Rapid Detection of Clenbuterol Residues in Pork Using Enhanced Raman Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Experimental Equipment
2.3. Synthesis of Gold Colloid
2.4. Sample Pretreatment
2.5. Spectral Collection
2.6. Data Processing
3. Results and Discussion
3.1. Characterization of the Gold Colloids
3.2. SERS Spectra of Clenbuterol in Different Solvents
3.3. Optimization of Sample Clean-Up
3.4. Effect of Different Concentrations of Aggregating Compounds on Enhancement Raman Spectra
3.5. Repeatability of Experiment
3.6. Quantitative Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Velasco-Bejarano, B.; Gómez-Tagle, A.; Noguez-Córdova, M.O.; Zambrano-Zaragoza, M.L.; Miranda-Molina, A.; Bautista, J.; Rodríguez, L.; Velasco-Carrillo, R. Determination of clenbuterol at trace levels in raw gelatin powder and jellies using ultra-high-performance liquid chromatography coupled to triple quadrupole mass spectrometry. Food Chem. 2022, 370, 131261. [Google Scholar] [CrossRef] [PubMed]
- Jing, H.; Ouyang, H.; Li, W.; Long, Y. Molten salt synthesis of BCNO nanosheets for the electrochemical detection of clenbuterol. Microchem J. 2022, 178, 107359. [Google Scholar] [CrossRef]
- Zhao, Y.; Tian, L.; Zhang, X.; Sun, Z.; Shan, X.; Wu, Q.; Chen, R.; Lu, J. A novel molecularly imprinted polymer electrochemiluminescence sensor based on Fe2O3@Ru(bpy)32+ for determination of clenbuterol. Sens. Actuators B Chem. 2022, 350, 130822. [Google Scholar] [CrossRef]
- Moriarty, N.; Attar, N. Clenbuterol-Induced Myocarditis: A Case Report. Eur. J. Case Rep. Intern. Med. 2020, 7, 1662. [Google Scholar] [CrossRef]
- Pei, Y.; Zhang, J.; Wu, K.; Deng, A.; Li, J. Ultrasensitive determination of ractopamine based on dual catalytic signal amplification by Pd nanocubes and HRP using a flow injection chemiluminescence immunoassay. Analyst 2020, 145, 6171–6179. [Google Scholar] [CrossRef] [PubMed]
- Brambilla, G.; Cenci, T.; Franconi, F.; Galarini, R.; Macrì, A.; Rondoni, F.; Strozzi, M.; Loizzo, A. Clinical and pharmacological profile in a clenbuterol epidemic poisoning of contaminated beef meat in Italy. Toxicol. Lett. 2000, 114, 47–53. [Google Scholar] [CrossRef]
- Berthiller, F. Food Additives & Contaminants: Part A. Foreword. Food Addit. Contaminants. Part A Chem. Anal. Control Expo. Risk Assess. 2010, 27, 575. [Google Scholar] [CrossRef]
- Gao, T.; Ye, N.; Li, J. Determination of Ractopamine and Clenbuterol in Beef by Graphene Oxide Hollow Fiber Solid-Phase Microextraction and High-Performance Liquid Chromatography. Anal. Lett. 2016, 49, 1163–1175. [Google Scholar] [CrossRef]
- YANG, G.; ZHU, C.; LIU, X.; WANG, Y.; QU, F. Screening of Clenbuterol Hydrochloride Aptamers Based on Capillary Electrophoresis. Chinese J. Anal. Chem. 2018, 46, 1595–1603. [Google Scholar] [CrossRef]
