Artificial Intelligence-Assisted Terahertz Imaging for Rapid and Label-Free Identification of Efficient Light Formula in Laser Therapy
Abstract
:1. Introduction
2. Materials and Methods
2.1. ALI Model in Rats
2.2. Super-Resolution Imaging Reconstruction Algorithms
2.3. Automatic Identification Algorithms
3. Results and Discussion
3.1. Therapeutic Effect of LLLT for ALI
3.2. Label-Free THz Imaging of ALI under LLLT
3.3. Rapid Identification of Light Formulas Using AI-Assisted THz Imaging
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ware, L.B.; Matthay, M.A. Medical progress—The acute respiratory distress syndrome. N. Engl. J. Med. 2000, 342, 1334–1349. [Google Scholar] [CrossRef]
- Grommes, J.; Soehnlein, O. Contribution of Neutrophils to Acute Lung Injury. Mol. Med. 2011, 17, 293–307. [Google Scholar] [CrossRef] [PubMed]
- Elsayed, Y.N.; Hinton, M.; Graham, R.; Dakshinamurti, S. Lung ultrasound predicts histological lung injury in a neonatal model of acute respiratory distress syndrome. Pediatr. Pulmonol. 2020, 55, 2913–2923. [Google Scholar] [CrossRef] [PubMed]
- Huidobro, C.; Martin-Vicente, P.; Lopez-Martinez, C.; Alonso-Lopez, I.; Amado-Rodriguez, L.; Crespo, I.; Albaiceta, G.M. Cellular and molecular features of senescence in acute lung injury. Mech. Ageing Dev. 2021, 193, 9. [Google Scholar] [CrossRef] [PubMed]
- Shaw, T.D.; McAuley, D.F.; O’Kane, C.M. Emerging drugs for treating the acute respiratory distress syndrome. Expert Opin. Emerg. Drugs 2019, 24, 29–41. [Google Scholar] [CrossRef]
- Fan, E.; Brodie, D.; Slutsky, A.S. Acute Respiratory Distress Syndrome Advances in Diagnosis and Treatment. JAMA-J. Am. Med. Assoc. 2018, 319, 698–710. [Google Scholar] [CrossRef] [PubMed]
- Lu, K.D.; He, C.B.; Guo, N.N.; Chan, C.; Ni, K.Y.; Weichselbaum, R.R.; Lin, W.B. Chlorin-Based Nanoscale Metal-Organic Framework Systemically Rejects Colorectal Cancers via Synergistic Photodynamic Therapy and Checkpoint Blockade Immunotherapy. J. Am. Chem. Soc. 2016, 138, 12502–12510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujita, Y.; Sasayama, T.; Tanaka, K.; Kyotani, K.; Nagashima, H.; Kohta, M.; Kimura, H.; Fujita, A.; Kohmura, E. DWI for Monitoring the Acute Response of Malignant Gliomas to Photodynamic Therapy. Am. J. Neuroradiol. 2019, 40, 2045–2051. [Google Scholar] [CrossRef] [Green Version]
- Dai, X.X.; Du, T.; Han, K. Engineering Nanoparticles for Optimized Photodynamic Therapy. ACS Biomater. Sci. Eng. 2019, 5, 6342–6354. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, F.M.; Liu, C.Q.; Wang, Z.Z.; Kang, L.H.; Huang, Y.Y.; Dong, K.; Ren, J.S.; Qu, X.G. Nanozyme Decorated Metal-Organic Frameworks for Enhanced Photodynamic Therapy. ACS Nano 2018, 12, 651–661. [Google Scholar] [CrossRef]
- Han, K.; Wang, S.B.; Lei, Q.; Zhu, J.Y.; Zhang, X.Z. Ratiometric Biosensor for Aggregation-Induced Emission-Guided Precise Photodynamic Therapy. ACS Nano 2015, 9, 10268–10277. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.L.; Tu, M.R.; Shi, J.; Wang, Y.H.; Hou, Z.H.; Wang, J.H. Effect of photobiomodulation on CCC-ESF reactive oxygen species steady-state in high glucose mediums. Lasers Med. Sci. 2021, 36, 555–562. [Google Scholar] [CrossRef] [PubMed]
- Clijsen, R.; Brunner, A.; Barbero, M.; Clarys, P.; Taeymans, J. Effects of low-level laser therapy on pain in patients with musculoskeletal disorders: A systematic review and meta-analysis. Eur. J. Phys. Rehabil. Med. 2017, 53, 603–610. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Tian, J.J.; Zheng, Q.; Yan, L.; Wang, J.X.; Li, Z.; Wang, Z.L. Implantable Self-Powered Low-Level Laser Cure System for Mouse Embryonic Osteoblasts Proliferation and Differentiation. ACS Nano 2015, 9, 7867–7873. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.J.; Zang, Z.Y.; Pan, Z.H.; Shi, J.; Chen, H.L.; Han, Z.B.; Yao, J.Q. Combined Effects of Low Level Laser Therapy and Inducers on the Neural Differentiation of Mesenchymal Stem Cells. IEEE Access 2021, 9, 28946–28953. [Google Scholar] [CrossRef]
