Aptamer against Aflatoxin B1 Obtained by SELEX and Applied in Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. AFB1-MNP Preparation
2.3. AFB1 Aptamer Selection
2.4. AFB1 Aptamer Cloning
2.5. Binding Affinity and Specificity of AFB1 Aptamer
2.6. Structural Prediction and Docking Study of Selected AFB1 Aptamer
2.7. Competitive AFB1 Aptasensor with Spiked Sample
3. Results and Discussion
3.1. The Preparation of AFB1-MNPs
3.2. Aptamer Selection with SELEX
3.3. The Specificity Test of the Selecte Aptamer fl−2CS1
3.4. Structural Optimization of the Selected Aptamer
3.5. AFB1 Aaptasensor and Its Application on Spiked Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumar, V.; Bahuguna, A.; Ramalingam, S.; Dhakal, G.; Shim, J.J.; Kim, M. Recent technological advances in mechanism, toxicity, and food perspectives of enzyme-mediated aflatoxin degradation. Crit. Rev. Food Sci. Nutr. 2022, 62, 5395–5412. [Google Scholar] [CrossRef] [PubMed]
- Sharafi, K.; Matin, B.K.; Omer, A.K.; Mansouri, B.; Soleimani, H.; Fattahi, N.; Sharafi, H.; Kiani, A. A worldwide systematic literature review for aflatoxin M1 in infant formula milk: Human health risk assessment by Monte Carlo simulation. Food Control 2022, 134, 108681. [Google Scholar] [CrossRef]
- Chen, Y. Recent progress in fluorescent aptasensors for the detection of aflatoxin B1 in food. Anal. Methods-UK 2022, 14, 86–96. [Google Scholar] [CrossRef]
- Umaya, S.R.; Vijayalakshmi, Y.C.; Sejian, V. Exploration of plant products and phytochemicals against aflatoxin toxicity in broiler chicken production: Present status. Toxicon 2021, 200, 55–68. [Google Scholar] [CrossRef]
- Monson, M.S.; Coulombe, R.A.; Reed, K.M. Aflatoxicosis: Lessons from toxicity and responses to aflatoxin B1 in poultry. Agriculture 2015, 5, 742–777. [Google Scholar] [CrossRef] [Green Version]
- Xiong, Z.W.; Wang, Q.; Xie, Y.J.; Li, N.; Yun, W.; Yang, L.Z. Simultaneous detection of aflatoxin B1 and ochratoxin A in food samples by dual DNA tweezers nanomachine. Food Chem. 2021, 338, 128122. [Google Scholar] [CrossRef]
- Ni, S.J.; Zhuo, Z.J.; Pan, Y.F.; Yu, Y.Y.; Li, F.F.; Liu, J.; Wang, L.Y.; Wu, X.Q.; Li, D.J.; Wan, Y.Y.; et al. Recent progress in aptamer discoveries and modifications for therapeutic applications. ACS Appl. Mater. Inter. 2021, 13, 9500–9519. [Google Scholar] [CrossRef]
- Kaur, H. Recent developments in cell-SELEX technology for aptamer selection. BBA-Gen. Subj. 2018, 1862, 2323–2329. [Google Scholar] [CrossRef]
- Lyu, C.; Khan, I.M.; Wang, Z.P. Capture-SELEX for aptamer selection: A short review. Talanta 2021, 229, 122274. [Google Scholar] [CrossRef]
- Jia, Y.M.; Zhou, G.H.; Liu, P.L.; Li, Z.G.; Yu, B. Recent development of aptamer sensors for the quantification of aflatoxin B1. Appl. Sci. 2019, 9, 2364. [Google Scholar] [CrossRef]
- Evtugyn, G.; Porfireva, A.; Kulikova, T.; Hianik, T. Recent achievements in electrochemical and surface plasmon resonance aptasensors for mycotoxins detection. Chemosensors 2021, 9, 180. [Google Scholar] [CrossRef]