- Peng, D.; Zhang, L.; Situ, C.; Pan, Y.; Tao, Y.; Wang, Y.; Yuan, Z. Development of Monoclonal Antibodies and Indirect Competitive Enzyme-Linked Immunosorbent Assay Kits for the Detection of Clenbuterol and Salbutamol in the Tissues and Products of Food-Producing Animals. Food Anal. Method 2017, 10, 3623–3633. [Google Scholar] [CrossRef]
- Bui, Q.A.; Vu, T.H.H.; Ngo, V.K.T.; Kennedy, I.R.; Lee, N.A.; Allan, R. Development of an ELISA to detect clenbuterol in swine products using a new approach for hapten design. Anal. Bioanal. Chem. 2016, 408, 6045–6052. [Google Scholar] [CrossRef] [PubMed]
- González-Antuña, A.; Rodríguez-González, P.; Lavandera, I.; Centineo, G.; Gotor, V.; García Alonso, J.I. Development of a routine method for the simultaneous confirmation and determination of clenbuterol in urine by minimal labeling isotope pattern deconvolution and GC-EI-MS. Anal. Bioanal. Chem. 2012, 402, 1879–1888. [Google Scholar] [CrossRef] [PubMed]
- Protti, M.; Sberna, P.M.; Sardella, R.; Vovk, T.; Mercolini, L.; Mandrioli, R. VAMS and StAGE as innovative tools for the enantioselective determination of clenbuterol in urine by LC-MS/MS. J. Pharm. Biomed. Anal. 2021, 195, 113873. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zeng, Z.; Wang, Z.; Guo, J.; He, L. Influence of Water in Samples on Residues Analysis of Beta-Agonists in Porcine Tissues and Urine Using Liquid Chromatography Tandem Mass Spectrometry. Food Anal. Method 2016, 9, 1904–1911. [Google Scholar] [CrossRef]
- Song, L.; Li, J.; Li, H.; Chang, Y.; Dai, S.; Xu, R.; Dou, M.; Li, Q.; Lv, G.; Zheng, T. Highly sensitive SERS detection for Aflatoxin B1 and Ochratoxin A based on aptamer-functionalized photonic crystal microsphere array. Sens. Actuators B Chem. 2022, 364, 131778. [Google Scholar] [CrossRef]
- Jiang, Y.; Sun, D.; Pu, H.; Wei, Q. Surface enhanced Raman spectroscopy (SERS): A novel reliable technique for rapid detection of common harmful chemical residues. Trends Food Sci. Tech. 2018, 75, 10–22. [Google Scholar] [CrossRef]
- Wang, X.; Wang, H.; Huang, P.; Ma, X.; Du, X.; Lu, X. A rapid and simple sample pretreatment method coupled with HPLC-UV for the simultaneous determination of eight insecticides in fruits. Sep. Sci. Plus 2018, 1, 367–373. [Google Scholar] [CrossRef]
- Li, J.; Sun, D.; Pu, H. 21-Determination of trace thiophanate-methyl and its metabolite carbendazim with teratogenic risk in red bell pepper (capsicumannuum l.) by surface-enhanced Raman imaging technique. Food Chem. 2017, 218, 543–552. [Google Scholar] [CrossRef]
- Wang, W.; Zhai, C.; Peng, Y.; Chao, K. A Nondestructive Detection Method for Mixed Veterinary Drugs in Pork Using Line-Scan Raman Chemical Imaging Technology. Food Anal. Method 2019, 12, 658–667. [Google Scholar] [CrossRef]
- GB/T 22286-2008; Determination of Beta-Agonists Residues in Foodstuff of Animal Origin-Liquid Chromatography with Tandem-Mass Spectrometric Method[s]. Standards Press of China: Beijing, China, 2008.
