Design and Fabrication of α-MnO2-Nanorods-Modified Glassy-Carbon-Electrode-Based Serotonin Sensor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Synthesis of α-MnO2
2.3. Instrumental Characterization
2.4. Fabrication of Working Electrode
3. Results
3.1. Physiochemical Properties of α-MnO2
3.2. Electrochemical Properties of MGCE
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baranwal, A.; Chandra, P. Clinical implications and electrochemical biosensing ofmonoamine neurotransmitters in body fluids, in vitro, in vivo, and ex vivo models. Biosens. Bioelectron. 2018, 121, 137–152. [Google Scholar] [CrossRef] [PubMed]
- Su, M.; Lan, H.; Tian, L.; Jiang, M.; Cao, X.; Zhu, C.; Yu, C. Ti3C2Tx-reduced graphene oxide nanocomposite-based electrochemical sensor for serotonin in human biofluids. Sens. Actuators B Chem. 2022, 367, 132019. [Google Scholar] [CrossRef]
- Khoshnevisan, K.; Maleki, H.; Honarvarfard, E.; Baharifar, H.; Gholami, M.; Faridbod, F.; Larijani, B.; Majidi, R.F.; Khorramizadeh, M.R. Nanomaterial based electrochemical sensing of the biomarker serotonin: A comprehensive review. Microchim. Acta. 2019, 186, 49. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, G.; Asif, M.; Aziz, A.; Iftikhar, T.; Liu, H. Rice-spikelet-like copper oxide decorated with platinum stranded in the CNT network for electrochemical in vitro detection of serotonin. ACS Appl. Mater. Interfaces 2021, 13, 6023–6033. [Google Scholar] [CrossRef]
- Sharma, S.; Singh, N.; Tomar, V.; Chandra, R. A review on electrochemical detection of serotonin based on surface modified electrodes. Biosens. Bioelectron. 2018, 107, 76–93. [Google Scholar] [CrossRef]
- Sha, Q.; Sun, B.; Yi, C.; Guan, R.; Fei, J.; Hu, Z.; Liu, B.; Liu, X. A fluorescence turn-on biosensor based on transferrin encapsulated gold nanoclusters for 5-hydroxytryptamine detection. Sens. Actuators B Chem. 2019, 294, 177–184. [Google Scholar] [CrossRef]
- Tsuchlya, H.; Hayashl, T.; Tatsuml, M.; Hoshlno, Y.; Ohtanl, S.; Takagl, N. High performance liquid-chromatographic analysis for serotonin and tryptamine excreted in urine after oral loading with L-tryptophan. Clin. Chem. 1989, 35, 43–47. [Google Scholar] [CrossRef]
- Chauveau, J.; Fert, V.; Morel, A.M.; Delaage, M.A. Rapid and specific enzyme immunoassay of serotonin. Clin. Chem. 1991, 37, 1178–1184. [Google Scholar] [CrossRef]
- Solinova, V.; Zakova, L.; Jiracek, J.; Kasicka, V. Pressure assisted partial filling affinity capillary electrophoresis employed for determination of binding constants of human insulin hexamer complexes with serotonin, dopamine, arginine, and phenol. Anal. Chim. Acta 2019, 1052, 170–178. [Google Scholar] [CrossRef]
- Pradhan, T.; Jung, H.S.; Jang, J.H.; Kim, T.W.; Kang, C.; Kim, J.S. Chemical sensing of neurotransmitters. Chem. Soc. Rev. 2014, 43, 4684–4713. [Google Scholar] [CrossRef]
- Amatatongchai, M.; Sitanurak, J.; Sroysee, W.; Sodanat, S.; Chairam, S.; Jarujamrus, P.; Nacapricha, D.; Lieberzeit, P.A. Highly sensitive and selective electrochemical paper-based device using a graphite screen-printed electrode modified with molecularly imprinted polymers coated Fe3O4@Au@SiO2 for serotonin determination. Anal. Chim. Acta 2019, 1077, 255–265. [Google Scholar] [CrossRef] [PubMed]
