Nonbiodegradable Spiegelmer-Driven Colorimetric Biosensor for Bisphenol A Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Determination of Dissociation Constants
2.3. Biostability Assays
2.4. Direct Competitive Enzyme-Lined Aptamer Assays (ELAAs) in Which BLI Is Utilized
2.5. Synthesis of AuNPs
2.6. AuNP-Based Colorimetric Detection of BPA
3. Results and Discussion
3.1. Design and Characterization of the Spiegelmer
3.2. Biostability of the Spiegelmer
3.3. Direct Competitive to Detect BPA and Cross-Reactivity
3.4. AuNP-Based Colorimetric Detection
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tarafdar, A.; Sirohi, R.; Balakumaran, P.A.; Reshmy, R.; Madhavan, A.; Sindhu, R.; Binod, P.; Kumar, Y.; Kumar, D.; Sim, S.J. The hazardous threat of Bisphenol A: Toxicity, detection and remediation. J. Hazard. Mater. 2022, 423, 127097. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Liu, H.; Liu, S. Low-Dose Bisphenol A Exposure: A Seemingly Instigating Carcinogenic Effect on Breast Cancer. Adv. Sci. 2017, 4, 1600248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diamanti-Kandarakis, E.; Bourguignon, J.P.; Giudice, L.C.; Hauser, R.; Prins, G.S.; Soto, A.M.; Zoeller, R.T. Endocrine-disrupting chemicals: An Endocrine Society scientific statement. Endocr. Rev. 2009, 30, 293. [Google Scholar] [CrossRef] [PubMed]
- Rochester, J. Bisphenol A and human health: A review of the literature. Reprod. Toxicol. 2013, 42, 132. [Google Scholar] [CrossRef]
- Yoon, Y.; Westerhoff, P.; Snyder, S.A. HPLC-fluorescence detection and adsorption of bisphenol A, 17β-estradiol, and 17α-ethynyl estradiol on powdered activated carbon. Water Res. 2003, 37, 3530. [Google Scholar] [CrossRef]
- Zheng, J.; Zhao, S.Q.; Xu, X.T.; Zhang, K. Detection of bisphenol A in water samples using ELISA determination method. Water Supply 2011, 11, 55–60. [Google Scholar] [CrossRef]
- Stoltenburg, R.; Reinemann, C.; Strehlitz, B. SELEX-a (r)evolutionary method to generate high-affinity nucleic acid ligands. Biomol. Eng. 2007, 24, 381. [Google Scholar] [CrossRef] [PubMed]
- Jin, C.; Zheng, J.; Li, C.; Qiu, L.; Zhang, X.; Tan, W. Aptamers Selected by Cell-SELEX for Molecular Imaging. J. Mol. Evol. 2015, 81, 162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, H.; Li, J.; Zhang, X.B.; Ye, M.; Tan, W. Nucleic Acid Aptamer-Mediated Drug Delivery for Targeted Cancer Therapy. ChemMedChem 2015, 10, 39. [Google Scholar] [CrossRef] [PubMed]
- Pfeiffer, F.; Mayer, G. Selection and Biosensor Application of Aptamers for Small Molecules. Front. Chem. 2016, 4, 25. [Google Scholar] [CrossRef] [PubMed]
- Tuerk, C.; Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA poly-merase. Science 1990, 249, 505. [Google Scholar] [CrossRef] [PubMed]
- Klußmann, S.; Nolte, A.; Bald, R.; Erdmann, V.A.; Fürste, J.P. Mirror-image RNA that binds D-adenosine. Nat. Biotechnol. 1996, 14, 1112. [Google Scholar] [CrossRef] [PubMed]
- Hoellenriegel, J.; Zboralski, D.; Maasch, C.; Rosin, N.Y.; Wierda, W.G.; Keating, M.J.; Kruschinski, A.; Burger, J. The Spiegelmer NOX-A12, a novel CXCL12 inhibitor, interferes with chronic lymphocytic leukemia cell motility and causes chemosensitization. Blood 2014, 123, 1032. [Google Scholar] [CrossRef] [PubMed]
- Baeck, C.; Wehr, A.; Karlmark, K.R.; Heymann, F.; Vucur, M.; Gassler, N.; Huss, S.; Klussmann, S.; Eulberg, D.; Luedde, T.; et al. Pharmacological inhibition of the chemokine CCL2 (MCP-1) diminishes liver macrophage infiltration and steato-hepatitis in chronic hepatic injury. Gut 2012, 61, 416. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.; Peng, R.; Fu, T.; Zhang, X.; Wu, C.; Chen, H.; Liang, H.; Yang, C.J.; Tan, W. Biostable L-DNAzyme for Sensing of Metal Ions in Biological Systems. Anal. Chem. 2016, 88, 1850. [Google Scholar] [CrossRef]
