Experimental Detection and Simulation of Terahertz Spectra of Aqueous L-Arginine
Abstract
:1. Introduction
2. Experiment
2.1. Sample Preparation
2.2. Experimental Setup
3. Theoretical Methods
3.1. Model Establishment
3.2. Interaction Region Indicator
4. Results and Discussion
4.1. Experimental and Simulated Spectra of L-Arginine Aqueous Solution
4.2. Analysis of Vibrational Modes
4.3. Visual Analysis of the Interaction with IRI
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ferguson, B.; Zhang, X.C. Materials for terahertz science and technology. Nat. Mater. 2002, 1, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Chang, C.; Qiao, Z.; Wu, K.; Zhu, Z.; Cui, G.; Peng, W.; Tang, Y.; Li, J.; Fan, C. Myelin sheath as a dielectric waveguide for signal propagation in the did-infrared to terahertz spectral range. Adv. Funct. Mater. 2019, 29, 1807862. [Google Scholar] [CrossRef]
- Jepsen, P.; Cooke, D.; Koch, M. Terahertz spectroscopy and imaging—Modern techniques and applications. Laser Photonics Rev. 2011, 5, 124–166. [Google Scholar] [CrossRef]
- Heugen, U.; Schwaab, G.; Brundermann, E.; Heyden, M.; Yu, X.; Leitner, D.; Havenith, M. Solute-induced retardation of water dynamics probed directly by terahertz spectroscopy. Proc. Natl. Acad. Sci. USA 2006, 103, 12301–12306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campo, M. Molecular dynamics simulation of glycine zwitterion in aqueous solution. J. Chem. Phys. 2006, 125, 114511. [Google Scholar] [CrossRef]
- Aikens, C.; Gordon, M. Incremental solvation of nonionized and zwitterionic glycine. J. Am. Chem. Soc. 2006, 128, 12835–12850. [Google Scholar] [CrossRef] [Green Version]
- Levy, Y.; Onuchic, J. Water mediation in protein folding and molecular recognition. Annu. Rev. Biophys. Biomol. Struct. 2006, 35, 389–415. [Google Scholar] [CrossRef] [Green Version]
- Iftimie, R.; Tuckerman, M. The molecular origin of the “continuous” infrared absorption in aqueous solutions of acids: A computational approach. Angew. Chem. Int. Ed. 2006, 45, 1144–1147. [Google Scholar] [CrossRef]
- Alonso, J.; Cocinero, E.; Lesarri, A.; Sanz, M.; Lopez, J. The glycine-water complex. Angew. Chem. Int. Ed. 2006, 45, 3471–3474. [Google Scholar] [CrossRef]
- Gaigeot, M.; Vuilleumier, R.; Sprik, M.; Borgis, D. Infrared spectroscopy of N-methylacetamide revisited by ab initio molecular dynamics simulations. J. Chem. Theory Comput. 2005, 1, 772–789. [Google Scholar] [CrossRef]
- Tielrooij, K.; van der Post, S.; Hunger, J.; Bonn, M.; Bakker, H. Anisotropic water reorientation around ions. J. Phys. Chem. B 2011, 115, 12638–12647. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, R.; Lopez-Ciudad, T.; Kumar, P.; Marx, D. Quantum corrections to classical time-correlation functions: Hydrogen bonding and anharmonic floppy modes. J. Chem. Phys. 2004, 121, 3973–3983. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhong, C.; Fan, F.; Liu, G.; Chang, S. Terahertz polarization and chirality sensing for amino acid solution based on chiral metasurface sensor. Sens. Actuators B Chem. 2021, 330, 129315. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, T.; Fan, F.; Ji, Y.; Chang, S. Terahertz polarization sensing of bovine serum albumin proteolysis on curved flexible metasurface. Sens. Actuators A Phys. 2022, 338, 113499. [Google Scholar] [CrossRef]