- Wolrab, D.; Frühauf, P.; Gerner, C. Quantification of the neurotransmitters melatonin and N-acetyl-serotonin in human serum by supercritical fluid chromatography coupled with tandem mass spectrometry. Anal. Chim. Acta 2016, 937, 168–174. [Google Scholar] [CrossRef] [PubMed]
- Matt, S.B.; Shivanna, M.; Manjunath, S.; Siddalinganahalli, M.; Siddalingappa, D.M. Electrochemical detection of serotonin using t-ZrO2 nanoparticles modified carbon paste electrode. J. Electrochem. Soc. 2020, 167, 155512. [Google Scholar] [CrossRef]
- Khoshnevisan, K.; Baharifar, H.; Torabi, F.; Afjeh, F.S.; Maleki, H.; Honarvarfard, E.; Mohammadi, H.; Sajjadi-Jazi, S.M.; Mahmoudi-Kohan, S.; Faridbod, F.; et al. Serotonin level as a potent diabetes biomarker based on electrochemical sensing: A new approach in a zebra fish model. Anal. Bioanal. Chem. 2021, 413, 1615–1627. [Google Scholar] [CrossRef]
- Ahmad, K.; Kumar, P.; Mobin, S.N. A highly sensitive and selective hydroquinone sensor based on a newly designed N-rGO/SrZrO3 composite. Nanoscale Adv. 2020, 2, 502–511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmad, K.; Kumar, P.; Mobin, S.M. Hydrothermally Grown SnO2 Flowers as Efficient Electrode Modifier for Simultaneous Detection of Catechol and Hydroquinone. J. Electrochem. Soc. 2019, 166, B1577. [Google Scholar] [CrossRef]
- Ahmad, K.; Mobin, S.M. Shape controlled synthesis of high surface area MgO microstructures for highly efficient congo red dye removal and peroxide sensor. J. Environ. Chem. Eng. 2019, 7, 103347. [Google Scholar] [CrossRef]
- Ahmad, K.; Kumar, P.; Mobin, S.M. Hydrothermally grown novel pyramids of the CaTiO3 perovskite as an efficient electrode modifier for sensing applications. Mater. Adv. 2020, 1, 2003–2009. [Google Scholar] [CrossRef]
- Ahmad, K.; Mobin, S.M. High surface area 3D-MgO flowers as the modifier for the working electrode for efficient detection of 4-chlorophenol. Nanoscale Adv. 2019, 1, 719–727. [Google Scholar] [CrossRef] [Green Version]
- Anithaaa, A.C.; Asokanb, K.; Sekar, C. Highly sensitive and selective serotonin sensor based on gamma rayirradiated tungsten trioxide nanoparticles. Sens. Actuators B 2017, 238, 667–675. [Google Scholar] [CrossRef]
- Wei, X.; Wang, F.; Yin, Y.; Liu, Q.; Zou, L.; Ye, B. Selective detection of neurotransmitter serotonin by a gold nanoparticles-modified glassy carbon electrode. Analyst 2010, 135, 2286–2290. [Google Scholar] [CrossRef] [PubMed]
- Abbaspour, A.; Noori, A. A cyclodextrin host-guest recognition approach to anelectrochemical sensor for simultaneous quantification of serotonin anddopamine. Biosens. Bioelectron. 2011, 26, 4674–4680. [Google Scholar] [CrossRef] [PubMed]
- Xue, C.; Wang, X.; Zhu, W.; Han, Q.; Zhu, C.; Hong, J.; Zhou, X.; Jiang, H. Electrochemical serotonin sensing interface based on double-layeredmembrane of reduced graphene oxide/polyaniline nanocomposites andmolecularly imprinted polymers embedded with gold nanoparticles. Sens. Actuators B 2014, 196, 57–63. [Google Scholar] [CrossRef]
- Wang, F.; Wu, Y.; Lu, K.; Ye, B. A simple but highly sensitive and selectivecalixarene-based voltammetric sensor for serotonin. Electrochim. Acta 2013, 87, 756–762. [Google Scholar] [CrossRef]
