir, E.P.; Banks, C.E. Electrochemical impedance spectroscopy: An overview of bioanalytical applications. Anal. Methods 2013, 5, 1098–1115. [Google Scholar] [CrossRef]
- Rohrbach, F.; Karadeniz, H.; Erdem, A.; Famulok, M.; Mayer, G. Label-free impedimetric aptasensor for lysozyme detection based on carbon nanotube-modified screen-printed electrodes. Anal. Biochem. 2012, 421, 454–459. [Google Scholar] [CrossRef]
- Jacobi, C.; Jacobi, A.; Kruse, F.E.; Cursiefen, C. Tear Film Osmolarity Measurements in Dry Eye Disease Using Electrical Impedance Technology. Cornea 2011, 30, 1289–1292. [Google Scholar] [PubMed]
- Borycka-Kiciak, K.; Młyńczak, M.; Kiciak, A.; Pietrzak, P.; Dziki, A. Non-invasive obstetric anal sphincter injury diagnostics using impedance spectroscopy. Sci. Rep. 2019, 9, 7097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, M.S.; Wong, H.L.; Ip, Y.L.; Peng, Z.; Yiu, R.; Yuan, H.; Wai Wong, J.K.; Chan, Y.K. Current and Future Perspectives on Microfluidic Tear Analytic Devices. ACS Sens. 2022, 7, 1300–1314. [Google Scholar] [CrossRef] [PubMed]
- Kudo, H.; Sawada, T.; Kazawa, E.; Yoshida, H.; Iwasaki, Y.; Mitsubayashi, K. A flexible and wearable glucose sensor based on functional polymers with Soft-MEMS techniques. Biosens. Bioelectron. 2006, 22, 558–562. [Google Scholar] [CrossRef] [PubMed]
- Kagie, A.; Bishop, D.K.; Burdick, J.; La Belle, J.T.; Dymond, R.; Felder, R.; Wang, J. Flexible rolled thick-film miniaturized flow-cell for minimally invasive amperometric sensing. Electroanal. Int. J. Devoted Fundam. Pract. Asp. Electroanal. 2008, 20, 1610–1614. [Google Scholar] [CrossRef]
- Yao, H.; Liao, Y.; Lingley, A.; Afanasiev, A.; Lähdesmäki, I.; Otis, B.; Parviz, B. A contact lens with integrated telecommunication circuit and sensors for wireless and continuous tear glucose monitoring. J. Micromechanics Microengineering 2012, 22, 075007. [Google Scholar] [CrossRef]
- Yao, W.; Li, D.; Zhao, Y.; Zhan, Z.; Jin, G.; Liang, H.; Yang, R. 3D printed multi-functional hydrogel microneedles based on high-precision digital light processing. Micromachines 2020, 11, 17. [Google Scholar] [CrossRef] [Green Version]
- Kajisa, T.; Sakata, T. Glucose-responsive hydrogel electrode for biocompatible glucose transistor. Sci. Technol. Adv. Mater. 2017, 18, 26–33. [Google Scholar] [CrossRef] [Green Version]
- Yao, H.; Shum, A.J.; Cowan, M.; Lähdesmäki, I.; Parviz, B.A. A contact lens with embedded sensor for monitoring tear glucose level. Biosens. Bioelectron. 2011, 26, 3290–3296. [Google Scholar]
- Thomas, N.; Lähdesmäki, I.; Parviz, B.A. A contact lens with an integrated lactate sensor. Sens. Actuators B Chem. 2012, 162, 128–134. [Google Scholar] [CrossRef]
- Ensafi, A.A.; Saberi, Z.; Kazemifard, N. Functionalized nanomaterial-based medical sensors for point-of-care applications: An overview. Funct. Nanomater. Based Electrochem. Sens. 2022, 277–308. [Google Scholar]
Disease | Tear-Based Biomarker | Detection Technique/Platform | Sampling Technique | Reference | |
---|---|---|---|---|---|
Systemic Diseases | COVID-19 | IgA antibody; IL-6 cytokine | ELISA | Schirmer strip | [55] |
Control group | Protein and urea | DCDRS | Capillary tube | [56] | |
Breast, lung; colon, ovary; prostate cancer | Lacryglobin | 2DGE | Schirmer strip | [8] | |