- Herrmann, J.; Gerard, S.E.; Shao, W.; Xin, Y.; Cereda, M.; Reinhardt, J.M.; Christensen, G.E.; Hoffman, E.A.; Kaczka, D.W. Effects of Lung Injury on Regional Aeration and Expiratory Time Constants: Insights from Four-Dimensional Computed Tomography Image Registration. Front. Physiol. 2021, 12, 14. [Google Scholar] [CrossRef] [PubMed]
- Kuethe, D.O.; Filipczak, P.T.; Hix, J.M.; Gigliotti, A.P.; Estepar, R.S.; Washko, G.R.; Baron, R.M.; Fredenburgh, L.E. Magnetic resonance imaging provides sensitive in vivo assessment of experimental ventilator-induced lung injury. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2016, 311, L208–L218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cereda, M.; Xin, Y.; Kadlecek, S.; Hamedani, H.; Rajaei, J.; Clapp, J.; Rizi, R.R. Hyperpolarized gas diffusion MRI for the study of atelectasis and acute respiratory distress syndrome. NMR Biomed. 2014, 27, 1468–1478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pourfathi, M.; Kadlecek, S.J.; Chatterjee, S.; Rizi, R.R. Metabolic Imaging and Biological Assessment: Platforms to Evaluate Acute Lung Injury and Inflammation. Front. Physiol. 2020, 11, 14. [Google Scholar] [CrossRef] [PubMed]
- Pourfathi, M.; Xin, Y.; Rosalino, M.; Cereda, M.; Kadlecek, S.; Duncan, I.; Profka, H.; Hamedani, H.; Siddiqui, S.; Ruppert, K.; et al. Pulmonary pyruvate metabolism as an index of inflammation and injury in a rat model of acute respiratory distress syndrome. NMR Biomed. 2020, 33, 14. [Google Scholar] [CrossRef] [PubMed]
- Harris, R.S.; Venegas, J.G.; Wongviriyawong, C.; Winkler, T.; Kone, M.; Musch, G.; Melo, M.F.V.; de Prost, N.; Hamilos, D.L.; Afshar, R.; et al. F-18-FDG Uptake Rate Is a Biomarker of Eosinophilic Inflammation and Airway Response in Asthma. J. Nucl. Med. 2011, 52, 1713–1720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, C.; Fan, S.; Sun, Y.; Pickwell-Macpherson, E. The potential of terahertz imaging for cancer diagnosis: A review of investigations to date. Quant. Imaging Med. Surg. 2012, 2, 33–45. [Google Scholar]
- Zhang, Z.; Yang, M.S.; Yan, X.; Guo, X.Y.; Li, J.; Yang, Y.; Wei, D.Q.; Liu, L.H.; Xie, J.H.; Liu, Y.F.; et al. The Antibody-Free Recognition of Cancer Cells Using Plasmonic Biosensor Platforms with the Anisotropic Resonant Metasurfaces. ACS Appl. Mater. Interfaces 2020, 12, 11388–11396. [Google Scholar] [CrossRef]
- Joseph, C.S.; Patel, R.; Neel, V.A.; Giles, R.H.; Yaroslavsky, A.N. Imaging of ex vivo nonmelanoma skin cancers in the optical and terahertz spectral regions. J. Biophotonics 2014, 7, 295–303. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, S.; Hoshina, H.; Yamashita, M.; Otani, C.; Miyoshi, N. Terahertz imaging diagnostics of cancer tissues with a chemometrics technique. Appl. Phys. Lett. 2007, 90, 3. [Google Scholar] [CrossRef]
- Eadie, L.H.; Reid, C.B.; Fitzgerald, A.J.; Wallace, V.P. Optimizing multi-dimensional terahertz imaging analysis for colon cancer diagnosis. Expert Syst. Appl. 2013, 40, 2043–2050. [Google Scholar] [CrossRef]
- Wang, L. Terahertz Imaging for Breast Cancer Detection. Sensors 2021, 21, 6465. [Google Scholar] [CrossRef]
- Taylor, Z.D.; Singh, R.S.; Culjat, M.O.; Suen, J.Y.; Grundfest, W.S.; Lee, H.; Brown, E.R. Reflective terahertz imaging of porcine skin burns. Opt. Lett. 2008, 33, 1258–1260. [Google Scholar] [CrossRef]
