Defect Surface Engineering of Hollow NiCo2S4 Nanoprisms towards Performance-Enhanced Non-Enzymatic Glucose Oxidation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Apparatus
2.3. Fabrication of the P-NiCo2S4 HNPs
2.4. Electrochemical Measurements
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, D.; Wang, H.; Yang, M. A Novel Ball-in-Ball Hollow NiCo2S4 Sphere based Sensitive and Selective Nonenzymatic Glucose Sensor. Anal. Methods 2017, 9, 4718–4725. [Google Scholar] [CrossRef]
- Zhou, Y.; Hu, Q.; Yu, F.; Ran, G.-Y.; Wang, H.-Y.; Shepherd, N.D.; D’Alessandro, D.M.; Kurmoo, M.; Zuo, J.-L. A Metal-Organic Framework based on a Nickel Bis(Dithiolene) Connector: Synthesis, Crystal Structure, and Application as an Electrochemical Glucose Sensor. J. Am. Chem. Soc. 2020, 142, 20313–20317. [Google Scholar] [CrossRef]
- Wang, M.; Ma, J.; Guan, X.; Peng, W.; Fan, X.; Zhang, G.; Zhang, F.; Li, Y. A Novel H2O2 Electrochemical Sensor based on NiCo2S4 Functionalized Reduced Graphene Oxide. J. Alloy Compd. 2019, 784, 827–833. [Google Scholar] [CrossRef]
- Ahmad, R.; Vaseem, M.; Tripathy, N.; Hahn, Y.B. Wide Linear-Range Detecting Nonenzymatic Glucose Biosensor based on CuO Nanoparticles Inkjet-Printed on Electrodes. Anal. Chem. 2013, 85, 10448–10454. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.B.; Lee, S.H.; Cho, M.; Lee, Y. Facile and Cost-Effective CuS Dendrite Electrode for Non-Enzymatic Glucose Sensor. Sens. Actuators B Chem. 2017, 249, 161–167. [Google Scholar] [CrossRef]
- Warkhade, S.K.; Singh, R.P.; Das, R.S.; Gaikwad, G.S.; Zodape, S.P.; Pratap, U.R.; Maldhure, A.; Wankhade, A.V. CoSe2 Nanoflakes: An Artificial Nanoenzyme with Excellent Peroxidase like Activity. Inorg. Chem. Commun. 2021, 126, 108461. [Google Scholar] [CrossRef]
- Gao, Y.-P.; Huang, K.-J. NiCo2S4 Materials for Supercapacitor Applications. Chem. Asian J. 2017, 12, 1969–1984. [Google Scholar] [CrossRef]
- Wang, B.; Cheng, Y.; Su, H.; Cheng, M.; Li, Y.; Geng, H.; Dai, Z. Boosting Transport Kinetics of Cobalt Sulfides Yolk-Shell Spheres by Anion Doping for Advanced Lithium and Sodium Storage. ChemSusChem 2020, 13, 4078–4085. [Google Scholar] [CrossRef]
- Yin, H.; Zhan, T.; Qin, D.; He, X.; Nie, Q.; Gong, J. Self-Assembly of Dandelion-Like NiCo2O4 Hierarchical Microspheres for Non-Enzymatic Glucose Sensor. Inorg. Nano-Met. Chem. 2017, 47, 1560–1567. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, R.; Zhang, C.; Xi, S.; Jones, M.W.M.; Tesfamichael, T.; Du, A.; Gui, K.; Ostrikov, K.; Wang, H. Plasma-Induced On-Surface Sulfur Vacancies in NiCo2S4 Enhance the Energy Storage Performance of Supercapatteries. J. Mater. Chem. A 2020, 8, 9278–9291. [Google Scholar] [CrossRef]
- Li, Y.; Kamdem, P.; Jin, X.-J. In situ Growth of Chrysanthemum-like NiCo2S4 on MXene for High-Performance Supercapacitors and Non-Enzymatic H2O2 Sensor. Dalton Trans. 2020, 49, 7807–7819. [Google Scholar] [CrossRef] [PubMed]