Breast cancer | Cystatin-SA, 5-AMP-activated protein kinase subunit gamma-3, triosephosphate isomerase, microtubule-associated tumor suppressor 1, transferrin receptor protein 1, putative lipocalin 1-like protein 1, DNA damage binding protein 1; protein S100-A9, GTP-binding protein Di-Ras2 miR-21 and miR-200c | MALDITOF-TOF; SELDI-TOF-MS; qRT-PCR | Schirmer strip | [5,6,7] | |
Eye tumor cancer | Cystatins C and lactoferrin | ELISA | Capillary tube | [57] | |
Clinically isolated syndrome as a systemic disorder | Oligoclonal bands | IEF | Schirmer strip | [58] | |
Diabetes | LCN-1, HSP27, and B2M | 2DGE | Preweighed polyester wick | [59] | |
Parkinson’s disease | Catecholamine proteins from S100 superfamily, peroxiredoxin-6, annexin-X5, glutathione-Stransferase-A1; apolipoprotein superfamily—ApoD, ApoA4 and ApoA1, TNF-α, α-synuclein | HPLC-ED | Schirmer strip | [60] | |
Alzheimer’s disease | Dermcidin, total tau, amyloid β 42, microRNA 200b-5p, lysozyme-C, lactotransferrin, prolactin, lipocalin-1, lacritin; β-Amyloid | LC-MS; EIS; multiplex immunoassay | Capillary tube; Schirmer strip | [11,12,13,61] | |
Cortisol detection | Cortisol | EIS | Capillary tube | [62] | |
Overall renal health | Glomerular filtration rate (GFR) | EIS | Cotton swab | [63] | |
Ocular Diseases | Control group for open-eye | Four phosphorylation sites for tear lipocalin | LC-MS | Capillary tube | [64] |
Keratoconus (KC) | Cystatin-S, cystatin-SN, cystatin-SA, lipocalin-1, Ig-k chain C, Ig J chain, lipophilin C, lipophilin A, phospholipase A2, serum albumin | 2DGE; MALDI-TOF | Merocel sponge | [65] | |
Conjunctivochalasis (CCH) | S100 family (A8, A9, A4), guanosine triphosphatebinding protein 2, L-lactate dehydrogenase A-like 6B, fatty acid-binding protein, keratin type I cytoskeletal 10, glutathione S-transferase P, peroxiredoxin-1, peroxiredoxin-5, cullin-4Bþ glyceraldehyde 3-phosphate dehydrogenase | 2DGE; MALDI-TOF | Merocel sponge | [66] | |
Allergic conjunctivitis | Serum albumin, Ig gamma-2, leukocyte elastase inhibitor | SDS-PAGE | Schirmer strip | [43] | |
Allergy with corneal lesions | Human a-defensin | SELDI; ELISA verification | Capillary tube | [67] | |
Blepharitis | Serum albumin, α1antitrypsin, lacritin, lysozyme, Ig-kappa chain V III, PIP, cystatin-SA III, pyruvate kinase | 2DGE; Western blot verification | Preweighed polyester wick | [68] | |
Pterygia | a-Defensins, S100 A8, A9 | SELDI | Capillary tube | [69] | |
Dry eye syndrome | Enolase, - 1-acid glycoprotein1, Calgranulin A, Calgranulin B, Calgizzarin, Prolactin Inducible protein (PIP), lipocalin-1, lactoferrin and Lyzozyme, Enolase | iTRAQ | Capillary tube | [69] | |
Contact lens-related dry eye syndrome | β-2 microglobulin, PRP4, lacritin, secretoglobin 1D1, secretoglobin 2A2, serum albumin, glycoprotein 340, PIP | SDS-PAGE; 2D-DIGE; nano-LC–MS/MS | Capillary tube | [70] | |
Non-Sjogren’s syndrome dry eye | Lipocalin-1, prolactin-inducible protein, and lysozyme PRP3, proline-rich protein4, nasopharyngeal carcinoma associated proline-rich protein4, a-1-antitrypsin, calgranulin A | iTRAQ; SELDI | Schirmer strip | [71,72] | |
Sjogren’s syndrome dry eye | Proline-rich protein4 | 2DGE | Schirmer strip | [73] | |