- Stubbings, G.; Bigwood, T. The development and validation of a multiclass liquid chromatography tandem mass spectrometry (LC–MS/MS) procedure for the determination of veterinary drug residues in animal tissue using a QuEChERS (QUick, Easy, CHeap, Effective, Rugged and Safe) approach. Anal. Chim. Acta 2009, 637, 68–78. [Google Scholar] [CrossRef]
- Frens, G. Controlled nucleation for regulation of particle-size in monodisperse gold suspensions. Nat. Phys. Sci. 1972, 241, 20–22. [Google Scholar] [CrossRef]
- Guo, Z.; Chen, P.; Yin, L.; Zuo, M.; Chen, Q.; El-Seedi, H.R.; Zou, X. Determination of lead in food by surface-enhanced Raman spectroscopy with aptamer regulating gold nanoparticles reduction. Food Control 2022, 132, 108498. [Google Scholar] [CrossRef]
- Guo, Z.; Chen, P.; Wang, M.; Zuo, M.; El-Seedi, H.R.; Chen, Q.; Shi, J.; Zou, X. Rapid enrichment detection of patulin and alternariol in apple using surface enhanced Raman spectroscopy with coffee-ring effect. LWT 2021, 152, 112333. [Google Scholar] [CrossRef]
- Haiss, W.; Thanh, N.T.K.; Aveyard, J.; Fernig, D.G. Determination of Size and Concentration of Gold Nanoparticles from UV−Vis Spectra. Anal Chem. 2007, 79, 4215–4221. [Google Scholar] [CrossRef]
- Cheng, J.; Su, X.; Wang, S.; Zhao, Y. Highly Sensitive Detection of Clenbuterol in Animal Urine Using Immunomagnetic Bead Treatment and Surface-Enhanced Raman Spectroscopy. Sci. Rep. 2016, 6, 32637. [Google Scholar] [CrossRef] [Green Version]
- Izquierdo-Lorenzo, I.; Sanchez-Cortes, S.; Garcia-Ramos, J.V. Adsorption of Beta-Adrenergic Agonists Used in Sport Doping on Metal Nanoparticles: A Detection Study Based on Surface-Enhanced Raman Scattering. Langmuir 2010, 26, 14663–14670. [Google Scholar] [CrossRef]
- Cheng, J.; Wang, S.; Zhang, S.; Wang, P.; Xie, J.C.; Han, C.Q.; Su, X. Rapid and sensitive determination of clenbuterol residues in animal urine by surface-enhanced Raman spectroscopy. Sens. Actuators B Chem. 2019, 279, 7–14. [Google Scholar] [CrossRef]
- Yaffe, N.R.; Ingram, A.; Graham, D.; Blanch, E.W. A multi-component optimisation of experimental parameters for maximising SERS enhancements. J. Raman Spectrosc. 2010, 41, 618–623. [Google Scholar] [CrossRef]
- Bi, S.; Shao, D.; Yuan, Y.; Zhao, R.; Li, X. Sensitive surface-enhanced Raman spectroscopy (SERS) determination of nitrofurazone by β-cyclodextrin-protected AuNPs/γ-Al2O3 nanoparticles. Food Chem. 2022, 370, 131059. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, L.; Chen, Y.; Bi, N.; Zheng, X.; Qi, H.; Qin, M.; Liao, X.; Zhang, H.; Tian, Y. Determination of mercury (II) by surface-enhanced Raman scattering spectroscopy based on thiol-functionalized silver nanoparticles. Microchim. Acta 2012, 177, 341–348. [Google Scholar] [CrossRef]
- Etchegoin, P.G.; Le Ru, E.C.; Meyer, M. An analytic model for the optical properties of gold. J. Chem. Phys. 2006, 125, 164705. [Google Scholar] [CrossRef] [PubMed]
- Ma, P.; Liang, F.; Sun, Y.; Jin, Y.; Chen, Y.; Wang, X.; Zhang, H.; Gao, D.; Song, D. Rapid determination of melamine in milk and milk powder by surface-enhanced Raman spectroscopy and using cyclodextrin-decorated silver nanoparticles. Microchim. Acta 2013, 180, 1173–1180. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Q.; Peng, Y.; Zhao, X.; Chen, Y. Rapid Detection of Clenbuterol Residues in Pork Using Enhanced Raman Spectroscopy. Biosensors 2022, 12, 859. https://doi.org/10.3390/bios12100859
Guo Q, Peng Y, Zhao X, Chen Y. Rapid Detection of Clenbuterol Residues in Pork Using Enhanced Raman Spectroscopy. Biosensors. 2022; 12(10):859. https://doi.org/10.3390/bios12100859
Chicago/Turabian StyleGuo, Qinghui, Yankun Peng, Xinlong Zhao, and Yahui Chen. 2022. "Rapid Detection of Clenbuterol Residues in Pork Using Enhanced Raman Spectroscopy" Biosensors 12, no. 10: 859. https://doi.org/10.3390/bios12100859
APA StyleGuo, Q., Peng, Y., Zhao, X., & Chen, Y. (2022). Rapid Detection of Clenbuterol Residues in Pork Using Enhanced Raman Spectroscopy. Biosensors, 12(10), 859. https://doi.org/10.3390/bios12100859