- Wan, Z.; Zhang, R.; Yan, X.; Fan, K. Structure and Activity of Nanozymes: Inspirations for De Novo Design of Nanozymes. Mater. Today 2020, 41, 81–119. [Google Scholar]
- Kang, L.; Zhang, M.; Zhang, J.; Liu, S.; Zhang, N.; Yao, W.; Ye, Y.; Luo, C.; Gong, Z.; Wang, C.; et al. Dual-Defect Surface Engineering of Bimetallic Sulfide Nanotubes towards Flexible Asymmetric Solid-State Supercapacitors. J. Mater. Chem. A 2020, 8, 24053–24064. [Google Scholar] [CrossRef]
- Babu, K.J.; Kumar, T.R.; Yoo, D.J.; Phang, S.-M.; Kumar, G.G. Electrodeposited Nickel Cobalt Sulfide Flowerlike Architectures on Disposable Cellulose Filter Paper for Enzyme-Free Glucose Sensor Applications. ACS Sustain. Chem. Eng. 2018, 6, 16982–16989. [Google Scholar] [CrossRef]
- Guo, Q.; Wu, T.; Liu, L.; He, Y.; Liu, D.; You, T. Hierarchically Porous NiCo2S4 Nanowires Anchored on Flexible Electrospun Graphitic Nanofiber for High-Performance Glucose Biosensing. J. Alloys Compd. 2020, 819, 153376. [Google Scholar] [CrossRef]
- Wu, J.; Wang, X.; Wang, Q.; Lou, Z.; Li, S.; Zhu, Y.; Qin, L.; Wei, H. Nanomaterials with Enzyme-like Characteristics (Nanozymes): Next-Generation Artificial Enzymes (II). Chem. Soc. Rev. 2019, 48, 1004–1076. [Google Scholar] [CrossRef]
- Chen, M.; Xiao, J.; Hua, W.; Hu, Z.; Wang, W.; Gu, Q.; Tang, Y.; Liu, S.C.H.; Dou, S. A Cation and Anion Dual Doping Strategy for the Elevation of Titanium Redox Potential for High-Power Sodium-Ion Batteries. Angew. Chem. Int. Ed. 2020, 59, 12076–12083. [Google Scholar] [CrossRef]
- Liu, S.; Kang, L.; Zhang, J.; Jung, E.; Lee, S.; Jun, S.C. Structural Engineering and Surface Modification of MOF-Derived Cobalt-based Hybrid Nanosheets for Flexible Solid-State Supercapacitors. Energy Stor. Mater. 2020, 32, 167–177. [Google Scholar] [CrossRef]
- Lin, J.; Wang, Y.; Zheng, X.; Liang, H.; Jia, H.; Qi, J.; Cao, J.; Tu, J.; Fei, W.; Feng, J. P-Doped NiCo2S4 Nanotubes as Battery-Type Electrodes for High-Performance Asymmetric Supercapacitors. Dalton Trans. 2018, 47, 8771–8778. [Google Scholar] [CrossRef]
- Li, B.; Gu, P.; Feng, Y.; Zhang, G.; Huang, K.; Xue, H.; Pang, H. Ultrathin Nickel-Cobalt Phosphate 2D Nanosheets for Electrochemical Energy Storage under Aqueous/Solid-State Electrolyte. Adv. Funct. Mater. 2017, 27, 1605784. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, Y.; Xia, B.; Sun, C.; Liu, Y.; Liu, P.; Gao, D. Facile One-Step Synthesis of Phosphorus-Doped CoS2 as Efficient Electrocatalyst for Hydrogen Evolution Reaction. Electrochim. Acta 2018, 259, 955–961. [Google Scholar] [CrossRef]
- Chu, D.; Yan, L.; Chen, Q.; Chu, X.-Q.; Ge, D.; Chen, X. Efficient Improvement in Non-Enzymatic Glucose Detection Induced by the Hollow Prism-Like NiCo2S4 Electrocatalyst. Dalton Trans. 2021, 50, 15162–15169. [Google Scholar] [CrossRef] [PubMed]