Mycotic keratitis | Glutaredoxin-related protein, PIP, serum albumin, cystatin S, cystatin-SN, cystatin, lipocalin | 2DGE | Capillary tube | [74] | |
Thyroid eye disease | Proteins: IL-10, IL-12-p70, IL-13, IL-1β, IL-2, IL-4, IL-6, IL-8 and IL-17A; TNF-α, RANTES; PAI-1, calcium-binding proteins, prolactin-induced protein, zinc-alpha-2 glycoprotein 1 Nonprotein molecules: 8-OHdG; malondialdehyde | Multiplex bead array; ELISA; Plex panel | Schirmer strip | [1] and references cited in there. | |
Thyroid-associated orbitopathy (TAO) | PRP4, β2-microglobulin, lysozyme C, cystatin | SELDI; MALDI | Schirmer strip | [10] | |
Diabetic retinopathy (DR) | Lactotransferrin, lacritin, Ig lambda chain C region, lipocalin 1, mammaglobin B and lipophilin A, lysozyme C Glycated; TNF-α and glycoprotein VEGF | ELISA; nanoHPLC coupled ESI; 1D- and 2D-SDS gels | Capillary tube; Schirmer strip | [1,75,76] | |
Glaucoma | Proteins: Endothelin-1; kallikrein and ACE activity; lysozyme C, protein S100, lipocalin-1 and prolactin; cystatin-S; collagen type-IX and HNK-I epitopes, MMP-9, connective tissue growth factor Nonprotein molecules: Lysophospholipids and acetylcarnitine | LC-MS; MALDI-TOF; SDS-PAGE | Schirmer strip | [1] and references cited in there. | |
Ocular Treatment | Contact lens usage (rigid gas-permeable and soft contact lenses) | S100 A8, lysozyme, cystatin SELDI | Antibody microarrays | Schirmer strip | [77] |
Chronic glaucoma | S100-A8, S100-A9, mammaglobin B, and 14-3-3 z/d | iTRAQ | Schirmer strip | [78] |
Electrochemical Detection Platform | Target Biomarker | Monitoring Sensor | Reference |
---|---|---|---|
Strip-based sensor | Glucose | Glucose oxidase (GOx) | [92,93] |
Smart contact lens | Glucose | Glucose oxidase (GOx) | [97] |
Smart contact lens | Glucose | Dual GOx-based | [94] |
Smart contact lens | Lactate | Lactate oxidase (LOx) | [98] |
Smart contact lens | Glucose | Field effect transistor (FET) | [96] |
Smart contact lens | Glucose, ocular pressure | Multifunctional electrical response elements | [34] |
Spring-like sensor | Glucose | Polysaccharide-coated device (NovioSense Glucose Sensor) | [22] |
Eyeglasses | Alcohol, glucose, vitamins | Alcohol-oxidase (AOx) biosensing fluidic system | [14] |
Eyeglasses | Creatinine | Glomerular filtration rate | [63] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ozdalgic, B.; Gul, M.; Uygun, Z.O.; Atçeken, N.; Tasoglu, S. Emerging Applications of Electrochemical Impedance Spectroscopy in Tear Film Analysis. Biosensors 2022, 12, 827. https://doi.org/10.3390/bios12100827
Ozdalgic B, Gul M, Uygun ZO, Atçeken N, Tasoglu S. Emerging Applications of Electrochemical Impedance Spectroscopy in Tear Film Analysis. Biosensors. 2022; 12(10):827. https://doi.org/10.3390/bios12100827
Chicago/Turabian StyleOzdalgic, Berin, Munire Gul, Zihni Onur Uygun, Nazente Atçeken, and Savas Tasoglu. 2022. "Emerging Applications of Electrochemical Impedance Spectroscopy in Tear Film Analysis" Biosensors 12, no. 10: 827. https://doi.org/10.3390/bios12100827
APA StyleOzdalgic, B., Gul, M., Uygun, Z. O., Atçeken, N., & Tasoglu, S. (2022). Emerging Applications of Electrochemical Impedance Spectroscopy in Tear Film Analysis. Biosensors, 12(10), 827. https://doi.org/10.3390/bios12100827