- Shi, W.; Fan, F.; Li, S.; Zhang, Z.; Liu, H.; Wang, X.; Chang, S. Terahertz immunosensing assisted by functionalized Au NPs based on all-dielectric metasurface. Sens. Actuators B Chem. 2022, 362, 131777. [Google Scholar] [CrossRef]
- Choi, W.J.; Yano, K.; Cha, M.; Colombari, F.M.; Kim, J.Y.; Wang, Y.; Lee, S.H.; Sun, K.; Kruger, J.M.; de Moura, A.F.; et al. Chiral phonons in microcrystals and nanofibrils of biomolecules. Nat. Photonics 2022, 16, 366–373. [Google Scholar] [CrossRef]
- Yu, B.; Zeng, F.; Yang, Y.; Xing, Q.; Chechin, A.; Xin, X.; Zeylikovich, I.; Alfano, R. Torsional Vibrational Modes of Tryptophan Studied by Terahertz Time-Domain Spectroscopy. Biophys. J. 2004, 86, 1649–1654. [Google Scholar] [CrossRef] [Green Version]
- Rungsawang, R.; Ueno, Y.; Tomita, I.; Ajito, K. Angle-dependent terahertz time-domain spectroscopy of amino acid single crystals. J. Phys. Chem. B 2006, 110, 21259–21263. [Google Scholar] [CrossRef]
- Zhang, F.; Tominaga, K.; Hayashi, M.; Tani, M. A Quantitative Interpretation for the Difference of Terahertz Spectra of dl- and l-Alanine: Origins of Infrared Intensities in Terahertz Spectroscopy. J. Phys. Chem. C 2021, 125, 16175–16182. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Miyamaru, F.; Yamamoto, K.; Tani, M.; Hangyo, M. Terahertz absorption spectra of L-, D-, and DL-alanine and their application to determination of enantiometric composition. Appl. Phys. Lett. 2005, 86, 053903. [Google Scholar] [CrossRef]
- Williams, M.R.; True, A.B.; Izmaylov, A.F.; French, T.A.; Schroeck, K.; Schmuttenmaer, C.A. Terahertz spectroscopy of enantiopure and racemic polycrystalline valine. Phys. Chem. Chem. Phys. 2011, 13, 11719–11730. [Google Scholar] [CrossRef] [PubMed]
- Litvinov, V.M. Diffusivity of water molecules in amorphous phase of nylon-6 fibers. Macromolecules 2015, 48, 4748–4753. [Google Scholar] [CrossRef]
- Murthy, N.S.; Akkapeddi, M.K.; Orts, W.J. Analysis of lamellar structure in semicrystalline polymers by studying the absorption of water and ethylene glycol in nylons using small-angle neutron scattering. Macromolecules 1998, 31, 142–152. [Google Scholar] [CrossRef]
- Murthy, N.S.; Stamm, M.; Sibilia, J.P.; Krimm, S. Structural changes accompanying hydration in nylon 6. Macromolecules 1989, 22, 1261–1267. [Google Scholar] [CrossRef]
- Martyna, G.J.; Klein, M.L.; Tuckerman, M. Nosé–Hoover chains: The canonical ensemble via continuous dynamics. J. Chem. Phys. 1992, 97, 2635–2643. [Google Scholar] [CrossRef]
- Glyavin, M.Y.; Denisov, G.G.; Zapevalov, V.E.; Koshelev, M.A.; Tretyakov, M.Y.; Tsvetkov, A.I. High-power terahertz sources for spectroscopy and material diagnostics. PHYS-USP+ 2016, 59, 595. [Google Scholar] [CrossRef]
- Li, R.; Ruan, C.; Fahad, A.K.; Zhang, C.; Li, S. Broadband and high-power terahertz radiation source based on extended interaction klystron. Sci. Rep. 2019, 9, 4584. [Google Scholar] [CrossRef] [Green Version]
- Fokin, A.; Glyavin, M.; Golubiatnikov, G.; Lubyako, L.; Morozkin, M.; Movschevich, B.; Tsvetkov, A.; Denisov, G. High-power sub-terahertz source with a record frequency stability at up to 1 Hz. Sci. Rep. 2018, 8, 4317. [Google Scholar] [CrossRef] [Green Version]