- Gu, H.; Fan, W.; Liu, T. Phosphorus-Doped NiCo2S4 Nanocrystals Grown on Electrospun Carbon Nanofibers as Ultra-Efficient Electrocatalysts for the Hydrogen Evolution Reaction. Nanoscale Horiz. 2017, 2, 277–283. [Google Scholar] [CrossRef]
- Ding, J.; Zhong, L.; Wang, X.; Chai, L.; Wang, Y.; Jiang, M.; Li, T.-T.; Hu, Y.; Qian, J.; Huang, S. General Approach to MOF-Derived Core-Shell Bimetallic Oxide Nanowires for Fast Response to Glucose Oxidation. Sens. Actuators B Chem. 2020, 306, 127551. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, Q.; Zhangsun, H.; Zhao, S.; Zhao, Y.; Wang, L. Carbon Cloth-Supported Nanorod-like Conductive Ni/Co Bimetal MOF: A Stable and High-Performance Enzyme-Free Electrochemical Sensor for Determination of Glucose in Serum and Beverage. Food Chem. 2021, 349, 129202. [Google Scholar] [CrossRef]
- Yang, J.; Guo, D.; Zhao, S.; Lin, Y.; Yang, R.; Xu, D.; Shi, N.; Zhang, X.; Lu, L.; Lan, Y.-Q.; et al. Cobalt Phosphides Nanocrystals Encapsulated by P-Doped Carbon and Married with P-Doped Graphene for Overall Water Splitting. Small 2019, 15, 1804546. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Xu, J.; Lei, J.; Zhang, J.; McLarnon, F.; Wei, Z.; Li, N.; Pan, F. A One-Step, Cost-Effective Green Method to in Situ Fabricate Ni(OH)2 Hexagonal Platelets on Ni Foam as Binder-Free Supercapacitor Electrode Materials. J. Mater. Chem. A 2015, 3, 1953–1960. [Google Scholar] [CrossRef]
- Cao, X.; Wang, K.; Du, G.; Asiri, A.M.; Ma, Y.; Lu, Q.; Sun, X. One-Step Electrodeposition of a Nickel Cobalt Sulfide Nanosheet Film as a Highly Sensitive Nonenzymatic Glucose Sensor. J. Mater. Chem. B 2016, 4, 7540–7544. [Google Scholar] [CrossRef]
- Wang, J.; Han, W.-Q. A Review of Heteroatom Doped Materials for Advanced Lithium-Sulfur Batteries. Adv. Funct. Mater. 2022, 32, 2107166. [Google Scholar] [CrossRef]
- Paraknowitsch, J.P.; Thomas, A. Doping Carbons Beyond Nitrogen: An Overview of Advanced Heteroatom Doped Carbons with Boron, Sulphur and Phosphorus for Energy Applications. Energy Environ. Sci. 2013, 6, 2839–2855. [Google Scholar] [CrossRef] [Green Version]
- Xiao, X.; Zhang, X.; Zhang, Z.; You, J.; Liu, S.; Wang, Y. Macro-/Meso-Porous NiCo2O4 Synthesized by Template-Free Solution Combustion to Enhance the Performance of a Nonenzymatic Amperometric Glucose Sensor. Microchim. Acta 2020, 187, 64. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Ni, X.; Ren, Z.; Ma, J.; Xu, J.; Chen, X. A Flower-Like NiO-SnO2 Nanocomposite and Its Non-Enzymatic Catalysis of Glucose. RSC Adv. 2017, 7, 45177–45184. [Google Scholar] [CrossRef] [Green Version]
- Xue, B.; Li, K.; Feng, L.; Lu, J.; Zhang, L. Graphene Wrapped Porous Co3O4/NiCo2O4 Double-Shelled Nanocages with Enhanced Electrocatalytic Performance for Glucose Sensor. Electrochim. Acta 2017, 239, 36–44. [Google Scholar] [CrossRef]