- Han, G.M.; Jia, Z.Z.; Zhu, Y.J.; Jiao, J.J.; Kong, D.M.; Feng, X.Z. Biostable L-DNA-Templated Aptamer-Silver Nanoclusters for Cell-Type-Specific Imaging at Physiological Temperature. Anal. Chem. 2016, 88, 10800. [Google Scholar] [CrossRef]
- Kim, K.R.; Kim, H.Y.; Lee, Y.D.; Ha, J.S.; Kang, J.H.; Jeong, H.; Bang, D.; Ko, Y.T.; Kim, S.; Lee, H.; et al. Self-assembled mirror DNA nanostructures for tumor-specific delivery of anticancer drugs. J. Control. Release 2016, 243, 121. [Google Scholar] [CrossRef]
- Jo, M.; Ahn, J.Y.; Lee, J.; Lee, S.; Hong, S.W.; Yoo, J.W.; Kang, J.; Dua, P.; Lee, D.K.; Hong, S.; et al. Development of Single-Stranded DNA Aptamers for Specific Bisphenol A Detection. Oligonucleotides 2011, 11, 85. [Google Scholar] [CrossRef] [Green Version]
- Bae, H.; Ren, S.; Kang, J.; Kim, M.; Jiang, Y.; Jin, M.; Min, I.; Kim, S. Sol-Gel SELEX Circumventing Chemical Conjugation of Low Molecular Weight Metabolites Discovers Aptamers Selective to Xanthine. Nucleic Acid Ther. 2013, 23, 443. [Google Scholar] [CrossRef]
- Hauser, N.C.; Martinez, R.; Jacob, A.; Rupp, S.; Hoheisel, J.D.; Matysiak, S. Utilising the left-helical conformation of L-DNA for analysing different marker types on a single universal microarray platform. Nucleic Acids Res. 2006, 34, 5101. [Google Scholar] [CrossRef]
- Ren, S.; Jiang, Y.; Yoon, H.R.; Shin, D.; Lee, S.; Lee, D.K.; Jin, M.M.; Min, I.M.; Kim, S. Label-Free Detection of the Transcription Initiation Factor Assembly and Specific Inhibition by Aptamers. Bull. Korean Chem. Soc. 2014, 35, 1279. [Google Scholar] [CrossRef] [Green Version]
- Ren, S.; Shin, H.-S.; Gedi, V.; Dua, P.; Lee, D.-K.; Kim, S. Selection of DNA Aptamers Against Botulinum Neurotoxin E for Devel-opment of Fluorescent Aptasensor. Bull. Korean Chem. Soc. 2017, 38, 324. [Google Scholar] [CrossRef]
- Grabar, K.C.; Freeman, R.G.; Hommer, M.B.; Natan, M.J. Preparation and Characterization of Au Colloid Monolayers. Anal. Chem. 1995, 67, 735. [Google Scholar] [CrossRef]
- Mei, Z.; Chu, H.; Chen, W.; Xue, F.; Liu, J.; Xu, H.; Zhang, R.; Zheng, L. Ultrasensitive one-step rapid visual detection of bisphenol A in water samples by label-free aptasensor. Biosens. Bioelectron. 2013, 39, 26. [Google Scholar] [CrossRef] [PubMed]
- Gopinath, S.C.; Lakshmipriya, T.; Awazu, K. Colorimetric detection of controlled assembly and disassembly of aptamers on unmodified gold nanoparticles. Biosens. Bioelectron. 2014, 51, 115. [Google Scholar] [CrossRef] [PubMed]
- Medley, C.D.; Smith, J.E.; Tang, Z.; Wu, Y.; Bamrungsap, S.; Tan, W. Gold Nanoparticle-Based Colorimetric Assay for the Direct Detection of Cancerous Cells. Anal. Chem. 2008, 80, 1067. [Google Scholar] [CrossRef]
- Wei, H.; Li, B.; Li, J.; Wang, E.; Dong, S. Simple and sensitive aptamer-based colorimetric sensing of protein using unmodified gold nanoparticle probes. Chem. Commun. 2007, 36, 3735–3737. [Google Scholar] [CrossRef]
- Xu, J.; Li, Y.; Bie, J.; Jiang, W.; Guo, J.; Luo, Y.; Shen, F.; Sun, C. Colorimetric method for determination of bisphenol A based on aptamer-mediated aggregation of positively charged gold nanoparticles. Microchim. Acta 2015, 182, 2131. [Google Scholar] [CrossRef]
- Olea, C.; Weidmann, J.; Dawson, P.E.; Joyce, G.F. An L-RNA Aptamer that binds and inhibits RNase. Chem. Biol. 2015, 22, 1437. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Jo, M.; Kim, T.H.; Ahn, J.; Lee, D.; Kim, S.; Hong, S. Aptamer sandwich-based carbon nanotube sensors for single-carbon-atomic-resolution detection of non-polar small molecular species. Lab Chip 2011, 11, 52–56. [Google Scholar] [CrossRef]