- Zhu, Q.; Liu, L.H.; Wang, R.Y.; Zhou, X.H. A split aptamer (SPA)-based sandwich-type biosensor for facile and rapid detection of streptomycin. J. Hazard Mater. 2021, 403, 123941. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Bai, L.L.; Jia, Z.H.; Lv, X.Y.; Huang, X.H. Detection of acetamiprid by aptamer based on a porous silicon microcavity. IEEE Photonics J. 2022, 14, 6801006. [Google Scholar] [CrossRef]
- Lv, M.Z.; Zhou, W.; Tavakoli, H.; Bautista, C.; Xia, J.F.; Wang, Z.H.; Li, X.J. Aptamer-functionalized metal-organic frameworks (MOFs) for biosensing. Biosens. Bioelectron. 2021, 176, 112947. [Google Scholar] [CrossRef]
- Kohlberger, M.; Gadermaier, G. SELEX: Critical factors and optimization strategies for successful aptamer selection. Biotechnol. Appl. Bioc. 2021. [Google Scholar] [CrossRef]
- Saito, S. SELEX-based DNA aptamer selection: A perspective from the advancement of separation techniques. Anal. Sci. 2021, 37, 17–26. [Google Scholar] [CrossRef]
- Yan, J.C.; Gao, T.; Lu, Z.Z.; Yin, J.B.; Zhang, Y.; Pei, R.J. Aptamer-targeted photodynamic platforms for tumor therapy. ACS Appl. Mater. Inter. 2021, 13, 27749–27773. [Google Scholar] [CrossRef]
- Ali, G.K.; Omer, K.M. Molecular imprinted polymer combined with aptamer (MIP-aptamer) as a hybrid dual recognition element for bio(chemical) sensing applications. Review. Talanta 2022, 236, 122878. [Google Scholar] [CrossRef]
- Vijitvarasan, P.; Cheunkar, S.; Oaew, S. A point-of-use lateral flow aptasensor for naked-eye detection of aflatoxin B1. Food Control 2022, 134, 108767. [Google Scholar] [CrossRef]
- Chen, P.F.; Li, C.B.A.; Ma, X.Y.; Wang, Z.P.; Zhang, Y. A surface-enhanced Raman scattering aptasensor for ratiometric detection of aflatoxin B1 based on graphene oxide-Au@Ag core-shell nanoparticles complex. Food Control 2022, 134, 108748. [Google Scholar] [CrossRef]
- Jahangiri-Dehaghani, F.; Zare, H.R.; Shekari, Z.; Benvidi, A. Development of an electrochemical aptasensor based on Au nanoparticles decorated on metal-organic framework nanosheets and p-biphenol electroactive label for the measurement of aflatoxin B1 in a rice flour sample. Anal. Bioanal. Chem. 2022, 414, 1973–1985. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.D.; Wen, F.; Zheng, N.; Luo, Q.J.; Wang, H.W.; Wang, H.; Li, S.L.; Wang, J.Q. Development of an ultrasensitive aptasensor for the detection of aflatoxin B-1. Biosens. Bioelectron. 2014, 56, 340–344. [Google Scholar] [CrossRef] [PubMed]
- Shkembi, X.; Svobodova, M.; Skouridou, V.; Bashammakh, A.S.; Alyoubi, A.O.; O’Sullivan, C.K. Aptasensors for mycotoxin detection: A review. Anal. Biochem. 2021, 644, 114156. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, B.; Das, S.; Gupta, A.; Xiong, Y.; T-V, V.; Kizer, M.E.; Duan, J.; Chandrasekaran, A.R.; Wang, X. Aptamers for viral detection and inhibition. ACS Infect. Dis. 2022, 8, 667–692. [Google Scholar] [CrossRef]
- Ma, X.; Wang, W.; Chen, X.; Xia, Y.; Wu, S.; Duan, N.; Wang, Z. Selection, identification, and application of Aflatoxin B1 aptamer. Eur. Food Res. Technol. 2014, 238, 919–925. [Google Scholar] [CrossRef]
