An Intelligent Detector for Sensing Pork Freshness In Situ Based on a Multispectral Technique
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fresh Pork Samples
2.2. Hardware Design
2.3. Software Development
2.4. Physical and Chemical Value Determination
2.4.1. TVC Physical and Chemical Value Determination
2.4.2. TVB-N Physical and Chemical Value Determination
2.5. Multispectral Data Acquisition and Preprocessing
2.6. Model Building and Evaluation
3. Results
3.1. Physicochemical Value Statistics and Freshness Grading
3.2. Hardware Testing
3.3. Diffuse Reflectance Multispectral Analysis
3.4. Analysis Results for a Single Variable
3.5. Analysis Results of Different Shape Features and Their Combinations
3.6. Variable Selection
3.7. External Verification
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lebret, B.; Čandek-Potokar, M. Review: Pork quality attributes from farm to fork. Part I. Carcass and fresh meat. Animal 2022, 16, 100402. [Google Scholar] [CrossRef] [PubMed]
- Tonsor, G.T.; Lusk, J.L. U.S. perspective: Meat demand outdoes meat avoidance. Meat Sci. 2022, 190, 108843. [Google Scholar] [CrossRef] [PubMed]
- Bekhit, A.E.A.; Holman, B.W.B.; Giteru, S.G.; Hopkins, D.L. Total volatile basic nitrogen (TVB-N) and its role in meat spoilage: A review. Trends Food Sci. Technol. 2021, 109, 280–302. [Google Scholar] [CrossRef]
- Zhuang, Q.; Peng, Y.; Yang, D.; Nie, S.; Guo, Q.; Wang, Y.; Zhao, R. UV-fluorescence imaging for real-time non-destructive monitoring of pork freshness. Food Chem. 2022, 396, 133673. [Google Scholar] [CrossRef] [PubMed]
- Chemat, Z.; Hadj-Boussaad, D.E.; Chemat, F. Application of atmospheric pressure microwave digestion to total Kjeldahl nitrogen determination in pharmaceutical, agricultural and food products. Analusis 1998, 26, 205–209. [Google Scholar] [CrossRef]
- Jay, J.M. A review of aerobic and psychrotrophic plate count procedures for fresh meat and poultry products. J. Food Protect. 2002, 65, 1200. [Google Scholar] [CrossRef]
- Kademi, H.I.; Ulusoy, B.H.; Hecer, C. Applications of miniaturized and portable near infrared spectroscopy (NIRS) for inspection and control of meat and meat products. Food Rev. Int. 2019, 35, 201–220. [Google Scholar] [CrossRef]
- Sionek, B.; Przybylski, W.; Tambor, K. Biosensors in Evaluation of Quality of Meat and Meat Products—A Review. Ann. Anim. Sci. 2020, 20, 1151–1168. [Google Scholar] [CrossRef]
- Leng, T.; Li, F.; Chen, Y.; Tang, L.; Xie, J.; Yu, Q. Fast quantification of total volatile basic nitrogen (TVB-N) content in beef and pork by near-infrared spectroscopy: Comparison of SVR and PLS model. Meat Sci. 2021, 180, 108559. [Google Scholar] [CrossRef]
- Zhuang, Q.; Peng, Y.; Yang, D.; Wang, Y.; Zhao, R.; Chao, K.; Guo, Q. Detection of frozen pork freshness by fluorescence hyperspectral image. J. Food Eng. 2022, 316, 110840. [Google Scholar] [CrossRef]
- Zhang, F.; Kang, T.; Sun, J.; Wang, J.; Zhao, W.; Gao, S.; Wang, W.; Ma, Q. Improving TVB-N prediction in pork using portable spectroscopy with just-in-time learning model updating method. Meat Sci. 2022, 188, 108801. [Google Scholar] [CrossRef] [PubMed]
- Peyvasteh, M.; Popov, A.; Bykov, A.; Meglinski, I. Meat freshness revealed by visible to near-infrared spectroscopy and principal component analysis. J. Phys. Commun. 2020, 4, 95011. [Google Scholar] [CrossRef]
- Pu, H.; Kamruzzaman, M.; Sun, D. Selection of feature wavelengths for developing multispectral imaging systems for quality, safety and authenticity of muscle foods-a review. Trends Food Sci. Technol. 2015, 45, 86–104. [Google Scholar] [CrossRef]