- Babaei, A.; Taheri, A.R. Nafion/Ni(OH)2 nanoparticles-carbon nanotube composite modified glassy carbon electrode as a sensor for simultaneous determination of dopamine and serotonin in the presence of ascorbic acid. Sens. Actuators B 2013, 176, 543–551. [Google Scholar] [CrossRef]
- Rand, E.; Periyakaruppan, A.; Tanaka, Z.; Zhang, D.A.; Marsh, M.P.; Andrews, R.J.; Lee, K.H.; Chen, B.; Meyyappan, M.; Koehne, J.E. A carbon nanofiber based biosensor for simultaneous detection of dopamine and serotonin in the presence of ascorbic acid. Biosens. Bioelectron. 2013, 42, 434–438. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.K.; Kim, D.; Jeon, S. Electrochemical determination of serotonin on glassy carbon electrode modified with various graphene nanomaterials. Sens. Actuators B 2012, 174, 285–291. [Google Scholar] [CrossRef]
- Wu, B.; Yeasmin, S.; Liu, Y.; Cheng, L.-J. Sensitive and selective electrochemical sensor for serotonin detection based on ferrocene-gold nanoparticles decorated multiwall carbon nanotubes. Sens. Actuators B Chem. 2022, 354, 131216. [Google Scholar] [CrossRef]
- Prathap, M.U.A.; Sun, S.; Xu, Z.J. An electrochemical sensor highly selective for lindane determination: A comparative study using three different a-MnO2 nanostructures. RSC Adv. 2016, 6, 22973–22979. [Google Scholar] [CrossRef]
- Sohal, N.; Maity, B.; Shetti, N.P.; Basu, S. Biosensors Based on MnO2 Nanostructures: A Review. ACS Appl. Nano Mater. 2021, 4, 2285–2302. [Google Scholar] [CrossRef]
- Ahmad, K.; Mohammad, A.; Mobin, S.M. Hydrothermally grown α-MnO2 nanorods as highly efficient low cost counter-electrode material for dye-sensitized solar cells and electrochemical sensing applications. Electrochim. Acta 2017, 252, 549–557. [Google Scholar] [CrossRef]
- Zhao, G.-y.; Wang, F.-c.; Liu, M.-j.; Sui, Y.-m.; Zhang, Z.; Kang, F.-y.; Yang, C. A high-frequency flexible symmetric supercapacitor prepared by the laser-defocused ablation of MnO2 on a carbon cloth. New Carbon Mater. 2022, 37, 556–563. [Google Scholar] [CrossRef]
- Boyom-Tatchemo, F.W.; Devred, F.; Ndiffo-Yemeli, G.; Laminsi, S.; Gaigneaux, E.M. Plasma-induced redox reactions synthesis of nanosized α-, γ- and δ-MnO2 catalysts for dye degradation. Appl. Catal. B Environ. 2020, 260, 118159. [Google Scholar] [CrossRef]
- Deng, P.; Fang, H.; Liu, R.; Guo, X.; Chen, P. One-pot hydrothermal synthesis of flower-like MnO2 nanostructure with rich oxygen vacancy for catalysis thermal-induced pyrolysis of energetic molecular perovskite. Vacuum 2022, 203, 111234. [Google Scholar] [CrossRef]
- Liu, Z.; Yang, Y.; Lu, B.; Liang, S.; Fan, H.J.; Zhou, J. Insights into complexing effects in acetate-based Zn-MnO2 batteries and performance enhancement by all-round strategies. Energy Storage Mater. 2022, 52, 104–110. [Google Scholar] [CrossRef]
- Matuschek, L.; Gobel, G.; Lisdat, F. Electrochemical detection of serotonin in the presence of 5-hydroxyindoleacetic acid and ascorbic acid by use of 3D ITO electrodes. Electrochem. Commun. 2017, 81, 145–149. [Google Scholar] [CrossRef]
- Reddaiah, K.; Rao, K.S.V.K.; Reddy, T.M. Electrochemical Detection of Serotonin in Human Serum Sample and Simultaneous Resolution in Presence of Epinephrine. Anal. Bioanalyt. Electrochem. 2018, 10, 175–191. [Google Scholar]