- Kannan, P.K.; Hu, C.; Morgan, H.; Rout, C.S. One-Step Electrodeposition of NiCo2S4 Nanosheets on Patterned Platinum Electrodes for Non-Enzymatic Glucose Sensing. Chem. Asian J. 2016, 11, 1837–1841. [Google Scholar] [CrossRef] [Green Version]
- Dong, M.; Hu, H.; Ding, S.; Wang, C.; Li, L. Flexible Non-Enzymatic Glucose Biosensor Based on CoNi2S4 Nanosheets Grown on Nitrogen-Doped Carbon Foam Substrate. J. Alloys Compd. 2021, 883, 160830. [Google Scholar] [CrossRef]
- Xin, X.; Wang, Y.; Han, C.; Cui, Y.; Xu, Y.; Tao, Y.; Zhang, D.; Xu, X. Porous Flower-Like Ni5P4 for Non-Enzymatic Electrochemical Detection of Glucose. Mater. Chem. Phys. 2020, 240, 122202. [Google Scholar]
- Radhakrishnan, S.; Kim, S.J. Facile Fabrication of NiS and a Reduced Graphene Oxide Hybrid Film for Nonenzymatic Detection of Glucose. RSC Adv. 2015, 5, 44346–44352. [Google Scholar] [CrossRef]
- Sun, Q.-Q.; Wang, M.; Bao, S.-J.; Wang, Y.C.; Gu, S. Analysis of Cobalt Phosphide (CoP) Nanorods Designed for Non-Enzyme Glucose Detection. Analyst 2016, 141, 256–260. [Google Scholar] [CrossRef]
Electrode Materials | Sensitivity (μA mM−1 cm−2) | Linear Range (mM) | LOD (μM) | Ref. |
---|---|---|---|---|
Co3O4/NiCo2O4 | 304 | 0.01–3.52 | 0.384 | [33] |
NiCo2S4/Pt | 5.14 | 0.001–0.664 | 1.2 | [34] |
CoNi2S4@NCF | 6.675 54.82 | 0.5–12.5 12.5–30 | NR | [35] |
Ni5P4 | 149.6 | 0.002–5.3 | 0.7 | [36] |
NiS-rGO | NR | 0.05–1.7 | 10 | [37] |
CoP/GCE | 116.8 | 0.5–5.5 | 9 | [38] |
P-NiCo2S4/ITO | 250 | 0.001–5.2 | 0.46 | This work |
Sample | Added Concentration/mM | Measured Concentration/mM | Recovery/% |
---|---|---|---|
Serum | 0.055 | 0.056 | 101.8 |
0.275 | 0.271 | 98.6 | |
0.475 | 0.458 | 96.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lang, X.; Chu, D.; Wang, Y.; Ge, D.; Chen, X. Defect Surface Engineering of Hollow NiCo2S4 Nanoprisms towards Performance-Enhanced Non-Enzymatic Glucose Oxidation. Biosensors 2022, 12, 823. https://doi.org/10.3390/bios12100823
Lang X, Chu D, Wang Y, Ge D, Chen X. Defect Surface Engineering of Hollow NiCo2S4 Nanoprisms towards Performance-Enhanced Non-Enzymatic Glucose Oxidation. Biosensors. 2022; 12(10):823. https://doi.org/10.3390/bios12100823
Chicago/Turabian StyleLang, Xiaomin, Dandan Chu, Yan Wang, Danhua Ge, and Xiaojun Chen. 2022. "Defect Surface Engineering of Hollow NiCo2S4 Nanoprisms towards Performance-Enhanced Non-Enzymatic Glucose Oxidation" Biosensors 12, no. 10: 823. https://doi.org/10.3390/bios12100823
APA StyleLang, X., Chu, D., Wang, Y., Ge, D., & Chen, X. (2022). Defect Surface Engineering of Hollow NiCo2S4 Nanoprisms towards Performance-Enhanced Non-Enzymatic Glucose Oxidation. Biosensors, 12(10), 823. https://doi.org/10.3390/bios12100823