- Choporova, Y.; Knyazev, B.; Pavelyev, V. Holography with high-power CW coherent terahertz source: Optical components, imaging, and applications. Light Adv. Manuf. 2022, 3, 31. [Google Scholar] [CrossRef]
- Klokkou, N.T.; Rowe, D.J.; Bowden, B.M.; Sessions, N.P.; West, J.J.; Wilkinson, J.S.; Apostolopoulos, V. Structured surface wetting of a PTFE flow-cell for terahertz spectroscopy of proteins. Sens. Actuators B Chem. 2022, 352, 131003. [Google Scholar] [CrossRef]
- Liu, L.; Pathak, R.; Cheng, L.J.; Wang, T. Real-time frequency-domain terahertz sensing and imaging of isopropyl alcohol–water mixtures on a microfluidic chip. Sens. Actuators B Chem. 2013, 184, 228–234. [Google Scholar] [CrossRef]
- George, P.A.; Hui, W.; Rana, F.; Hawkins, B.G.; Smith, A.E.; Kirby, B.J. Microfluidic devices for terahertz spectroscopy of biomolecules. Opt. Express 2008, 16, 1577–1582. [Google Scholar] [CrossRef] [PubMed]
- Zang, Z.; Li, Z.; Lu, X.; Liang, J.; Wang, J.; Cui, H.L.; Yan, S. Terahertz spectroscopy for quantification of free water and bound water in leaf. Comput. Electron. Agric. 2021, 191, 106515. [Google Scholar] [CrossRef]
- Lajevardipour, A.; Vilagosh, Z.; Appadoo, D.; Davis, J.; Juodkazis, S.; Wood, A. Spectroscopy of excised skin patches exposed to THz and far-IR radiation. Biomed. Opt. Express 2021, 12, 4610–4626. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Zhang, M.; Tang, M.; Chen, L.; Li, X.; Liu, Z.; Wang, H. Label-free study on the effect of a bioactive constituent on glioma cells in vitro using terahertz ATR spectroscopy. Biomed. Opt. Express 2022, 13, 2380–2392. [Google Scholar] [CrossRef] [PubMed]
- Mu, N.; Yang, C.; Xu, D.; Wang, S.; Ma, K.; Lai, Y.; Guo, P.; Zhang, S.; Wang, Y.; Feng, H.; et al. Molecular pathological recognition of freshly excised human glioma using terahertz ATR spectroscopy. Biomed. Opt. Express 2022, 13, 222–236. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, Z.; Xu, D.; Chen, T.; Chen, B.; Wang, S.; Mu, N.; Feng, H.; Yao, J. Study of the dielectric characteristics of living glial-like cells using terahertz ATR spectroscopy. Biomed. Opt. Express 2019, 10, 5351–5361. [Google Scholar] [CrossRef]
- Kibe, R.; Kurihara, S.; Sakai, Y.; Suzuki, H.; Ooga, T.; Sawaki, E.; Muramatsu, K.; Nakamura, A.; Yamashita, A.; Kitada, Y.; et al. Upregulation of colonic luminal polyamines produced by intestinal microbiota delays senescence in mice. Sci. Rep. 2014, 4, 4548. [Google Scholar] [CrossRef] [Green Version]
- Gokce, N. L-Arginine and hypertension. J. Nutr. 2004, 134, 2807S–2811S. [Google Scholar] [CrossRef] [Green Version]
- Andrew, P.J.; Mayer, B. Enzymatic function of nitric oxide synthases. Cardiovasc. Res. 1999, 43, 521–531. [Google Scholar] [CrossRef]
- Hu, S.; Han, M.; Rezaei, A.; Li, D.; Wu, G.; Ma, X. L-Arginine modulates glucose and lipid metabolism in obesity and diabetes. Curr. Protein Pept. Sci. 2017, 18, 599–608. [Google Scholar] [CrossRef] [PubMed]