- He, H.; Sun, D. Hyperspectral imaging technology for rapid detection of various microbial contaminants in agricultural and food products. Trends Food Sci. Technol. 2015, 46, 99–109. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, D.; Liu, H.; Huang, X.; Deng, J.; Jia, R.; He, X.; Tahir, M.N.; Lan, Y. Research hotspots and frontiers in agricultural multispectral technology: Bibliometrics and scientometrics analysis of the Web of Science. Front. Plant Sci. 2022, 13, 955340. [Google Scholar] [CrossRef] [PubMed]
- Galyanin, V.; Melenteva, A.; Bogomolov, A. Selecting optimal wavelength intervals for an optical sensor: A case study of milk fat and total protein analysis in the region 400–1100nm. Sens. Actuators B Chem. 2015, 218, 97–104. [Google Scholar] [CrossRef]
- Yang, B.; Guo, W.; Huang, X.; Du, R.; Liu, Z. A portable, low-cost and sensor-based detector on sweetness and firmness grades of kiwifruit. Comput. Electron. Agric. 2020, 179, 105831. [Google Scholar] [CrossRef]
- Abasi, S.; Minaei, S.; Jamshidi, B.; Fathi, D. Development of an Optical Smart Portable Instrument for Fruit Quality Detection. IEEE Trans. Instrum. Meas. 2021, 70, 1–9. [Google Scholar] [CrossRef]
- Guo, W.; Wang, K.; Liu, Z.; Zhang, Y.; Xie, D.; Zhu, Z. Sensor-based in-situ detector for distinguishing between forchlorfenuron treated and untreated kiwifruit at multi-wavelengths. Biosyst. Eng. 2020, 190, 97–106. [Google Scholar] [CrossRef]
- Wei, W.; Peng, Y. Research on Hand-held Device for Nondestructive Detection of Meat Quality Parameters. Trans. Chin. Soc. Agric. Mach. 2016, 47, 324–332. [Google Scholar] [CrossRef]
- Yang, B.; Huang, X.; Yan, X.; Zhu, X.; Guo, W. A cost-effective on-site milk analyzer based on multispectral sensor. Comput. Electron. Agric. 2020, 179, 105823. [Google Scholar] [CrossRef]
- Tran, N.; Fukuzawa, M. A Portable Spectrometric System for Quantitative Prediction of the Soluble Solids Content of Apples with a Pre-calibrated Multispectral Sensor Chipset. Sensors 2020, 20, 5883. [Google Scholar] [CrossRef]
- Zou, W.; Peng, Y.; Yang, D.; Guo, Q. Remote intelligent sensing system for pork freshness change during storage. In Proceedings of the ASABE Annual International Meeting, Houston, TX, USA, 17–20 July 2022; p. 202200185. [Google Scholar] [CrossRef]
- Li, L.; Peng, Y.; Li, Y.; Yang, C.; Chao, K. Rapid and low-cost detection of moldy apple core based on an optical sensor system. Postharvest Biol. Technol. 2020, 168, 111276. [Google Scholar] [CrossRef]
- Zhang, M.; Shen, M.; Pu, Y.; Li, H.; Zhang, B.; Zhang, Z.; Ren, X.; Zhao, J. Rapid Identification of Apple Maturity Based on Multispectral Sensor Combined with Spectral Shape Features. Horticulturae 2022, 8, 361. [Google Scholar] [CrossRef]
- Moscetti, R.; Haff, R.P.; Aernouts, B.; Saeys, W.; Monarca, D.; Cecchini, M.; Massantini, R. Feasibility of Vis/NIR spectroscopy for detection of flaws in hazelnut kernels. J. Food Eng. 2013, 118, 1–7. [Google Scholar] [CrossRef]
- Bevilacqua, M.; Bro, R.; Marini, F.; Rinnan, Å.; Rasmussen, M.A.; Skov, T. Recent chemometrics advances for foodomics. TrAC Trends Anal. Chem. 2017, 96, 42–51. [Google Scholar] [CrossRef]
- Yangming, H.; Yue, H.; Xiangzhong, S.; Jingxian, G.; Yanmei, X.; Shungeng, M. Comparison of a novel PLS1-DA, traditional PLS2-DA and assigned PLS1-DA for classification by molecular spectroscopy. Chemom. Intell. Lab. 2021, 209, 104225. [Google Scholar] [CrossRef]
- Cáceres-Nevado, J.M.; Garrido-Varo, A.; De Pedro-Sanz, E.; Tejerina-Barrado, D.; Pérez-Marín, D.C. Non-destructive Near Infrared Spectroscopy for the labelling of frozen Iberian pork loins. Meat Sci. 2021, 175, 108440. [Google Scholar] [CrossRef]
- Tharwat, A. Classification assessment methods. Appl. Comput. Inform. 2020, 17, 168–192. [Google Scholar] [CrossRef]