- Kilili, G.K.; Tilton, L.; Karbiwnyk, C.M. NaOH concentration and streptavidin bead type are key factors for optimal DNA aptamer strand separation and isolation. Biotechniques 2016, 61, 114–116. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; Zhu, Z.; Li, B.; Liu, Z.; Jia, L.; Zuo, L.; Chen, L.; Zhu, Z.; Shan, G.; Luo, S.Z. A direct determination of AFBs in vinegar by aptamer-based surface plasmon resonance biosensor. Toxicon 2018, 146, 24–30. [Google Scholar] [CrossRef]
- Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003, 31, 3406–3415. [Google Scholar] [CrossRef]
- Wang, J.; Wang, J.; Huang, Y.Z.; Xiao, Y. 3dRNA v2.0: An updated web server for RNA 3D structure prediction. Int. J. Mol. Sci. 2019, 20, 4116. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Jiang, J.H.; Li, R.Y.; Deng, P. Docking-based virtual screening of T beta R1 inhibitors: Evaluation of pose prediction and scoring functions. BMC Chem. 2020, 14, 52. [Google Scholar] [CrossRef]
- Mooers, B.H.M.; Brown, M.E. Templates for writing PyMOL scripts. Protein Sci. 2021, 30, 262–269. [Google Scholar] [CrossRef] [PubMed]
- Hua, Y.; Ma, J.; Li, D.; Wang, R. DNA-based biosensors for the biochemical analysis: A review. Biosensors 2022, 12, 183. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.L.; Gan, S.T.; Ho, B. Single-stranded DNA oligoaptamers: Molecular recognition and LPS antagonism are length- and secondary structure-dependent. J. Innate Immun. 2009, 1, 46–58. [Google Scholar] [CrossRef] [PubMed]
- National Grain and Feed Association. FDA Mycotoxin Regulatory Guidance. A Guide for Grain Elevators, Feed Manufacturers, Grain Processors and Exporters. 2011. Available online: www.aflatoxinpartnership.org/wp-content/uploads/2021/05/NGFAComplianceGuide-FDARegulatoryGuidanceforMycotoxins8-2011.pdf (accessed on 5 February 2012).
- Ahrberg, C.D.; Ilic, B.R.; Manz, A.; Neuzil, P. Handheld real-time PCR device. Lab Chip 2016, 16, 586–592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Z.H.; Sun, D.W.; Pu, H.B.; Wei, Q.Y.; Lin, X.R. Ti(3)C(2)Tx MXenes loaded with Au nanoparticle dimers as a surface-enhanced Raman scattering aptasensor for AFB1 detection. Food Chem. 2022, 372, 131293. [Google Scholar] [CrossRef]
- Zhang, B.; Lu, Y.; Yang, C.N.; Guo, Q.F.; Nie, G.M. Simple “signal-on” photoelectrochemical aptasensor for ultrasensitive detecting AFB1 based on electrochemically reduced graphene oxide/poly(5-formylindole)/Au nanocomposites. Biosens. Bioelectron. 2019, 134, 42–48. [Google Scholar] [CrossRef]
- Jia, Y.M.; Wu, F.; Liu, P.L.; Zhou, G.H.; Yu, B.; Lou, X.D.; Xia, F. A label-free fluorescent aptasensor for the detection of Aflatoxin B1 in food samples using AIEgens and graphene oxide. Talanta 2019, 198, 71–77. [Google Scholar] [CrossRef]
- Wang, C.Q.; Huang, X.Y.; Tian, X.Y.; Zhang, X.R.; Yu, S.S.; Chang, X.H.; Ren, Y.; Qian, J. A multiplexed FRET aptasensor for the simultaneous detection of mycotoxins with magnetically controlled graphene oxide/Fe3O4 as a single energy acceptor. Analyst 2019, 144, 6004–6010. [Google Scholar] [CrossRef]