- Kan, W.C.; Lee, W.S.; Cheung, W.H.; Wallace, V.P.; Pickwell-MacPherson, E. Terahertz pulsed imaging of knee cartilage. Biomed. Opt. Express 2010, 1, 967–974. [Google Scholar] [CrossRef] [Green Version]
- Shi, J.; Wang, Y.Y.; Chen, T.N.; Xu, D.G.; Zhao, H.L.; Chen, L.Y.; Yan, C.; Tang, L.H.; He, Y.X.; Feng, H.; et al. Automatic evaluation of traumatic brain injury based on terahertz imaging with machine learning. Opt. Express 2018, 26, 6371–6381. [Google Scholar] [CrossRef]
- Xiong, H.T.; Cai, J.H.; Zhang, W.H.; Hu, J.S.; Deng, Y.X.; Miao, J.G.; Tan, Z.Y.; Li, H.; Cao, J.C.; Wu, X.J. Deep learning enhanced terahertz imaging of silkworm eggs development. iScience 2021, 24, 14. [Google Scholar] [CrossRef]
- Liu, H.B.; Plopper, G.; Earley, S.; Chen, Y.Q.; Ferguson, B.; Zhang, X.C. Sensing minute changes in biological cell monolayers with THz differential time-domain spectroscopy. Biosens. Bioelectron. 2007, 22, 1075–1080. [Google Scholar] [CrossRef] [PubMed]
- Katletz, S.; Pfleger, M.; Puhringer, H.; Vieweg, N.; Scherger, B.; Heinen, B.; Koch, M.; Wiesauer, K. Efficient terahertz en-face imaging. Opt. Express 2011, 19, 23042–23053. [Google Scholar] [CrossRef] [PubMed]
- Stubling, E.M.; Busch, S.; Balzer, J.C.; Koch, M. Development of a multi-channel time-to-space terahertz spectrometer. Opt. Express 2016, 24, 23146–23153. [Google Scholar] [CrossRef]
- Pradarutti, B.; Muller, R.; Matthaus, G.; Bruckner, C.; Riehemann, S.; Notni, G.; Nolte, S.; Tunnermann, A. Multichannel balanced electro-optic detection for Terahertz imaging. Opt. Express 2007, 15, 17652–17660. [Google Scholar] [CrossRef]
- Guerboukha, H.; Nallappan, K.; Skorobogatiy, M. Exploiting k-space/frequency duality toward real-time terahertz imaging. Optica 2018, 5, 109–116. [Google Scholar] [CrossRef]
- Hoshina, H.; Nakajima, S.; Yamashita, M.; Otani, C.; Miyoshi, N. Terahertz imaging diagnostics of the cancer tissues with chemometrics technique. In Proceedings of the 31st International Conference on Infrared and Millimeter Waves/14th International Conference on Terahertz Electronics, Shanghai, China, 18–22 September 2006. [Google Scholar]
- Park, J.Y.; Choi, H.J.; Cheon, H.; Cho, S.W.; Lee, S.; Son, J.H. Terahertz imaging of metastatic lymph nodes using spectroscopic integration technique. Biomed. Opt. Express 2017, 8, 1122–1129. [Google Scholar] [CrossRef] [Green Version]
- Fitzgerald, A.J.; Pinder, S.; Purushotham, A.D.; O’Kelly, P.; Ashworth, P.C.; Wallace, V.P. Classification of terahertz-pulsed imaging data from excised breast tissue. J. Biomed. Opt. 2012, 17, 10. [Google Scholar] [CrossRef]
- Ledig, C.; Theis, L.; Huszar, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A.; Tejani, A.; Totz, J.; Wang, Z.H.; et al. IEEE Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network. In Proceedings of the 30th IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Wang, X.T.; Yu, K.; Wu, S.X.; Gu, J.J.; Liu, Y.H.; Dong, C.; Qiao, Y.; Loy, C.C. ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks. In Proceedings of the 15th European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018. [Google Scholar]
- Zhang, Y.L.; Li, K.P.; Li, K.; Wang, L.C.; Zhong, B.N.; Fu, Y. Image Super-Resolution Using Very Deep Residual Channel Attention Networks. In Proceedings of the 15th European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018. [Google Scholar]
- Lim, B.; Son, S.; Kim, H.; Nah, S.; Lee, K.M. IEEE Enhanced Deep Residual Networks for Single Image Super-Resolution. In Proceedings of the 30th IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Eden, A. No-reference estimation of the coding PSNR for H.264-coded sequences. IEEE Trans. Consum. Electron. 2007, 53, 667–674. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [Green Version]