- Gupta, P.; Goyal, R.N. Polymelamine modified edge plane pyrolytic graphite sensor for the electrochemical assay of serotonin. Talanta 2014, 120, 17–22. [Google Scholar] [CrossRef]
- Deepa, S.; Swamy, B.E.K.; Pai, K.V. Electrochemical sensing performance of citicoline sodium modified carbon paste electrode for determination of dopamine and serotonin. Mater. Sci. Energy Technol. 2020, 3, 584–592. [Google Scholar] [CrossRef]
- Cernat, M.T.A.; Florea, D.L.A.; Bogdan, D.; Suciu, M.; Sandulescu, R.; Cristea, C. Highly selective electrochemical detection of serotonin on polypyrrole and gold nanoparticles-based 3D architecture. Electrochem. Commun. 2017, 75, 43–47. [Google Scholar]
- Mahanthesh, K.R.; Swamy, B.E.K.; Chandra, U. Simultaneous determination of dopamine in presence of serotonin at a graphite pencil electrode: A voltammetric study. Anal. Bioanal. Electrochem. 2018, 10, 1064–1079. [Google Scholar]
- Li, Y.; Ali, M.A.; Chen, S.-M.; Yang, S.-Y.; Lou, B.-S.; Al-Hemaid, F.M.A. Poly(basic red 9) doped functionalized multiwalled carbon nano-tubes as composite films for neurotransmitters biosensors. Colloids Surf. B Biointerfaces 2014, 118, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Shahid, M.M.; Ramesh Kumar, P.; Numan, A.; Shahabuddin, S.; Alizadeh, M.; Khiew, P.S.; Chiu, W.S. A cobalt oxide nanocubes interleaved reduced graphene oxide nanocomposite modified glassy carbon electrode for amperometric detection of serotonin. Mater. Sci. Eng. C 2019, 100, 388–395. [Google Scholar] [CrossRef] [PubMed]
- Ran, G.; Xia, Y.; Zhang, H.; Kuang, W.; Fu, C. An atomic-layer NiO-BaTiO3 nanocomposite for use in electrochemical sensing of serotonin. Nanotechnology 2020, 31, 505502. [Google Scholar] [CrossRef] [PubMed]
Material | LoD (µM) | Linear Range (µM) | References |
---|---|---|---|
MGCE | 0.14 | 2–80 | Present study |
ZrO2 | 0.585 | 10–50 | 13 |
Nafion/Ni(OH)2/MWNTs/GCE | 0.083 | 0.15–14.2 | 25 |
Carbon nanofibers | 0.25 | 1–10 | 26 |
3D mesoporous ITO electrode | 7.5 | 50–1000 | 36 |
Poly-Alizarin Red S/MWCNTs/GCE | 0.18 | 0.5–10 | 37 |
Polymelamine/pyrolytic graphite/GCE | 0.49 | 1–100 | 38 |
Citicoline-sodium-modified carbon paste electrode | 5.81 | 10–30 | 39 |
AuNPs@PPy/GSPE | 32.22 | 0.1–30 | 40 |
GPE | 4 | 40–750 | 41 |
F-MWCNTs/BR9 | 9 | 10–83 | 42 |
rGO/Co3O4 | 1.1 | 1–10 | 43 |
NiO/BaTiO3 | 0.03 | 0.05–5 | 44 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, M.Q.; Khan, R.A.; Alsalme, A.; Ahmad, K.; Kim, H. Design and Fabrication of α-MnO2-Nanorods-Modified Glassy-Carbon-Electrode-Based Serotonin Sensor. Biosensors 2022, 12, 849. https://doi.org/10.3390/bios12100849
Khan MQ, Khan RA, Alsalme A, Ahmad K, Kim H. Design and Fabrication of α-MnO2-Nanorods-Modified Glassy-Carbon-Electrode-Based Serotonin Sensor. Biosensors. 2022; 12(10):849. https://doi.org/10.3390/bios12100849
Chicago/Turabian StyleKhan, Mohd Quasim, Rais Ahmad Khan, Ali Alsalme, Khursheed Ahmad, and Haekyoung Kim. 2022. "Design and Fabrication of α-MnO2-Nanorods-Modified Glassy-Carbon-Electrode-Based Serotonin Sensor" Biosensors 12, no. 10: 849. https://doi.org/10.3390/bios12100849
APA StyleKhan, M. Q., Khan, R. A., Alsalme, A., Ahmad, K., & Kim, H. (2022). Design and Fabrication of α-MnO2-Nanorods-Modified Glassy-Carbon-Electrode-Based Serotonin Sensor. Biosensors, 12(10), 849. https://doi.org/10.3390/bios12100849