- Kang, B.; Kim, J.; Kim, S.; Yoo, K. Aptamer-modified anodized aluminum oxidebased capacitive sensor for the detection of bi-sphenol A. Appl. Phys. Lett. 2011, 98, 073703. [Google Scholar] [CrossRef]
- Lee, E.H.; Lee, S.K.; Kim, M.J.; Lee, S.W. Simple and rapid detection of bisphenol A using a gold nanoparticle-based colorimetric aptasensor. Food Chem. 2019, 287, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Ragavan, K.V.; Selvakumar, L.S.; Thakur, M.S. Functionalized aptamers as nanobioprobes for ultrasensitive detection of bi-sphenol-A. Chem. Commun. 2013, 49, 5960–5962. [Google Scholar] [CrossRef]
- Messaoud, N.B.; Ghica, M.E.; Dridi, C.; Ali, M.B.; Brett, C.M. Electrochemical sensor based on Multiwalled carbon nanotube and gold nanoparticle modified electrode for the sensitive detection of bisphenol A. Sens. Actuators B Chem. 2017, 253, 513–522. [Google Scholar] [CrossRef]
- Xue, F.; Wu, J.; Chu, H.; Mei, Z.; Ye, Y.; Liu, J.; Zhang, R.; Peng, C.; Zheng, L.; Chen, W. Electrochemical aptasensor for the deter-mination of bisphenol A in drinking water. Microchim. Acta 2013, 180, 109–115. [Google Scholar] [CrossRef]
- Yu, H.; Feng, X.; Chen, X.-X.; Qiao, J.-L.; Gao, X.-L.; Xu, N.; Gao, L.-J. Electrochemical determination of bisphenol A on a glassy carbon electrode modified with gold nanoparticles loaded on reduced graphene oxide-multi walled carbon nanotubes composite. Chin. J. Anal. Chem. 2017, 45, 713–720. [Google Scholar] [CrossRef]
Categories | Detection Methods | LOD | Dynamic Range | Ref. |
---|---|---|---|---|
Carbon nanotube transistor sensor | SwCNT-FET capacitance based sensor | 1 pM | - | [30] |
Capacitance sensor | AAO-based capacitance sensor | 1 nM | 1 nm~100 nm | [31] |
Colorimetric sensor | GNA and aptamer | 0.1 ng/mL | 0.1~100 ng/mL | [24] |
Colorimetric sensor | GNA and aptamer | 1 pg/mL | 1 pg/mL~1 mg/mL | [32] |
Fluorescent sensor | Small GNP’s with functionalized aptamer | 0.1 ng/mL | 1~10,000 ng/mL | [33] |
Electrochemical sensors | Competitive cDNA aptasensors | 0.284 pg/mL | 0.284~1000 pg/mL | [34] |
Electrochemical sensor | DPV using AuNP/MWCNT/GCE | 4 nM | 0.01~0.7 µM | [35] |
Electrochemical sensor | DPV using AuNP–rGO–MWCNTs/GCE | 1 nM | 5 nM~20 µM | [36] |
This method | GNP with L-form DNA aptamer | 0.1 ng/mL | 0.1 ng/mL~1 mg/mL |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, S.; Cho, S.; Lin, R.; Gedi, V.; Park, S.; Ahn, C.W.; Lee, D.-K.; Lee, M.-H.; Lee, S.; Kim, S. Nonbiodegradable Spiegelmer-Driven Colorimetric Biosensor for Bisphenol A Detection. Biosensors 2022, 12, 864. https://doi.org/10.3390/bios12100864
Ren S, Cho S, Lin R, Gedi V, Park S, Ahn CW, Lee D-K, Lee M-H, Lee S, Kim S. Nonbiodegradable Spiegelmer-Driven Colorimetric Biosensor for Bisphenol A Detection. Biosensors. 2022; 12(10):864. https://doi.org/10.3390/bios12100864
Chicago/Turabian StyleRen, Shuo, Samuel Cho, Ruixan Lin, Vinayakumar Gedi, Sunyoung Park, Chul Woo Ahn, Dong-Ki Lee, Min-Ho Lee, Sangwook Lee, and Soyoun Kim. 2022. "Nonbiodegradable Spiegelmer-Driven Colorimetric Biosensor for Bisphenol A Detection" Biosensors 12, no. 10: 864. https://doi.org/10.3390/bios12100864
APA StyleRen, S., Cho, S., Lin, R., Gedi, V., Park, S., Ahn, C. W., Lee, D. -K., Lee, M. -H., Lee, S., & Kim, S. (2022). Nonbiodegradable Spiegelmer-Driven Colorimetric Biosensor for Bisphenol A Detection. Biosensors, 12(10), 864. https://doi.org/10.3390/bios12100864