- Ture, M.; Kurt, I.; Akturk, Z. Comparison of dimension reduction methods using patient satisfaction data. Expert Syst. Appl. 2007, 32, 422–426. [Google Scholar] [CrossRef]
- Tan, S.B. An effective refinement strategy for KNN text classifier. Expert Syst. Appl. 2006, 30, 290–298. [Google Scholar] [CrossRef]
- Kim, K. Normalized class coherence change-based k NN for classification of imbalanced data. Pattern Recognit. 2021, 120, 11. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Ganaie, M.A.; Tanveer, M.; Suganthan, P.N.; Snasel, V. Oblique and rotation double random forest. Neural Netw. 2022, 153, 496–517. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.H.; Zhang, C.H.; Wang, X.B.; Deng, N.Y. Improvements on Twin Support Vector Machines. IEEE Trans. Neural Netw. 2011, 22, 962–968. [Google Scholar] [CrossRef]
- Wang, T.C.; Shen, F.Z.; Deng, H.C.; Cai, F.H.; Chen, S.F. Smartphone imaging spectrometer for egg/meat freshness monitoring. Anal. Methods 2022, 14, 508–517. [Google Scholar] [CrossRef] [PubMed]
- Rachakonda, A.R.; Bhatnagar, A. A(Ratio): Extending area under the ROC curve for probabilistic labels. Pattern Recognit. Lett. 2021, 150, 265–271. [Google Scholar] [CrossRef]
- Ding, B.C.; Zhang, Z.; Liang, Y.R.; Wang, W.W.; Hao, S.W.; Meng, Z.; Guan, L.; Hu, Y.; Guo, B.; Zhao, R.L.; et al. Detection of dental caries in oral photographs taken by mobile phones based on the YOLOv3 algorithm. Ann. Transl. Med. 2021, 9, 11. [Google Scholar] [CrossRef]
- Yamaguchi, S.; Fukushi, Y.; Kubota, O.; Itsuji, T.; Ouchi, T.; Yamamoto, S. Brain tumor imaging of rat fresh tissue using terahertz spectroscopy. Sci. Rep. 2016, 6, 6. [Google Scholar] [CrossRef] [PubMed]
Methods | Biological Methodology [15] | CT [16,17] | Hyperpolarized MRI [18,19,20] | PET [19,21] |
---|---|---|---|---|
Pros | Accurate | Clinic tool | Accuracy and high sensitivity | Accurate and high-sensitive |
Cons | Complex and time-consuming | Unavoidable radiation and low sensitivity | Short signal lifetime | Influence of the progresses of disease |
Voting Classifier | SVM | RF | kNN | |
---|---|---|---|---|
Sensitivity | 0.8872 | 0.8125 | 0.7483 | 0.8038 |
Specificity | 0.9403 | 0.8765 | 0.8910 | 0.8959 |
F1-score | 0.9060 | 0.7919 | 0.7912 | 0.8239 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, J.; Guo, Z.; Chen, H.; Xiao, Z.; Bai, H.; Li, X.; Niu, P.; Yao, J. Artificial Intelligence-Assisted Terahertz Imaging for Rapid and Label-Free Identification of Efficient Light Formula in Laser Therapy. Biosensors 2022, 12, 826. https://doi.org/10.3390/bios12100826
Shi J, Guo Z, Chen H, Xiao Z, Bai H, Li X, Niu P, Yao J. Artificial Intelligence-Assisted Terahertz Imaging for Rapid and Label-Free Identification of Efficient Light Formula in Laser Therapy. Biosensors. 2022; 12(10):826. https://doi.org/10.3390/bios12100826
Chicago/Turabian StyleShi, Jia, Zekang Guo, Hongli Chen, Zhitao Xiao, Hua Bai, Xiuyan Li, Pingjuan Niu, and Jianquan Yao. 2022. "Artificial Intelligence-Assisted Terahertz Imaging for Rapid and Label-Free Identification of Efficient Light Formula in Laser Therapy" Biosensors 12, no. 10: 826. https://doi.org/10.3390/bios12100826
APA StyleShi, J., Guo, Z., Chen, H., Xiao, Z., Bai, H., Li, X., Niu, P., & Yao, J. (2022). Artificial Intelligence-Assisted Terahertz Imaging for Rapid and Label-Free Identification of Efficient Light Formula in Laser Therapy. Biosensors, 12(10), 826. https://doi.org/10.3390/bios12100826