- Chattopadhyay, P.; Verma, N.; Verma, A.; Kamboj, T.; Khan, N.A.; Wahi, A.K. L-arginine protects from pringle manoeuvere of ischemia-reperfusion induced liver injury. Biol. Pharm. Bull. 2008, 31, 890–892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canale, F.P.; Basso, C.; Antonini, G.; Perotti, M.; Li, N.; Sokolovska, A.; Neumann, J.; James, M.J.; Geiger, S.; Jin, W.; et al. Metabolic modulation of tumours with engineered bacteria for immunotherapy. Nature 2021, 598, 662–666. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, P.C.; Ochoa, A.C. Arginine regulation by myeloid derived suppressor cells and tolerance in cancer: Mechanisms and therapeutic perspectives. Immunol. Rev. 2008, 222, 180–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bronte, V.; Zanovello, P. Regulation of immune responses by L-arginine metabolism. Nat. Rev. Immunol. 2005, 5, 641–654. [Google Scholar] [CrossRef]
- Geiger, R.; Rieckmann, J.C.; Wolf, T.; Basso, C.; Feng, Y.; Fuhrer, T.; Kogadeeva, M.; Picotti, P.; Meissner, F.; Mann, M.; et al. L-Arginine Modulates T Cell Metabolism and Enhances Survival and Anti-tumor Activity. Cell 2016, 167, 829–842.e13. [Google Scholar] [CrossRef] [Green Version]
- Martí i Líndez, A.A.; Dunand-Sauthier, I.; Conti, M.; Gobet, F.; Núñez, N.; Hannich, J.T.; Riezman, H.; Geiger, R.; Piersigilli, A.; Hahn, K.; et al. Mitochondrial arginase-2 is a cell-autonomous regulator of CD8+ T cell function and antitumor efficacy. JCI Insight 2020, 4, e132975. [Google Scholar] [CrossRef]
- Palencia, J.Y.P.; Lemes, M.A.G.; Garbossa, C.A.P.; Abreu, M.L.T.; Pereira, L.J.; Zangeronimo, M.G. Arginine for gestating sows and foetal development: A systematic review. J. Anim. Physiol. Anim. Nutr. 2018, 102, 204–213. [Google Scholar] [CrossRef]
- El-Sherbiny, H.R.; Samir, H.; El-Shalofy, A.S.; Abdelnaby, E.A. Exogenous L-arginine administration improves uterine vascular perfusion, uteroplacental thickness, steroid concentrations and nitric oxide levels in pregnant buffaloes under subtropical conditions. Reprod. Domest. Anim. 2022. [Google Scholar] [CrossRef]
- Li, X.; Bazer, F.W.; Johnson, G.A.; Burghardt, R.C.; Erikson, D.W.; Frank, J.W.; Spencer, T.E.; Shinzato, I.; Wu, G. Dietary Supplementation with 0.8% L-Arginine between Days 0 and 25 of Gestation Reduces Litter Size in Gilts. J. Nutr. 2010, 140, 1111–1116. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Sun, L.; Wang, Z.; Deng, M.; Nie, H.; Zhang, G.; Ma, T.; Wang, F. N-carbamylglutamate and L-arginine improved maternal and placental development in underfed ewes. Reproduction 2016, 151, 623–635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stechmiller, J.K.; Childress, B.; Cowan, L. Arginine supplementation and wound healing. Nutr. Clin. Pract. 2005, 20, 52–61. [Google Scholar] [CrossRef] [PubMed]
- Witte, M.B.; Barbul, A. Arginine physiology and its implication for wound healing. Wound Repair Regen. 2003, 11, 419–423. [Google Scholar] [CrossRef]
- Li, T.; Yu, Q.; Zhang, L.; Jiang, L. Terahertz spectroscopy of amino acid crystals based on dispersion-correction functional theory. Spectrosc. Lett. 2020, 53, 55–62. [Google Scholar] [CrossRef]
- Ye, P.; Wang, G.; Yang, Y.; Meng, Q.; Wang, J.; Su, B.; Zhang, C. Terahertz absorption properties of two solid amino acids and their aqueous solutions. Int. J. Opt. 2021, 2021, 9203999. [Google Scholar] [CrossRef]
- Exter, M.; Fattinger, C.; Grischkowsky, D. Terahertz time-domain spectroscopy of water vapor. Opt. Lett. 1989, 14, 1128–1130. [Google Scholar] [CrossRef]