- Wu, H.; Wu, J.; Liu, Y.L.; Wang, H.Y.; Zou, P. Target-triggered and T7 exonuclease-assisted cascade recycling amplification strategy for label-free and ultrasensitive fluorescence detection of aflatoxin B1. Sens. Actuat. B Chem. 2020, 321, 128599. [Google Scholar] [CrossRef]
Aptamers a | Sequence b | Length (nt) c | Kd (μM) d | Kd/fl (μM) e | Numbers f |
---|---|---|---|---|---|
S1-1 | GTCAACACCGCACACATATATATGTTGGG | 29 | N | N | 8 |
S1-2 | GGCAAGTGCACCCGCATAGTTTTCGCCCC | 29 | N | N | 4 |
S1-4 | GTCACCGACCTGCCCGCATCGGTTGCTCC | 29 | N | N | 1 |
S1-10 | GTGCGGGTGGCCCGCACGCATTACGCGTTC | 30 | N | N | 1 |
S1-14 | GCCAGGCGGGGTGTTGAGTGCCGCCATATG | 30 | N | N | 1 |
S1-16 | GTACGCAGGATCACGCATTCACTATCGCTC | 30 | N | N | 1 |
S1-22 | CGTTAGGGAGGGAGTATCACCACGCGCTAC | 30 | N | N | 3 |
S1-23 | GTGCATGAACTGACCACGCGGTCCTAGGTC | 30 | N | N | 1 |
S2-4 | GTGTTGGCCTGGGACCATACCACGCGCTAC | 30 | - | N | 2 |
S2-8 | TCAACACCGCACACATATATATGTTGGG | 28 | - | N | 1 |
S2-17 | GGGTACATCGACCGCACGTATATGTTAC | 28 | - | N | 1 |
S3-3 | GCCCCCACGCTCTTGAGAGGACACGGCCCA | 30 | - | N | 1 |
S3-4 | GTCCGTTAGTTCGTTATCCCGGGGTTCCCA | 30 | - | N | 1 |
S3-15 | CTATAACGGCGTATGACCGTGTGCACCCCA | 30 | - | N | 1 |
S5-8 | GGCACAGGCTAAAAATTGGACGCGTTCCCA | 30 | - | N | 1 |
S5-9 | GTAATGTCTGATGGATCCTCCATCGGCCCA | 30 | - | N | 1 |
S5-14 | TCCATGCCGCCGACCAGTTTCACCACCCCA | 30 | - | N | 1 |
Selection with one round of counter selection against NH2-MNPs | |||||
1CS4 | GTCCAAGTGCAATGGAACCACGCGGCTGTG | 30 | - | N | 1 |
1CS7 | GTGCGGAGCGAGCTGACCACGCGGCAGGTG | 30 | - | N | 1 |
1CS9 | GGTGCAGATCTCGATCTGACCACGCGGTCC | 30 | - | N | 1 |
2CS1 | ATGCACTAGGGTTACGAGACCACGCGGTAC | 30 | N | 2.5 | 4 |
2CS8 | CCCTGGCCGCCCCGCATAGGTGTGGTC | 27 | - | N | 1 |
2CS9 | GTGCACTGACCGCCCGCATAGCATGGTGTG | 30 | - | N | 1 |
2CS12 | GGCACATATGACCCGCATAGGCAGTTGTC | 29 | - | N | 1 |
AFB1 (ppt) a | Average Detected (ppt) b | Recovery Ratio (%) | RSD (%) c |
---|---|---|---|
50 | 47.727 | 95.5 ± 2.5 | 2.63 |
500 | 481.892 | 96.4 ± 4.3 | 4.46 |
5000 | 4570.822 | 91.4 ± 5.9 | 6.45 |
50,000 | 45,098.527 | 90.2 ± 0.8 | 0.91 |
Methods | LOD (ppb) | Linear Range (ppb) | References |
---|---|---|---|
SERS a | 6 × 10−4 | 0.001–100 | [36] |
PEC b | 2 × 10−3 | 0.01–100 | [37] |
AIE-aptamer-GO system c | 0.25 | 0.1–150 | [38] |
FRET d | 6.7 × 10−3 | 0.01–100 | [39] |
Fluorescence | 8.9 × 10−4 | 0.001–100 | [40] |
Real-time qPCR | 9 × 10−3 | 0.05–50 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, C.-H.; Tsai, C.-H. Aptamer against Aflatoxin B1 Obtained by SELEX and Applied in Detection. Biosensors 2022, 12, 848. https://doi.org/10.3390/bios12100848
Yang C-H, Tsai C-H. Aptamer against Aflatoxin B1 Obtained by SELEX and Applied in Detection. Biosensors. 2022; 12(10):848. https://doi.org/10.3390/bios12100848
Chicago/Turabian StyleYang, Chung-Hsuan, and Ching-Hsiu Tsai. 2022. "Aptamer against Aflatoxin B1 Obtained by SELEX and Applied in Detection" Biosensors 12, no. 10: 848. https://doi.org/10.3390/bios12100848
APA StyleYang, C. -H., & Tsai, C. -H. (2022). Aptamer against Aflatoxin B1 Obtained by SELEX and Applied in Detection. Biosensors, 12(10), 848. https://doi.org/10.3390/bios12100848