- Casaburi, A.; Piombino, P.; Nychas, G.; Villani, F.; Ercolini, D. Bacterial populations and the volatilome associated to meat spoilage. Food Microbiol. 2015, 45, 83–102. [Google Scholar] [CrossRef]
- Ding, D.; Zhou, C.; Ge, X.; Ye, K.; Wang, P.; Bai, Y.; Zhou, G. The effect of different degrees of superchilling on shelf life and quality of pork during storage. J. Food Process. Preserv. 2020, 44, e14394. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Zhang, M.; Bhandari, B.; Yang, C. Development of a novel colorimetric food package label for monitoring lean pork freshness. LWT 2019, 99, 43–49. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, Q.; Peng, Y.; Zhen, X.; Yang, D.; Peng, Y. Comparative Analysis of Pork Freshness and Spoilage Based on Hyperspectral Reflection Characteristics. Food Sci. 2021, 42, 254–260. [Google Scholar] [CrossRef]
- Achata, E.M.; Inguglia, E.S.; Esquerre, C.A.; Tiwari, B.K.; O’Donnell, C.P. Evaluation of Vis-NIR hyperspectral imaging as a process analytical tool to classify brined pork samples and predict brining salt concentration. J. Food Eng. 2019, 246, 134–140. [Google Scholar] [CrossRef] [Green Version]
- Barbin, D.F.; Sun, D.; Su, C. NIR hyperspectral imaging as non-destructive evaluation tool for the recognition of fresh and frozen–thawed porcine longissimus dorsi muscles. Innov. Food Sci. Emerg. 2013, 18, 226–236. [Google Scholar] [CrossRef]
- Jia, B.; Wang, W.; Yoon, S.; Zhuang, H.; Li, Y. Using a Combination of Spectral and Textural Data to Measure Water-Holding Capacity in Fresh Chicken Breast Fillets. Appl. Sci. 2018, 8, 343. [Google Scholar] [CrossRef] [Green Version]
- Mabood, F.; Boqué, R.; Alkindi, A.Y.; Al-Harrasi, A.; Al Amri, I.S.; Boukra, S.; Jabeen, F.; Hussain, J.; Abbas, G.; Naureen, Z.; et al. Fast detection and quantification of pork meat in other meats by reflectance FT-NIR spectroscopy and multivariate analysis. Meat Sci. 2020, 163, 108084. [Google Scholar] [CrossRef]
Project | Deteriorated Meat | Fresh Meat |
---|---|---|
Class assignment | 0 | 1 |
Calibration set | 43 | 29 |
Prediction set | 14 | 10 |
Preprocessing Method | Number of Variables | Calibration Set | Prediction Set | ||||
---|---|---|---|---|---|---|---|
Sensitivity (%) | Specificity (%) | Accuracy (%) | Sensitivity (%) | Specificity (%) | Accuracy (%) | ||
NONE | 18 | 86.05 | 89.66 | 87.5 | 78.57 | 90.00 | 83.33 |
SR | 153 | 93.02 | 93.10 | 93.06 | 85.71 | 90.00 | 87.50 |
SD | 153 | 90.70 | 93.10 | 91.67 | 78.57 | 90.00 | 83.33 |
NSID | 153 | 93.02 | 93.10 | 93.06 | 85.71 | 90.00 | 87.50 |
SR&SD&NSID | 459 | 86.05 | 93.10 | 88.89 | 85.71 | 90.00 | 87.50 |
VARIABLE SELECTION | 109 | 93.02 | 86.21 | 91.67 | 92.86 | 90.00 | 91.67 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, W.; Peng, Y.; Yang, D.; Zuo, J.; Li, Y.; Guo, Q. An Intelligent Detector for Sensing Pork Freshness In Situ Based on a Multispectral Technique. Biosensors 2022, 12, 998. https://doi.org/10.3390/bios12110998
Zou W, Peng Y, Yang D, Zuo J, Li Y, Guo Q. An Intelligent Detector for Sensing Pork Freshness In Situ Based on a Multispectral Technique. Biosensors. 2022; 12(11):998. https://doi.org/10.3390/bios12110998
Chicago/Turabian StyleZou, Wenlong, Yankun Peng, Deyong Yang, Jiewen Zuo, Yang Li, and Qinghui Guo. 2022. "An Intelligent Detector for Sensing Pork Freshness In Situ Based on a Multispectral Technique" Biosensors 12, no. 11: 998. https://doi.org/10.3390/bios12110998
APA StyleZou, W., Peng, Y., Yang, D., Zuo, J., Li, Y., & Guo, Q. (2022). An Intelligent Detector for Sensing Pork Freshness In Situ Based on a Multispectral Technique. Biosensors, 12(11), 998. https://doi.org/10.3390/bios12110998