- Grognot, M.; Gallot, G. Quantitative measurement of permeabilization of living cells by terahertz attenuated total reflection. Appl. Phys. Lett. 2015, 107, 103702. [Google Scholar] [CrossRef]
- Shih, K.; Pitchappa, P.; Jin, L.; Chen, C.H.; Singh, R.; Lee, C. Nanofluidic terahertz metasensor for sensing in aqueous environment. Appl. Phys. Lett. 2018, 113, 071105. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Shi, W.; Hou, L.; Wang, Z.; Wu, M.; Li, C.; Li, C. Effect of THz spectra of L-Arginine molecules by the combination of water molecules. iScience 2022, 25, 103788. [Google Scholar] [CrossRef]
- Hou, L.; Shi, W.; Dong, C.; Yang, L.; Wang, Y.; Wang, H.; Hang, Y.; Xue, F. Probing trace lactose from aqueous solutions by terahertz time-domain spectroscopy. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2021, 246, 119044. [Google Scholar] [CrossRef]
- Shi, W.; Wang, Y.; Hou, L.; Ma, C.; Yang, L.; Dong, C.; Wang, Z.; Wang, H.; Guo, J.; Xu, S.; et al. Detection of living cervical cancer cells by transient terahertz spectroscopy. J. Biophotonics 2021, 14, e202000237. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; et al. PubChem in 2021: New data content and improved web interfaces. Nucleic Acids Res. 2021, 49, D1388–D1395. [Google Scholar] [CrossRef] [PubMed]
- Stephens, P.J.; Devlin, F.J.; Chabalowski, C.F.; Frisch, M.J. Ab Initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 1994, 98, 11623–11627. [Google Scholar] [CrossRef]
- Ángyán, J.G.; Gerber, I.C.; Savin, A.; Toulouse, J. van der Waals forces in density functional theory: Perturbational long-range electron-interaction corrections. Phys. Rev. A 2005, 72, 012510. [Google Scholar] [CrossRef] [Green Version]
- Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 2009, 113, 6378–6396. [Google Scholar] [CrossRef] [PubMed]
- Lu, T.; Chen, Q. Interaction region indicator: A simple real space function clearly revealing both chemical bonds and weak interactions. Chem. Methods 2021, 1, 231–239. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef] [PubMed]
Sample | Experiment (THz) | Ref. [54] (THz) | Ref. [55] (THz) |
---|---|---|---|
L-arginine | 0.98 | 0.99 | 0.97 |
1.36 | – | – | |
1.47 | 1.46 | 1.46 | |
1.69 | 2.02 | 1.68 |
Sample | Experiment (THz) | Simulation (THz) | Vibrational Modes |
---|---|---|---|
L-arginine | 0.98 | 0.87 | C7-C8-C10&C9-C11 (63.2%) |
1.36 | 1.32 | C9-C11 (44.5%) | |
1.47 | 1.43 | C7-C8-C10&C9-C11 (75.2%) | |
1.69 | 2.01 | C7-C8-C10&C9-C11 (52.6%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, L.; Wang, J.; Wang, H.; Yang, L.; Shi, W. Experimental Detection and Simulation of Terahertz Spectra of Aqueous L-Arginine. Biosensors 2022, 12, 1029. https://doi.org/10.3390/bios12111029
Hou L, Wang J, Wang H, Yang L, Shi W. Experimental Detection and Simulation of Terahertz Spectra of Aqueous L-Arginine. Biosensors. 2022; 12(11):1029. https://doi.org/10.3390/bios12111029
Chicago/Turabian StyleHou, Lei, Junnan Wang, Haiqing Wang, Lei Yang, and Wei Shi. 2022. "Experimental Detection and Simulation of Terahertz Spectra of Aqueous L-Arginine" Biosensors 12, no. 11: 1029. https://doi.org/10.3390/bios12111029
APA StyleHou, L., Wang, J., Wang, H., Yang, L., & Shi, W. (2022). Experimental Detection and Simulation of Terahertz Spectra of Aqueous L-Arginine. Biosensors, 12(11), 1029. https://doi.org/10.3390/bios12111029